### 2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

## ALABAMA POWER COMPANY PLANT GORGAS GYPSUM LANDFILL

**January 31, 2022** 

Prepared for

Alabama Power Company Birmingham, Alabama

By

Southern Company Services
Earth Science and Environmental Engineering



#### **CERTIFICATION STATEMENT**

This 2021 Annual Groundwater Monitoring and Corrective Action Report, Alabama Power Company - Plant Gorgas Gypsum Landfill has been prepared in accordance with the United States Environmental Protection Agency's coal combustion residual rule (40 CFR Part 257, Subpart D), ADEM Admin. Code Ch. 335-13-15, and Part E of ADEM Administrative Order No. 18-096-GW, under the supervision of a licensed professional engineer in the State of Alabama. As such, I certify that the information contained herein is true and accurate to the best of my knowledge.

| Polet f. Syl. f. IE                           | 1/31/2022 |  |
|-----------------------------------------------|-----------|--|
| Robert F. Singleton, III                      | Date      |  |
| AL Registered Professional Geologist No. 1584 |           |  |

Gregory Whetstone, PE

1/31/2022

AL Registered Professional Engineer No. 27885

Date

#### **EXECUTIVE SUMMARY**

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (40 CFR Part 257, Subpart D), the State of Alabama Department of Environmental Management (ADEM) Admin. Code Ch. 335-13-15, and ADEM Administrative Order (AO) No. 18-096-GW, this 2021 Annual Groundwater Monitoring and Corrective Action Report has been prepared to document 2021 semi-annual assessment groundwater monitoring activities at the Plant Gorgas Gypsum Landfill and to satisfy the requirements of § 257.90(e), ADEM Admin. Code r. 335-13-15-.06(1)(f), and Part E of AO No. 18-096-GW. Semi-annual assessment monitoring and associated reporting for the Plant Gorgas Gypsum Landfill is performed in accordance with the monitoring requirements § 257.90 through § 257.95 and ADEM Admin. Code r. 335-13-15-.06(1) through r. 335-13-15-.06(6).

The Semi-Annual Progress Reports have historically been provided to the Department in March and September. In an effort to streamline and provide more thorough reports to ADEM, APC requested approval to combine the information provided in the Semi-Annual Progress Reports described in Part E of AO No. 18-096-GW into the Semi-Annual Groundwater Monitoring and Corrective Action Reports on March 15, 2021. ADEM approved this approach and revised timeline for submittals on March 16, 2021. APC will now provide the Department with the combined semi-annual reports in January and July of each year.

The CCR unit began the monitoring period in assessment monitoring pursuant to § 257.95 and ADEM Admin. Code r. 335-13-15-.06(6). Statistically significant increases (SSIs) of Appendix III constituents over background were identified in the results of the first detection monitoring event and assessment monitoring was initiated in January 2018. Statistically significant levels (SSLs) of the Appendix IV constituent lithium were identified in one well above groundwater protection standards (GWPS) while in assessment monitoring. Consequently, an Alternate Source Demonstration (ASD) was submitted to ADEM for lithium SSLs above the GWPS in January of 2019.

Alabama Power Company (APC) completed an Assessment of Corrective Measures (ACM) report and submitted it to ADEM in June 2019 to address the occurrence of constituents in groundwater at SSLs at the Plant Gorgas Ash Pond and Gypsum Pond. In February 2020, Alabama Power revised the ACM to include the Gypsum Landfill. However, it should be noted that SSLs at the Gypsum Landfill have not been observed since 2018.

The following summarizes results and activities conducted during the 2021 monitoring period:

- Statistical evaluations of the February and July 2021 assessment monitoring data did not identify Statistically Significant Levels (SSLs) of Appendix IV constituents above the GWPS. In accordance with § 257.95(d) and ADEM Admin. Code r. 335-13-15-.06(6)(d), APC will continue assessment monitoring.
- Submitted the Semi-Annual Remedy Selection and Design Progress Report in June 2021, which
  included the Gypsum Landfill.
- Submitted 2021 Semi-Annual Groundwater Monitoring and Corrective Action Report on July 31, 2021.
- Submitted the Groundwater Remedy Selection Report in December 2021, which included the Gypsum Landfill.

The Gypsum Landfill concluded the monitoring period in assessment monitoring. The following future actions will be taken or are recommended for the site:

- Develop the Corrective Action Groundwater Monitoring Program and submit the Groundwater Remedy Monitoring Plan in March 2022, which will include the Gypsum Landfill.
- Conduct the first semi-annual assessment monitoring event in 2022 and submit the semi-annual groundwater monitoring and corrective action report summarizing the findings to ADEM by July 31, 2022.

## Executive Summary Table. Monitoring Period Summary Plant Gorgas - Gypsum Landfill

Assessment Monitoring Inintiated: January 15, 2018

Monitoring Period: January 1 - December 31, 2021

Beginning Status: Assessment Ending Status: Assessment

| Statistical | l A | na | lysi | s I | Resu | lts | * |
|-------------|-----|----|------|-----|------|-----|---|
|-------------|-----|----|------|-----|------|-----|---|

#### Appendix III SSIs

| II.       |                                                |  |
|-----------|------------------------------------------------|--|
| Parameter | Wells                                          |  |
| Boron     | MW-20                                          |  |
| Calcium   | MW-15 (upgradient)                             |  |
| Chloride  | MW-14 (upgradient), MW-15 (upgradient), MW-20  |  |
| Fluoride  | MW-13 (upgradient), MW-16, MW-18, MW-19, MW-20 |  |
| pН        | MW-20                                          |  |
| Sulfate   | NA                                             |  |
| TDS       | MW-15 (upgradient)                             |  |

#### **Appendix IV SSLs**

#### No Significant Results

#### **Assessment of Corrective Measures & Groundwater Remedy**

#### **Assessment of Corrective Measures**

Date Initiated: January 13, 2019

Date Complete: June 12, 2019

Revised to Include the Gypsum Landfill: February 28, 2020

Public Meeting Date: July 1, 2020

#### **Groundwater Remedy**

Selected During Period: Yes

Selection Date: December 17, 2021

Initiated During Period: No Ongoing During Period: No

<sup>\*</sup> See the attached report for further details regarding statistical exceedances and alternate source demonstrations.

#### TABLE OF CONTENTS

| EXEC | UTIVE  | SUMMARY                                       | i  |
|------|--------|-----------------------------------------------|----|
| 1.0  | Introd | luction                                       | 1  |
| 2.0  | Monit  | toring Program Status                         | 2  |
| 3.0  | Site L | ocation and Description                       | 3  |
| 3.1  | Phy    | sical Setting                                 | 3  |
| 3.2  | Site   | Geology and Hydrogeology                      | 3  |
| 3    | .2.1   | Pottsville Formation – Rock Chemistry         | 5  |
| 3    | .2.2   | Uppermost Aquifer                             |    |
| 3.   | .2.3   | Flow Interpretation                           | 7  |
| 3.3  | Gro    | undwater Monitoring System                    | 8  |
| 3    | .3.1   | Monitoring Wells                              |    |
|      | 3.3.1. | 1 Upgradient Wells                            | 8  |
|      | 3.3.1. | 2 Downgradient Wells                          | 9  |
|      | 3.3.1. |                                               |    |
|      | 3.3.1. | 4 Monitoring Well Replacement and Abandonment | 9  |
| 3.4  | Gro    | undwater Monitoring History                   |    |
| 3    | .4.1   | Available Monitoring Data                     |    |
| 3    | .4.2   | Historical Groundwater Flow                   |    |
|      | .4.3   | Monitoring Variance                           |    |
| 3.5  |        | undwater Sampling and Analysis                |    |
|      | .5.1   | Groundwater Sample Collection                 |    |
|      | .5.2   | Sample Preservation and Handling              |    |
|      | .5.2   | Chain of Custody                              |    |
|      |        | •                                             |    |
|      | .5.4   | Laboratory Analysis                           |    |
| 1    | 17     | Monitoring Period Sampling Events             | 12 |

| 4.0 | Grou  | undwater Elevations and Flow                       | 13 |
|-----|-------|----------------------------------------------------|----|
| 4.  | 1 Gro | roundwater Flow Velocity Calculations              | 13 |
| 5.0 | Eval  | luation of Groundwater Quality Data                | 15 |
| 5.  | 1 Da  | ata Validation – Quality Assurance/Quality Control | 15 |
| 5.  | 2 Sta | atistical Methodology and Tests                    | 16 |
|     | 5.2.1 | Appendix III Evaluation                            | 16 |
|     | 5.2.2 | Appendix IV Evaluation                             | 17 |
| 5.  | 3 Sta | atistical Exceedances                              | 18 |
|     | 5.3.1 | Appendix III Constituents                          | 18 |
|     | 5.3.2 | Appendix IV Constituents                           | 19 |
| 6.0 | Altei | ernate Source Demonstration                        | 20 |
| 7.0 | Grou  | undwater Delineation                               | 21 |
| 8.0 | Sum   | nmary and Conclusions                              | 22 |
| 9.0 | Refe  | erences.                                           | 23 |

#### **FIGURES**

| Figure 1  | Site Location Map                                      |
|-----------|--------------------------------------------------------|
| Figure 2  | Site Topographic Map                                   |
| Figure 3  | Site Geologic Map                                      |
| Figure 4a | Geologic Cross-Section A-A'                            |
| Figure 4b | Geologic Cross-Section B-B'                            |
| Figure 5  | Monitoring Well Location Map                           |
| Figure 6a | Potentiometric Surface Contour Map (February 22, 2021) |
| Figure 6b | Potentiometric Surface Contour Map (July 12, 2021)     |

#### **TABLES**

| Table 1  | Compliance Monitoring Well Network Details                        |
|----------|-------------------------------------------------------------------|
| Table 2  | Parameters and Reporting Limits                                   |
| Table 3  | Recent Groundwater Elevations Summary                             |
| Table 4a | Relative Percent Difference (RPD) Calculations                    |
| Table 4b | Field QC: Blank Detections                                        |
| Table 4c | Field QC: Data Validation Results (Blanks)                        |
| Table 5  | Summary of Background Levels and Groundwater Protection Standards |
| Table 6a | First Semi-Annual Monitoring Event Analytical Summary             |
| Table 6b | Second Semi-Annual Monitoring Event Analytical Summary            |

#### **APPENDICES**

| Appendix A | Groundwater Analytical Data                       |
|------------|---------------------------------------------------|
| Appendix B | Historical Groundwater Elevations Summary         |
| Appendix C | Laboratory and Field Records                      |
| Appendix D | Horizontal Groundwater Flow Velocity Calculations |
| Appendix E | Statistical Analysis                              |

#### **ABBREVIATIONS**

ACM Assessment of Corrective Measures

ADEM Alabama Department of Environmental Management

AL Alabama

APC Alabama Power Company
APCEL APC Environmental Laboratory
ASD Alternate Source Demonstration

ASTM Alabama Power Company Environmental Laboratory

BGS below ground surface
CCR Coal Combustion Residual
CEC cation exchange capacity
CFR Code of Federal Regulations

COC chain of custody
COI constituents of interest
CSM conceptual Site model
DO dissolved oxygen

EPA United States Environmental Protection Agency

ft feet

GW groundwater

GWPS Groundwater Protection Standard(s)

LCL Lower Confidence Limit(s)

m meter

mg/L milligram per liter

MNA monitored natural attenuation

MSL mean sea level

MW- denotes "Monitoring Well" NCDS National Coal Data System

NELAP National Environmental Laboratory Accreditation Program

NTU nephelometric turbidity unit ORP oxidation reduction potential

pCi/L picocuries per liter
PE Professional Engineer
PG Professional Geologist
PL prediction limits

PQL practical quantitation limit
PVC polymerizing vinyl chloride
QA/QC quality assurance/quality control

RL reporting limit

RPD relative percent difference SEM scanning electron microscopy

SM Standard Method(s)

SSE selective sequential extraction
SSI statistically significant increase
SSL statistically significant level

| TAL | Test America, Inc. |
|-----|--------------------|
| TOC | top of casing      |

TDS total dissolved solids

USGS Unites States Geological Survey

UTLs Upper Tolerance Limits

XRD X-ray diffraction XRF X-ray fluorescence

#### 1.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (40 CFR Part 257, Subpart D), the State of Alabama Department of Environmental Management (ADEM) Admin. Code Ch. 335-13-15, and ADEM Administrative Order No. 18-096-GW, this 2021 Annual Groundwater Monitoring and Corrective Action Report has been prepared to document 2021 semi-annual assessment groundwater monitoring activities at the Plant Gorgas Gypsum Landfill and to satisfy the requirements of § 257.90(e), ADEM Admin. Code r. 335-13-15-.06(1)(f), and Part E of AO No. 18-096-GW. Semi-annual assessment monitoring and associated reporting for Plant Gorgas Gypsum Landfill is performed in accordance with the monitoring requirements § 257.90 through § 257.95 and ADEM Admin. Code r. 335-13-15-.06(1) through r. 335-13-15-.06(6).

On March 15, 2021, in an effort to streamline reporting cycles and provide a single set of comprehensive semi-annual reports to ADEM, APC requested approval to re-locate the discussion of delineation results routinely provided in Semi-Annual Progress Reports to Semi-Annual Groundwater Monitoring and Corrective Action Reports. The Semi-Annual Progress Reports have historically been provided to the Department in March and September and covers content described in Part E of AO No. 18-096-GW. ADEM approved this approach and revised timeline for submittals on March 16, 2021. Semi-Annual and Annual Groundwater Monitoring and Corrective Action Reports will now include an update on groundwater delineation activities completed since the submittal of the Facility Plan for Groundwater Investigation (November 13, 2018) and will continue until released in writing by ADEM.

#### 2.0 MONITORING PROGRAM STATUS

In accordance with § 257.94(e) and ADEM Admin. Code r. 335-13-15-.06(5)(e), APC implemented assessment monitoring in January 2018. SSIs of Appendix III constituents were identified at the Plant Gorgas Gypsum Landfill during the first and second semi-annual sampling events conducted in 2021, but no SSLs of Appendix IV constituents were observed over the GWPS.

Following completion of statistical analysis of Appendix IV data from the first assessment event in May 2018, an SSL above the groundwater protection standard was reported for lithium in the sample from well MW-20. Lithium concentrations in well MW-20 have been below the GWPS since the first assessment event in May 2018. An ASD report for the SSL identified was submitted in January 2019 to ADEM as part of the 2018 Annual Groundwater Monitoring and Corrective Action Report and is pending ADEM review. The Plant Gorgas ACM prepared under § 257.96, ADEM Admin. Code r. 335-13-15-.06(7), and AO No. 18-096-GW was amended to include the Gypsum Landfill in February 2020. APC will continue semi-annual assessment monitoring at the Gypsum Landfill as required.

#### 3.0 SITE LOCATION AND DESCRIPTION

The Alabama Power Company (APC) William Crawford Gorgas Electric Generating Plant (Plant Gorgas) is located in southeastern Walker County, Alabama, approximately 15 miles south of Jasper, at 460 Gorgas Road, Parrish, AL 35580. Based on visual inspection of USGS topographic quadrangle maps and GIS plant boundary files provided by SCS, the plant occupies portions of Sections 7, 8, 9, 16, 17, 18, 19, 20, 21, 28 and 29, Township 16 South, Range 6 West and Section 12, 13 and 24, Township 16 South, Range 7 West (USGS, 1975; USGS, 1983).

Plant Gorgas Gypsum Landfill is located east and northeast of the main power generation facility and is bordered to the north by Highway 269 and to the south by the Mulberry Fork of the Black Warrior River. **Figure 1**, **Site Location Map**, depicts the location of the Plant and landfill with respect to the surrounding area.

#### 3.1 PHYSICAL SETTING

Plant Gorgas is in the Black Warrior River basin, an area typified by moderate relief, with river and stream valleys having dendritic drainage patterns. Elevations at the Site range from approximately 260 feet above mean sea level (MSL) near the Mulberry Fork and Baker Creek to over 500 feet above MSL along a northwest trending ridge approximately 1,000 feet northwest of the plant and in upland areas on the western part of the property. Near the landfill, the land surface generally slopes from north to south and towards the Mulberry Fork of the Black Warrior River. **Figure 2**, **Site Topographic Map**, provides the topography of the Site.

Two natural surface water bodies drain Plant Gorgas property. Baker Creek flows from northwest to southeast through the central portion of the plant before draining into the Mulberry Fork of the Black Warrior River. The Mulberry Fork flows from east to west as it bends around the southern border of the plant property.

#### 3.2 SITE GEOLOGY AND HYDROGEOLOGY

Plant Gorgas lies in the Warrior Basin physiographic region (Sapp and Emplaincourt, 1975), a late Paleozoic basin formed as a result of flexure and sediment loading associated with Appalachian and Ouachita orogenies. The bedrock geology is dominated by clastic sedimentary rocks of the Lower Pottsville Formation. Deeper stratigraphy is marked by carbonates, shales, chert, and sandstones of Mississippian to Cambrian in age (Raymond et al., 1988). Plant Gorgas is directly underlain by rocks belonging to the Pratt Coal Group (Ward II et al., 1989). In general, the Pratt Group consists of mudstone, shale, fine-grained sandstone, and interbedded coal. **Figure 3**, **Site Geologic Map**, illustrates the surface geology at the Site and neighboring areas.

Plant Gorgas is directly underlain by rocks belonging to the Pratt Coal Group (Ward II et al., 1989) of the Upper Pottsville Formation. In general, the Pratt Coal Group consists of mudstone, shale, fine-grained sandstone, and interbedded coal in fining-upward sequences. The Pratt Coal Group generally contains three named coal seams, each separated by 25 to 50 feet of intra-burden. In descending order, they are the Pratt, Nickel Plate, and American coal seams. Locally, Pratt Coal Group strata gently dip (0.5-1.0 degrees) to the south and south-southwest.

Strip mining was conducted over a large portion of the area down to the American seam. As a result, the overburden around the Gypsum Landfill is dominated by backfilled mine overburden (mine spoils) and is characterized by weathered shale and sandstone boulders with lenses of fine sediments and small amounts of coal fragments and coarse sediments. Geologic logs generated during various on-site investigations indicate that the depth to rock varies significantly, ranging from as little as 5 feet (un-mined areas) to as much as 155 feet below ground surface (BGS). Beneath the Gypsum Landfill, subsurface geology is characterized by thin remnants of mine backfill and un-mined portions of the Pratt Coal Group consisting predominantly of mudstone and sandstone. **Figure 4a**, **Geologic Cross-Section A-A'** and **Figure 4b Geologic Cross-Section B-B'**, illustrates the geologic layering beneath the Site.

Two water-bearing zones are present beneath the Site: (1) the mine overburden/top-of-rock interface, and (2) the underlying Pottsville aquifer. The mine overburden/top of rock interface is usually a thin zone of saturation overlying rock and is not laterally continuous across all portions of the Site. Depth to this zone generally ranges from 100 to 115 feet beneath the Site.

The Pottsville aquifer system is the primary aquifer in Walker County. Although on a regional scale there are other aquifer systems in the vicinity of Plant Gorgas, the Pottsville aquifer system is the most significant. The nearest exposure of the Valley and Ridge aquifer system occurs in central Jefferson County, approximately 25 miles east of Plant Gorgas. The nearest exposure of the Tuscaloosa aquifer system occurs

in northwesternmost Walker County, approximately 30 miles northwest of Plant Gorgas. The Tuscaloosa aquifer system is not considered a primary source of groundwater in Walker County (Stricklin, 1989).

The Pottsville aquifer system is composed primarily of Pennsylvanian-aged sandstones, shales, conglomerates, and coal. Groundwater flow primarily occurs through coal seams or rock fabric discontinuities such as bedding planes and fractures. Groundwater in the Pottsville aquifer system is commonly regarded as confined due to large permeability contrasts within the aquifer (Stricklin, 1989). Recharge to the Pottsville aquifer system is largely through infiltration of precipitation and to a lesser extent, downward seepage of river water at hydraulically favored locations. Recharge is accommodated largely by fracture enhanced permeability. Major recharge zones to the Pottsville aquifer system are related to major geologic structures such as large fault zones or along systematic fold axes (Pashin, 2007). Although the Pottsville aquifer system is the primary aquifer in Walker County, groundwater use is relatively limited. According to O'Rear et al., 1972, groundwater use accounted for approximately 15% of total water use in Walker County, or 1.14 million gallons per day (mgd) of groundwater out of a total water use of 969.5 mgd (USGS, 2005).

#### 3.2.1 Pottsville Formation – Rock Chemistry

Published data indicate that elevated arsenic concentrations occur in the Southern Appalachian coal strata where Site monitoring wells are screened. Numerous publications document elevated trace metals in Pottsville and Pottsville coal strata (Kolker et al., 1999, Diehl et al., 2004, Goldhaber et al., 2002). For instance, according to the USGS National Coal Data System (NRCDS), the average concentration of arsenic (72 ppm) in the Pottsville coal strata is three times that of the average of other coal basins (Bragg et al., 1997). Of the U.S. coal analyses for arsenic that are at least three standard deviations above the mean, approximately 90% are from the coal fields of Alabama (Diehl et al., 2004). The United States Geological Survey (USGS) maintains an inventory of coal quality that includes trace metal concentration data. It shows arsenic concentrations range from 1.08 milligrams per kilograms (mg/kg) to 611.0 mg/kg with a mean of 47 mg/kg for Walker County (USGS Coal Quality Database).

Similarly, 75 Pratt Coal Group samples from the Pratt, Nickel Plate, and American coal seams analyzed by the USGS and inventoried in the USGS National Coal Resources Data System (NCRDS) showed the following ranges of other trace metals:

- Boron 6.3 to 83.6 ppm (average of 35 ppm).
- Cobalt 1.6 to 19.8 ppm (average of 8 ppm).
- Molybdenum -0.8 to 22.2 ppm (average of 5 ppm).
- Lithium 1.4 to 128 ppm (average of 28 ppm).

Bulk geochemical analyses of Pottsville stratigraphy from the Site and of the Pratt and American coal seams from Plant Gorgas were conducted on recovered core. The data reflect arsenic concentrations between 4.9 mg/kg and 32.6 mg/kg in siltstone/mudstones and concentrations of 28.9 and 384.4 mg/kg in two coal seams analyzed. The average arsenic concentration was roughly 34 mg/kg in these samples tested, which is in good agreement with data observed in the USGS NCRDS.

Similarly, 17 Pratt Coal Group samples collected from the Site provided the following ranges of other trace metals:

- Arsenic 0 to 384.1 ppm (average of 43.8 ppm).
- Boron 20.8 to 114 ppm (average of 49 ppm).
- Cobalt 2.79 to 31.2 ppm (average of 18.6 ppm).
- Molybdenum 0 to 4.38 ppm (average of 1.06 ppm).

Trace metal enrichment and pyrite origins have been linked to post-depositional (post-coalification) deformation and trace metal laden hydrothermal fluids upwelling during Alleghanian tectonism. Diehl et al., (2004) and Goldhaber et al., (2002) describe "high-pyrite" coals as a source of elevated arsenic and other trace metals. In these publications, pyrite occurrence is observed within coal banding, woody cellular fill structures, mineral overgrowths and structural fills such as veins and microfaults.

Furthermore, the process of strip mining and backfilling these materials can increase the availability of trace metals to groundwater. These mining processes and practices lead to the physical weakening and enhanced weathering of rock which, along with changed hydrodynamics, can lead to elevated and highly variable concentrations across a historic mine site.

#### 3.2.2 Uppermost Aquifer

The principal aquifer system from a local and regional perspective is the Pottsville aquifer. The Pottsville aquifer is also the uppermost aquifer beneath the Site. In the Pottsville, two types of secondary porosity

were observed to yield groundwater: (1) fractured intervals and (2) bedding plane weaknesses associated with fissile, siderite-banded, iron-claystone sequences. Fractured intervals are sporadic across the Site and tend to occur with greater density in the upper 100 feet of rock. The upper portions of the Pottsville aquifer system beneath the proposed disposal facilities indicate unconfined to confined, fractured, and extremely anisotropic conditions. The Pottsville aquifer system functions as a series of confined to semi-confined water producing zones (aquifers) because of the large permeability contrasts within the strata (Stricklin, 1989). Depth to groundwater varies significantly across the Site and is wholly dependent on encountering a fractured interval or zone of fissile, iron-claystone.

Monitoring wells installed at the mine overburden/top of rock interface monitor the quality of water passing to the Pottsville Formation. This water quality itself can be highly variable and enriched in trace metals owing to the heterogeneity of mine backfill deposits and mineralogy (e.g. clay minerals and sulfides). Based on published data, groundwater quality produced from the Pottsville Formation can be characterized by high concentrations of sulfate, iron, and other trace metals (Jennings and Cook, 2010). Trace metals in Pottsville Formation groundwater are associated with sulfide minerals contained in organic-rich strata (e.g., mudstones and coal seams) and siliceous/carbonate healed fractures and joints. Trace element enrichment is likely the result of migrating hydrothermal fluids generated during the late Paleozoic Allegheny orogeny (Diehl et al., 2004). Arsenic, antimony, molybdenum, selenium, copper, thallium, and mercury are elevated in Warrior Basin coal strata (Goldhaber et al., 2002).

#### **3.2.3** Flow Interpretation

Groundwater flow at the Site is a subdued replica of the natural topography where gravity is the dominant force driving flow. Groundwater flows from higher topographic elevations north of the Site to lower topographic elevations to the south and generally, towards the Mulberry Fork of the Black Warrior River. Mine spoil layering and complex Pottsville Formation lithofacies contribute to the vertical and horizontal heterogeneity present within the aquifer system and overlying saturated mine spoils. This heterogeneity focuses groundwater flow along more permeable pathways, such as parallel to coal seams and bedding plains, or along vertical or sub-vertical discontinuities in the rock fabric. A potentiometric surface map for the Site is presented in a later section.

#### 3.3 GROUNDWATER MONITORING SYSTEM

Pursuant to § 257.91 and ADEM Admin. Code r. 335-13-15-.06(2), Plant Gorgas has installed a groundwater monitoring system to monitor groundwater within the uppermost aquifer. The certified groundwater monitoring system for the Plant Gorgas Gypsum Landfill is designed to monitor groundwater passing the waste boundary of the CCR unit within the uppermost aquifer. Wells were located to serve as upgradient or downgradient monitoring locations based on groundwater flow direction as determined by the potentiometric surface elevation contour maps. All groundwater monitoring wells were designed and constructed using "Design and Installation of Groundwater Monitoring Wells in Aquifers," ASTM Subcommittee D18.21, as a guideline.

#### 3.3.1 Monitoring Wells

Well locations at the Site are designated as upgradient, downgradient, and piezometer (water-level only). The following subsections provide a summary of well designations and, if applicable, changes or modifications to the well network or designations. As described in the site Groundwater Monitoring Plan, modifications to the well network or designation must first be approved by ADEM.

Monitoring well locations for the Gorgas Gypsum Landfill are presented on **Figure 5**, **Monitoring Well Location Map**. **Table 1**, **Compliance Monitoring Well Network Details**, summarizes the monitoring well construction details and design purpose for the Plant Gorgas Gypsum Landfill.

#### 3.3.1.1 Upgradient Wells

Data used to establish background water quality or selection of upgradient wells include (1) review of groundwater elevation data and potentiometric surface contour maps to determine groundwater flow direction and (2) a screening of Appendix III CCR indicator parameters for apparently elevated concentrations.

Monitoring well locations MW-1 through MW-4 and MW-13 through MW-15 serve as upgradient locations for the Gypsum Landfill. Upgradient wells are screened within the same hydrostratigraphic interval as downgradient locations and are representative of background groundwater quality at the site. Groundwater generally flows from higher topographic elevations north of the site to lower topographic elevations to the south. Upgradient wells are located north of the Gypsum Landfill as determined by water level monitoring and potentiometric surface maps constructed for the Site.

#### 3.3.1.2 Downgradient Wells

Monitoring well locations MW-16, MW-17R, MW-18, MW-19, and MW-20 serve as downgradient locations for the Gypsum Landfill. Downgradient locations are located lateral to and south of the Gypsum Landfill as determined by water level monitoring and potentiometric surface maps.

#### 3.3.1.3 Piezometers

There are currently no piezometers installed in the groundwater monitoring well network.

#### 3.3.1.4 Monitoring Well Replacement and Abandonment

During 2021, no monitoring well replacement or abandonment activities occurred.

#### 3.4 GROUNDWATER MONITORING HISTORY

In accordance with § 257.94(b) and ADEM Admin. Code r. 335-13-15-.06(5)(b), eight independent samples were collected from each upgradient and downgradient well and analyzed for the constituents listed in Appendix III and IV prior to October 17, 2017. Background groundwater monitoring was performed at the Gorgas Gypsum Landfill from April 2016 through October 2017. Groundwater sampling for the first detection monitoring event after the background period was performed in November 2017.

Based on results of the 2017 Annual Groundwater and Corrective Action Monitoring Report, APC initiated an assessment monitoring program on January 15, 2018. Pursuant to 40 CFR § 257.95(a) and ADEM Admin. Code r. 335-13-15-.06(6)(a), monitoring wells were sampled for all Appendix IV parameters in February 2018, within 90 days of initiating the assessment monitoring program. Semi-annual assessment sampling has continued since the conclusion of background sampling and initiation of assessment monitoring.

#### 3.4.1 Available Monitoring Data

Laboratory analytical data is available for the groundwater monitoring history outlined in **Section 3.4.** Tabulated results for Appendix III and Appendix IV constituents by monitoring well are included in **Appendix A, Groundwater Analytical Data**.

#### 3.4.2 Historical Groundwater Flow

Historical groundwater elevations and potentiometric surface maps show that groundwater flow patterns are consistent across monitoring events and as described in **Section 3.2.3**. Tables summarizing groundwater

elevations from all groundwater monitoring events are included in **Appendix B, Historical Groundwater Elevations Summary**.

#### 3.4.3 Monitoring Variance

The groundwater monitoring program at the Site is operating under a Variance granted by ADEM on April 15, 2019, to conform State monitoring requirements under the CCR rule to Federal requirements. The variance:

- Retains boron as an Appendix III detection monitoring parameter and excludes it as an Appendix IV assessment monitoring parameter.
- 2. Authorizes the use of Federally-published GWPS of 0.006 milligrams per liter (mg/L) for cobalt; 0.015 mg/L for lead; 0.040 mg/L for lithium; and 0.100 mg/L for molybdenum in lieu of background where those levels are greater than background levels.

#### 3.5 GROUNDWATER SAMPLING AND ANALYSIS

Site compliance wells are sampled semi-annually between: (1) late winter – mid spring and (2) early to late fall. The temporal spacing between sampling events is sufficient to ensure that sampling events yield independent groundwater samples and generally, represent different climatic or meteorological seasons which often foster a degree of natural variability in groundwater quality.

During routine semi-annual monitoring events, all compliance wells are sampled and analyzed for Appendix III and Appendix IV constituents. Additional general chemistry constituents (major ions and anions) are now being collected routinely as well. These non-compliance parameters will be periodically analyzed to explore seasonal changes in geochemical facies in Site groundwater.

The following subsections summarize the sequential steps and process for the sampling, handling/transport, and analysis of compliance-related groundwater samples at the Site.

#### 3.5.1 Groundwater Sample Collection

Prior to recording water levels and collecting samples, each well was opened and allowed to equilibrate to atmospheric pressure. Within a 24-hour period, depths to groundwater were measured to the nearest 0.01 foot with an electronic water level indicator with depth referenced from the top of the inner PVC well

casing. Groundwater elevations were calculated by subtracting the depth to groundwater from surveyed top-of-casing (TOC) elevations.

Groundwater samples were collected from monitoring wells using low-flow sampling procedures in accordance with § 257.93(a) and ADEM Admin. Code r. 335-13-15-.06(4)(a). All monitoring wells at Plant Gorgas are equipped with a dedicated pump. Monitoring wells were purged and sampled using low-flow sampling procedures. In this procedure, field water quality parameters (pH, turbidity, conductivity, and dissolved oxygen) are measured to determine stabilization and groundwater samples are collected when the following stabilization criteria are met:

- 0.2 standard units for pH.
- 5% for specific conductance.
- 0.2 Mg/L or 10% for DO > 0.5 mg/l (whichever is greater).
- Turbidity measurements less than 5 NTU.
- Temperature and ORP record only, no stabilization criteria.

During purging and sampling an In-Situ Aqua Troll instrument was used to monitor and record field parameters. Once stabilization was achieved, samples were collected and submitted to the laboratory following standard chain-of-custody (COC) protocol. Field data recorded in support of groundwater sampling activities for the monitoring events are included in **Appendix C, Laboratory and Field Records**.

#### 3.5.2 Sample Preservation and Handling

Groundwater samples were collected within the designated size and type of laboratory-supplied containers required for specific parameters. Sample bottles were pre-preserved by the laboratory.

Where temperature control was required, samples were placed in an ice-packed cooler and cooled to less than 6 °C immediately after collection. Blue ice or other cooling packs were not used for cooling samples. An ice-packed cooler was on hand when samples were collected.

#### 3.5.3 Chain of Custody

A COC record was used to track sample possession from the time of collection to the time of receipt at the laboratory. All samples were handled under strict COC procedures beginning in the field. COC records are included with the analytical laboratory reports included in **Appendix C**.

#### 3.5.4 Laboratory Analysis

Laboratory analyses were performed by the APC Environmental Laboratory (APCEL) in Calera, Alabama or Pace Analytical Services, LLC (Pace) in Greensburg, Pennsylvania. Both APCEL and Pace are accredited by National Environmental Laboratory Accreditation Program (NELAP) and maintain a NELAP certification for all parameters analyzed. **Table 2, Parameters and Reporting Limits**, lists assessment monitoring constituents analyzed from Site groundwater samples. Groundwater data and COC records for the monitoring events are presented in **Appendix C**.

#### 3.5.5 Monitoring Period Sampling Events

As required by § 257.90(e) and ADEM Admin. Code r. 335-13-15-.06(1)(f), the following describes monitoring-related activities performed during the preceding year. Semi-annual Assessment Monitoring sampling events occurred in February 2021 and July 2021.

The first semi-annual assessment monitoring event took place between February 22, 2021 and February 24, 2021. A groundwater monitoring report summarizing data and activities from the first semi-annual sampling event was submitted to the Department in July 2021. The second semi-annual assessment monitoring event took place between July 12, 2021 through July 21, 2021.

Groundwater samples were analyzed for the full list of Appendix III and Appendix IV parameters during each Assessment Monitoring event. All groundwater sampling activities were conducted by APC Field and Water Services. Pace Analytical Services performed the laboratory analyses of Radium-226 and Radium-228 (reported combined). APCEL performed the remaining Appendix III and Appendix IV analyses. Analytical data from the groundwater monitoring events is included as Appendix C, in accordance with the requirements of § 257.90(e)(3) and ADEM Admin. Code r. 335-13-15-.06(1)(f)3.

#### 4.0 GROUNDWATER ELEVATIONS AND FLOW

During the first semi-annual sampling event, groundwater elevations ranged from 298.70 to 419.94 feet NAVD88 (feet above 1988 North American Vertical Datum) in Gypsum Landfill monitoring wells. **Figure 6a, Potentiometric Surface Contour Map** (**February 22, 2021**) depicts groundwater elevations and inferred groundwater flow direction.

During the second semi-annual sampling event, groundwater elevations ranged from 298.00 to 421.54 feet NAVD88 (feet above 1988 North American Vertical Datum). **Figure 6b, Potentiometric Surface Contour Map (July 12, 2021)** depicts groundwater elevations and inferred groundwater flow direction.

As shown on **Figures 6a** and **6b**, the general direction of lateral groundwater flow is to the southeast, consistent with historic observations. As indicated by groundwater elevations from paired wells MW-12 and MW-12V at the nearby Bottom Ash Landfill, an upward vertical gradient appears to exist between shallow and deeper flow zones. This indicates that (1) both vertically confining conditions exist and (2) deeper, older groundwater is upward flowing. Recent available groundwater elevation data have been tabulated and included in **Table 3**, **Recent Groundwater Elevations Summary**. All available groundwater elevation data recorded since 2016 have been tabulated and included in **Appendix B**.

#### 4.1 GROUNDWATER FLOW VELOCITY CALCULATIONS

Because the geology at the Gypsum Landfill is not homogeneous or isotropic with respect to groundwater flow, groundwater velocity calculations using derivations of Darcy's Law, or other methods, will not fully represent the spatial variability across the site. Groundwater flow velocity calculations are provided as a general estimate of groundwater flow velocity at the site based on available information and assumptions described below.

The hydrogeologic characteristics of mine spoils and fractured rock can produce preferential groundwater flow paths, so groundwater velocity is much more variable than in uniform porous media such as sand. These flow paths correspond to more permeable lenses in mine spoil and fractures, zones of fracture concentration, bedding planes, and other discontinuities in the rock. Therefore, groundwater flow velocity at the Site will be highly variable.

Slug testing provided horizontal hydraulic conductivities for the uppermost aquifer between  $5.11 \times 10^{-3}$  centimeters per second (cm/sec) and  $2.47 \times 10^{-4}$  cm/sec. The average hydraulic conductivity value used in

the calculations is  $2.83 \times 10^{-3}$  cm/sec or 8.01 feet/day. An estimated effective porosity of 0.15 is used in the flow rate calculations. The hydraulic gradient was calculated between well pairs shown in **Appendix D**, **Horizontal Groundwater Flow Velocity Calculations**.

Horizontal flow velocity was calculated using the commonly-used derivative of Darcy's Law:

$$V = \frac{K * i}{n_e}$$

Where:

 $V = \text{Groundwater flow velocity}\left(\frac{feet}{day}\right)$ 

 $K = \text{Average permeability of the aquifer } \left(\frac{feet}{day}\right)$ 

i =Horizontal hydraulic gradient

 $n_e$ = Effective porosity

Using this equation, horizontal groundwater flow velocity is calculated for the site and is tabulated in **Appendix D** which presents the estimated horizontal flow velocity calculated using groundwater elevation data from the first and second semi-annual sampling events in 2021.

#### 5.0 EVALUATION OF GROUNDWATER QUALITY DATA

During each sampling event, quality assurance/quality control samples (QA/QC) were collected at a rate of one sample per every group of 10 well samples. These QA/QC samples include well duplicates, equipment blanks, and field blanks. Routine analyses of field QA/QC samples are a method for evaluating whether artificial bias could have been introduced into lab results by ways of sampling activities or equipment.

#### 5.1 DATA VALIDATION – QUALITY ASSURANCE/QUALITY CONTROL

Analytical precision is measured through the calculation of the relative percent difference (RPD) of two data sets generated from a similar source. Here, a comparison of results between samples and field duplicate samples are used as measure of laboratory precision. Where field duplicates are collected, the RPD between the sample and duplicate sample is calculated as:

$$RPD = \frac{Conc1 - Conc2}{(Conc1 + Conc2)/2}$$

Where:

RPD = Relative Percent Difference (%)

Conc1 = Higher concentration of the sample or field duplicate

Conc2 = Lower concentration of the sample or field duplicate

Where the relative percent differences are below 20%, the difference is considered acceptable and no further action is needed. Where an RPD is greater than 20%, further evaluation is required to attempt to determine the cause of the difference and potentially result in qualified data. **Table 4a**, **Relative Percent Difference Calculations**, provides the RPDs for sample and sample duplicates during the first and second semi-annual monitoring events of 2021. All RPDs were below 20% for the 2021 sampling events.

Barium was detected at a low level in the equipment blank collected for the downgradient compliance wells during the first semi-annual sampling event. This detection was an estimated concentration, above the MDL

but below the RL, and qualified in the laboratory analytical report with a "J flag." The concentration reported is well below established background concentrations and the GWPS. However, if concentrations are detected above the MDL in equipment QC samples, original results less than five times the equipment QC detection are flagged with a (+) U\* and MDL/RL values modified based upon the blank concentration. Because detections for barium in each of the wells were greater than five times the equipment QC detection, updated qualifiers and MDL/RL values are not necessary.

Arsenic was detected at a low level in the equipment blank collected from the downgradient compliance wells during the second semi-annual sampling event. This detection was an estimated concentration of 0.000080 mg/L and qualified in the laboratory analytical report with a "J flag." The concentration reported is well below established background concentration and the GWPS. However, arsenic was detected at well MW-19 at an estimated concentration of 0.00018 mg/L and qualified with a "J flag." Because the concentration of arsenic detected at MW-19 is greater than five times the detection of arsenic in the equipment blank, the arsenic detection at MW-19 is qualified with a (+) U\* validation flag and the MDL for arsenic at MW-19 is adjusted to match the blank concentration.

Table 4b, Field QC: Blank Detections and Table 4c, Field QC: Data Validation Results (Blanks) summarizes the results of QC sample detections and data validation for the first and second 2021 semi-annual monitoring events.

#### 5.2 STATISTICAL METHODOLOGY AND TESTS

The Sanitas groundwater statistical software is used to perform the statistical analyses. Sanitas is a decision support software package that incorporates the statistical tests required of Subtitle C and D facilities by EPA regulations. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the USEPA Unified Guidance (2009).

#### **5.2.1** Appendix III Evaluation

Intrawell prediction limits, combined with a 1-of-2 verification resample plan, are used to evaluate calcium, chloride, fluoride, sulfate, and total dissolved solids (TDS). Interwell prediction limits, combined with a 1-of-2 verification resample plan, are used for boron and pH to determine whether there has been a statistically significant increase (SSI) over background groundwater quality. Intrawell prediction limits use screened historical data within a given well to establish limits for parameters at that well. The most recent sample from the same well is compared to its respective background to identify SSIs over background.

Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. The most recent sample from each downgradient well is compared to the background limit to identify SSIs.

Groundwater Stats Consulting demonstrated that these test methods were appropriate in the October 2017 Statistical Analysis Plan, which was updated in the September 2019 data screening evaluation. Time series plots were used to screen proposed background data for suspected outliers, or extreme values that would result in limits that are not conservative from a regulatory perspective. Suspected outliers at all wells for Appendix III parameters are formally tested using Tukey's box plot method and, when identified, flagged in the computer database.

The following adjustments were made:

- No statistical analyses are required on wells and analytes containing 100% non-detects (EPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in the background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the practical quantitation limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data
- Non-parametric prediction limits are used on data containing greater than 50% non-detects.

#### 5.2.2 Appendix IV Evaluation

When in assessment monitoring, Appendix IV constituents are sampled semi-annually, and concentrations are compared to GWPS. Following the Unified Guidance, spatial variation for Appendix III parameters is tested using the ANOVA; this test is not prescribed for Appendix IV constituents. Unlike the statistical evaluation of Appendix III constituents (where single-sample results are compared to the statistical limit), Appendix IV analysis uses the pooled results from each downgradient well to develop a well-specific Confidence Interval that is compared to the statistical limit. The statistical limit is either the Interwell Tolerance limit (i.e. background) calculated using the pool of all available upgradient well data (see Chapter 7 of the Unified Guidance), or an applicable groundwater protection standard such as the MCL. Appendix IV background data are screened for outliers and extreme trending patterns that would lead to artificially elevated statistical limits.

Parametric tolerance limits (i.e. UTLs) were calculated using pooled upgradient well data for Appendix IV parameters with a target of 95% confidence and 95% coverage. The confidence and coverage levels for nonparametric tolerance limits are dependent on the number of background samples. The UTLs were then used as the GWPS.

As described in 40 CFR §257.95(h)(1)-(3) and the ADEM variance, the GWPS is:

- (1) The maximum contaminant level (MCL) established under 40 CFR §141.62 and 141.66.
- (2) Where an MCL has not been established:
  - (i) Cobalt 0.006 (mg/L).
  - (ii) Lead 0.015 (mg/L).
  - (iii) Lithium 0.040 (mg/L).
  - (iv) Molybdenum 0.100 (mg/L).
- (3) Background levels for constituents where the background level is higher than the MCL or rule-specified GWPS.

In assessment monitoring, when the Lower Confidence Limit (LCL), or the entire interval, exceeds the GWPS as discussed in the USEPA Unified Guidance (2009), the result is recorded as an SSL. GWPS for Appendix IV constituents are updated on a biennial schedule. This schedule was initiated in 2019 with updates generally occurring after the second semi-annual sampling event of each biennial year. Data from upgradient wells collected between updates may still be used to support ASDs if merited.

#### 5.3 STATISTICAL EXCEEDANCES

Analytical data from the first and second semi-annual monitoring events in 2021 were statistically analyzed in accordance with the Professional Engineer (PE)-certified Statistical Analysis Plan (October 2017) and revised in September 2019 data screening evaluation performed by Groundwater Stats Consulting. Appendix III statistical analysis was performed to determine if constituents had returned to background levels. Appendix IV assessment monitoring parameters were evaluated to determine if concentrations statistically exceeded the established groundwater protection standard.

#### **5.3.1** Appendix III Constituents

Based on review of the Appendix III statistical analysis presented in **Appendix E**, **Statistical Analysis**, Appendix III constituents have not returned to background levels.

#### **5.3.2** Appendix IV Constituents

**Table 5**, **Summary of Background Levels and Groundwater Protection Standards**, summarizes the background limit established at each monitoring well and the GWPS. A summary table of the statistical limits accompanies the prediction limits in **Appendix E**. A review of the Sanitas results presented in **Appendix E** did not identify any Appendix IV SSLs during the first or second semi-annual monitoring events for 2021.

Table 6a, First Semi-Annual Monitoring Event Analytical Summary and Table 6b, Second Semi-Annual Monitoring Event Analytical Summary provide a summary of all constituent concentrations for the first and second semi-annual sampling events of 2021.

#### 6.0 ALTERNATE SOURCE DEMONSTRATION

Section 257.95(g)(3)(ii) and ADEM Admin. Code r. 335-13-15-.06(6)(g)4.(ii) allow the owner or operator to demonstrate that a source other than the CCR unit has caused an SSL and that the SSL was the result of an alternate source, or that the SSL resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. An ASD was prepared for lithium and submitted to ADEM in January 2019.

As discussed in the ASD report, the apparent SSL is the result of the presence of mine spoils and natural groundwater chemistry variability not accounted for by Site statistics. Analytical data from the first semi-annual monitoring event in January 2018 were statistically analyzed in accordance with the PE-certified Statistical Analysis Plan (October 2017) and updated in the September 2019 data screening evaluation performed by Groundwater Stats Consulting. A lithium statistical limit of 0.419 mg/L was calculated using the pool of all available upgradient well data in the updated September 2019 data screening evaluation. Consequently, there are no historical exceedances of lithium associated with the Gypsum Landfill.

The ASD satisfies Federal rules and precludes the need to complete an ACM under § 257.96. However, ADEM has yet to approve the ASD for lithium, and consequently an ACM is required according to the State rules (ADEM Admin. Code r. 335-13-15-.06(6)(g)5.). APC amended the current Plant Gorgas ACM that was prepared under § 257.96, ADEM Admin. Code r. 335-13-15-.06(7), and AO No. 18-096-GW to include the Gypsum Landfill in February 2020.

#### 7.0 GROUNDWATER DELINEATION

As required by Part E of the Order (AO No. 18-096 GW) and correspondence from ADEM (March 2021), this report provides an update on groundwater delineation activities completed since the submittal of the Facility Plan for Groundwater Investigation (November 13, 2018). The primary purpose of this plan was to identify the horizontal and vertical extent of groundwater impacts defined by EPA Appendix IV groundwater protection standards.

As described in the Facility Plan for Groundwater Investigation for the Plant Gorgas Gypsum Landfill, source characterization and groundwater delineation efforts are not required pursuant to applicable rules because GWPS are not exceeded at the Gypsum Landfill. SSLs of the Appendix IV constituent lithium were identified in one well while in assessment monitoring. Consequently, an ASD was submitted to ADEM for lithium SSLs above the GWPS in January 2019. However, since that submittal, SSLs have not been observed at the Site. Pending ADEM review and approval of the ASD, APC will continue assessment monitoring at the Gypsum landfill.

APC completed an ACM report submitted to ADEM in June 2019 to address the occurrence of constituents in groundwater at SSLs at the Plant Gorgas Ash Pond and Gypsum Pond. In February 2020, Alabama Power revised the ACM to include the Gypsum Landfill. As described above, there have not been any SSLs at the Site since 2018, and therefore, there is no driver to implement or apply groundwater corrective action remedies.

#### 8.0 SUMMARY AND CONCLUSIONS

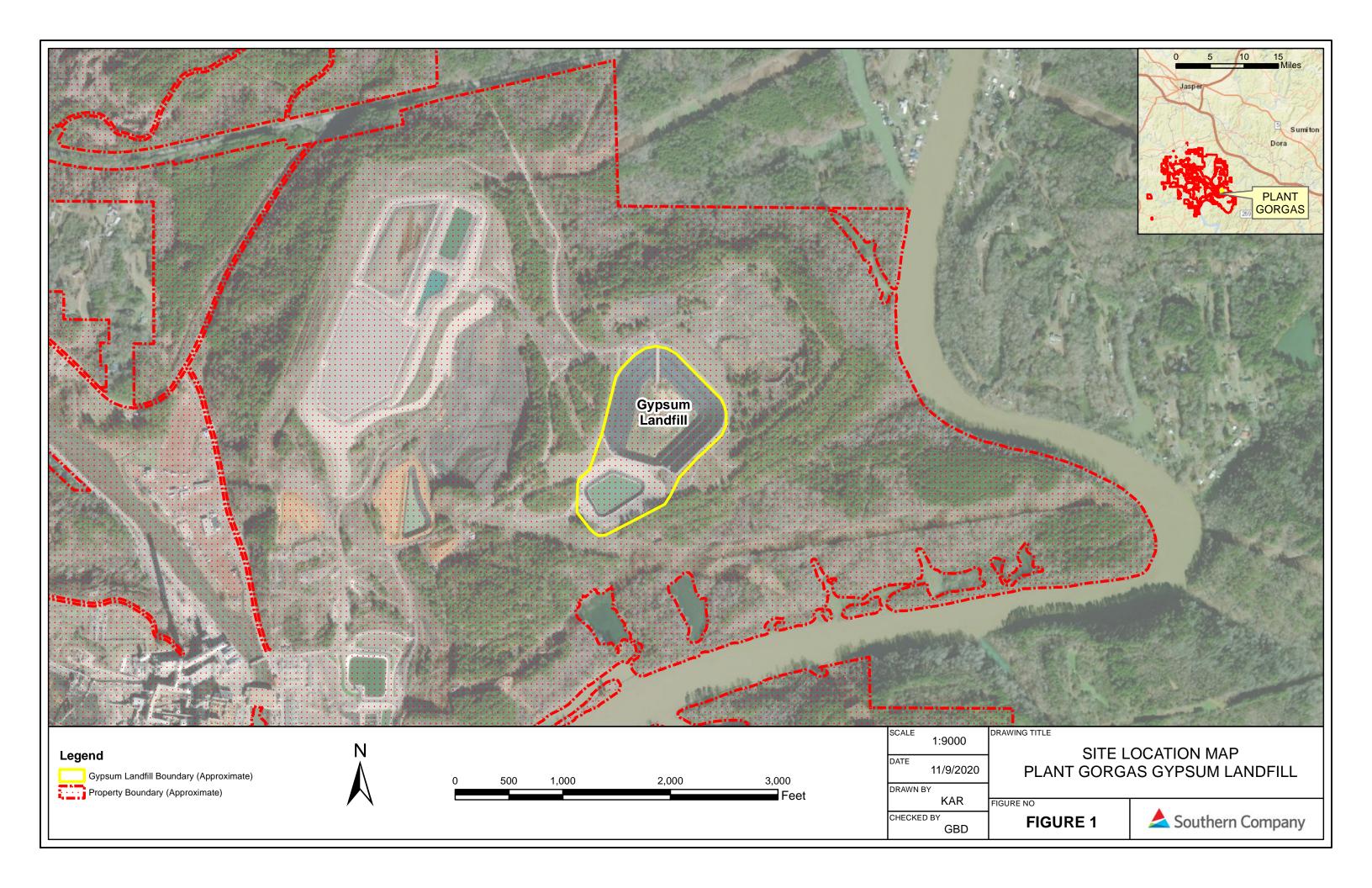
Based on the results of statistical analysis presented in this report, the Gypsum Landfill remains in assessment monitoring.

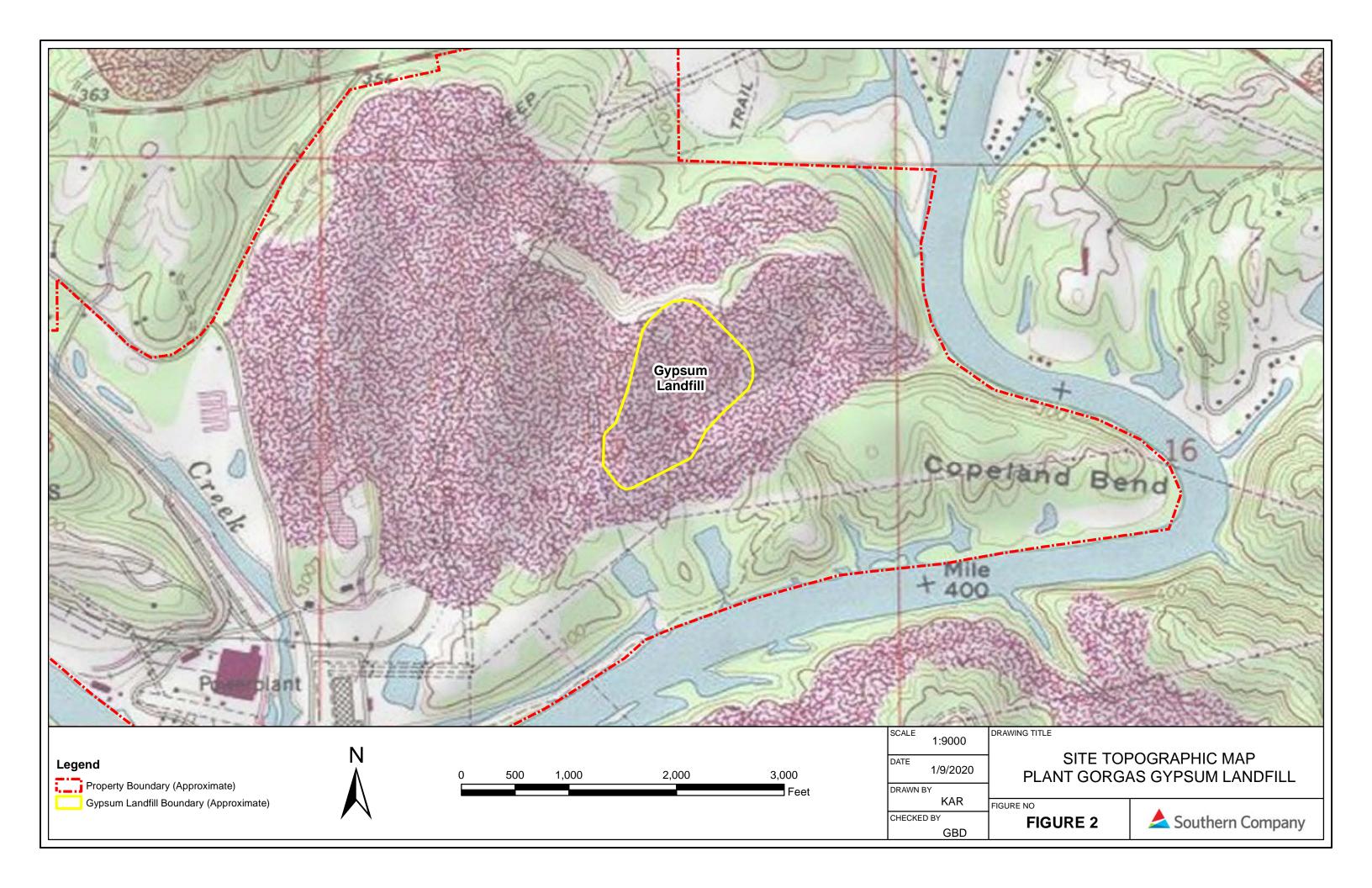
The certified compliance monitoring well network is sampled on a semi-annual basis and groundwater samples are analyzed for all Appendix III and IV parameters. Statistical evaluations of the February and July 2021 semi-annual assessment monitoring data identified no SSLs of Appendix IV constituents above the GWPS

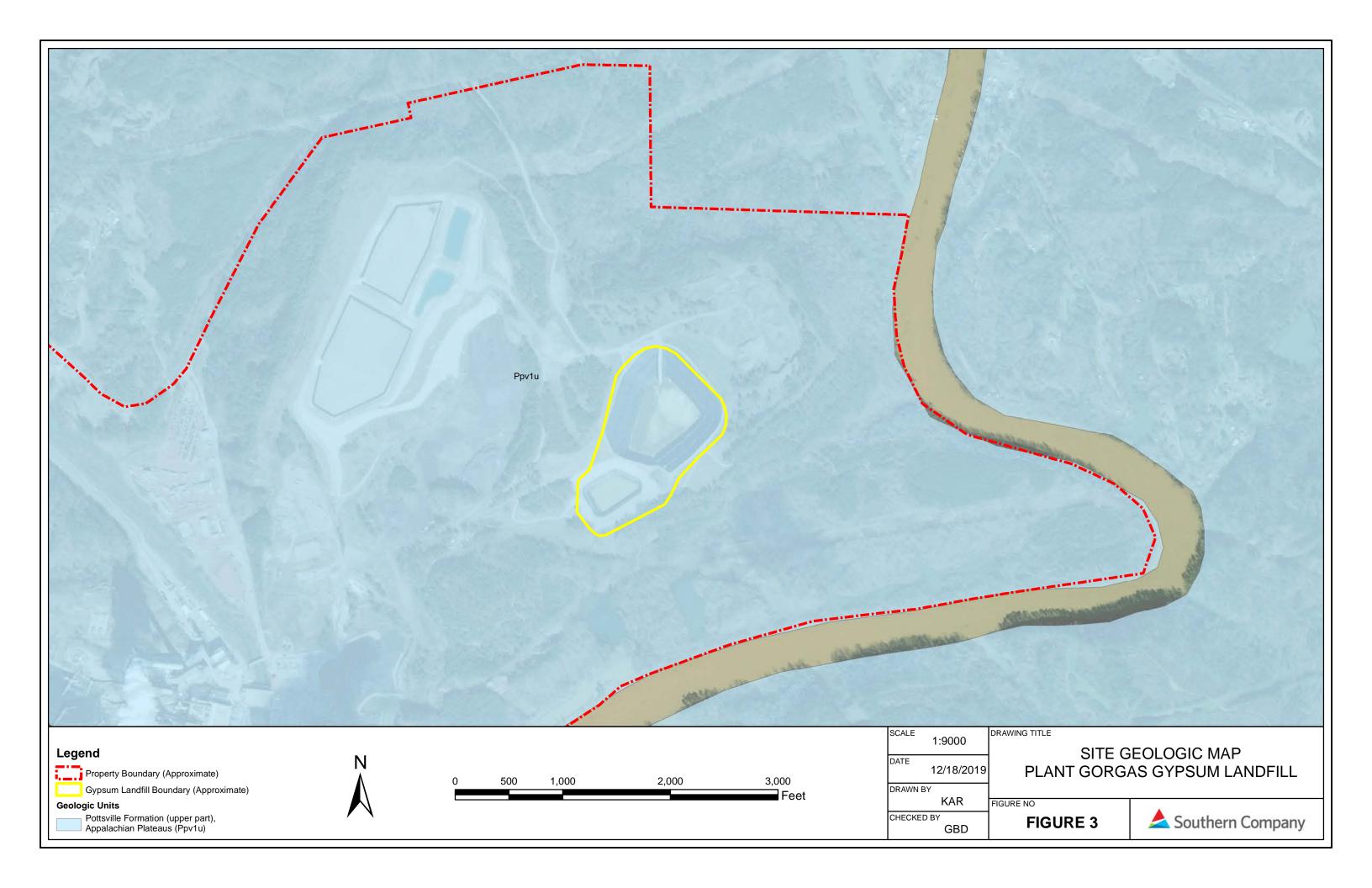
In accordance with § 257.95(d) and Alabama Admin. Code r. 335-13-15-.06(6)(d), APC will continue semi-annual assessment monitoring. The following routine future actions will be taken or are recommended for the site:

 Conduct the first semi-annual assessment monitoring event in the spring of 2022 and submit the annual groundwater monitoring and corrective action report summarizing the findings to ADEM by July 31, 2022.

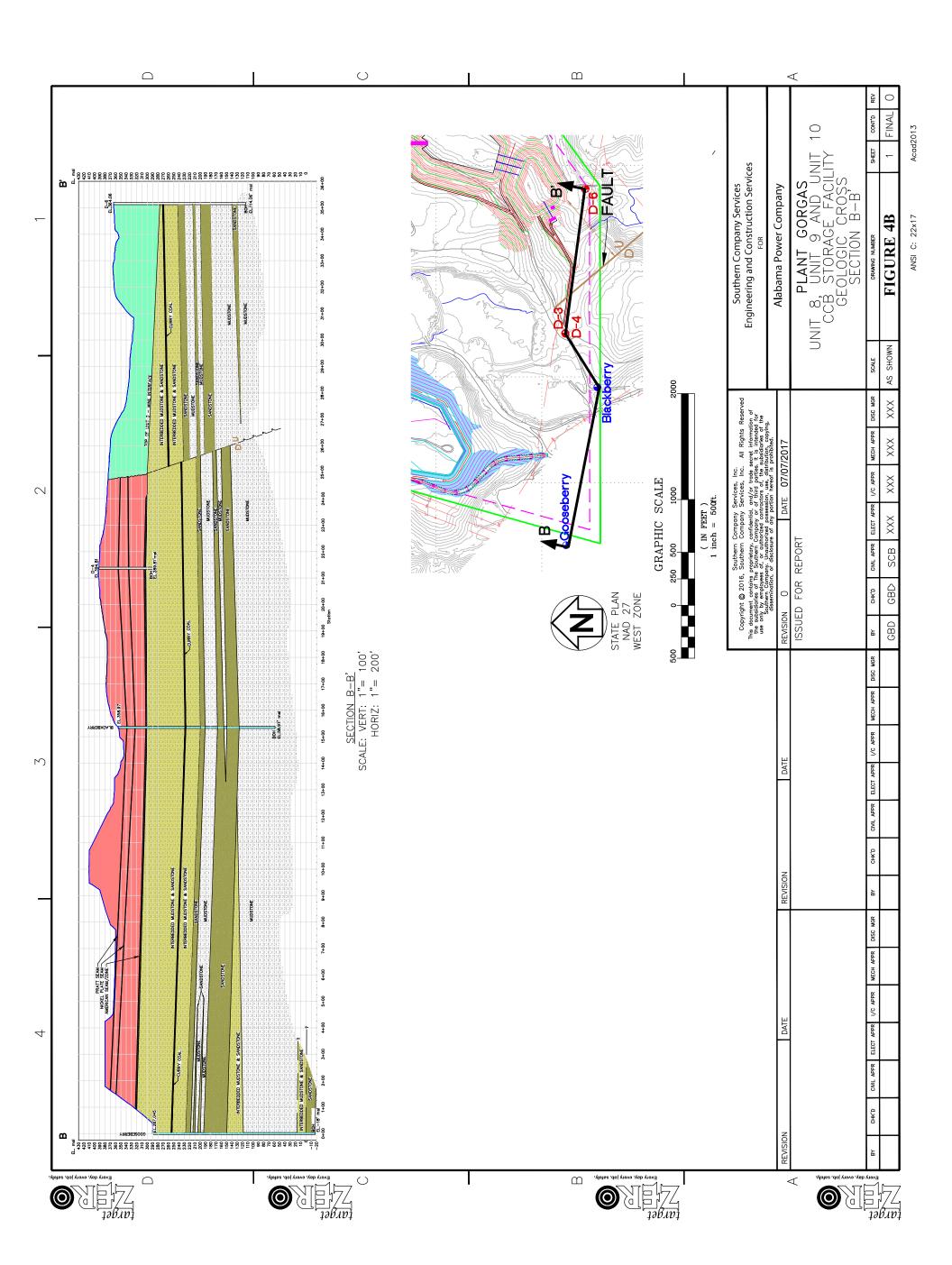
Historically, an ASD was prepared to address the lithium GWPS exceedances at compliance well MW-20 and submitted to ADEM in January 2019. In addition, since the submittal of this ASD, no SSL has been observed at the Site. However, ADEM has not yet approved the ASD, so APC has amended the current Plant Gorgas ACM to include the Gypsum Landfill.

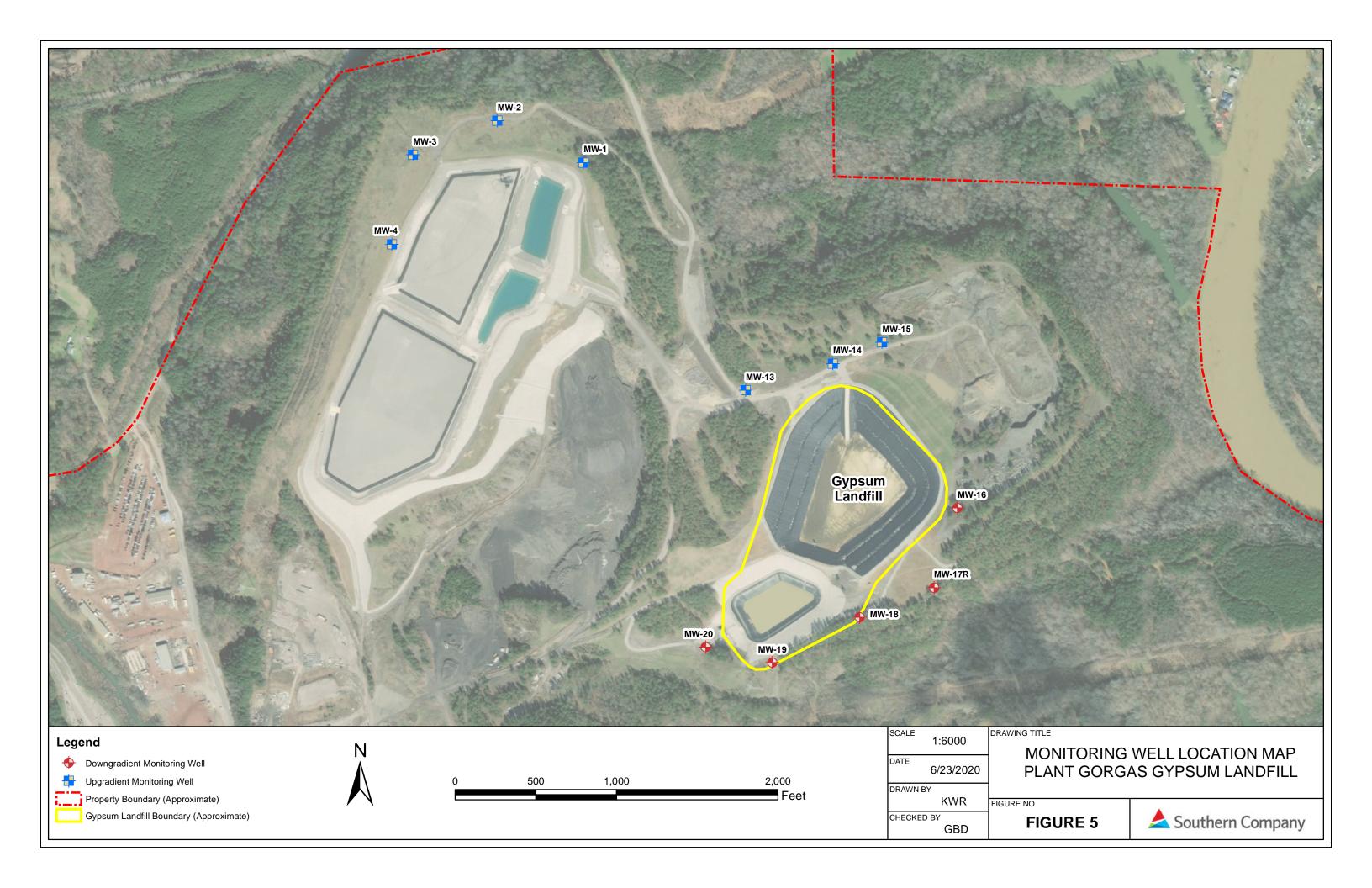

The pending ASD review decision by the Department has direct implications on future actions for the site. If approved, the site will return to assessment monitoring and corrective actions will not need to be further evaluated.

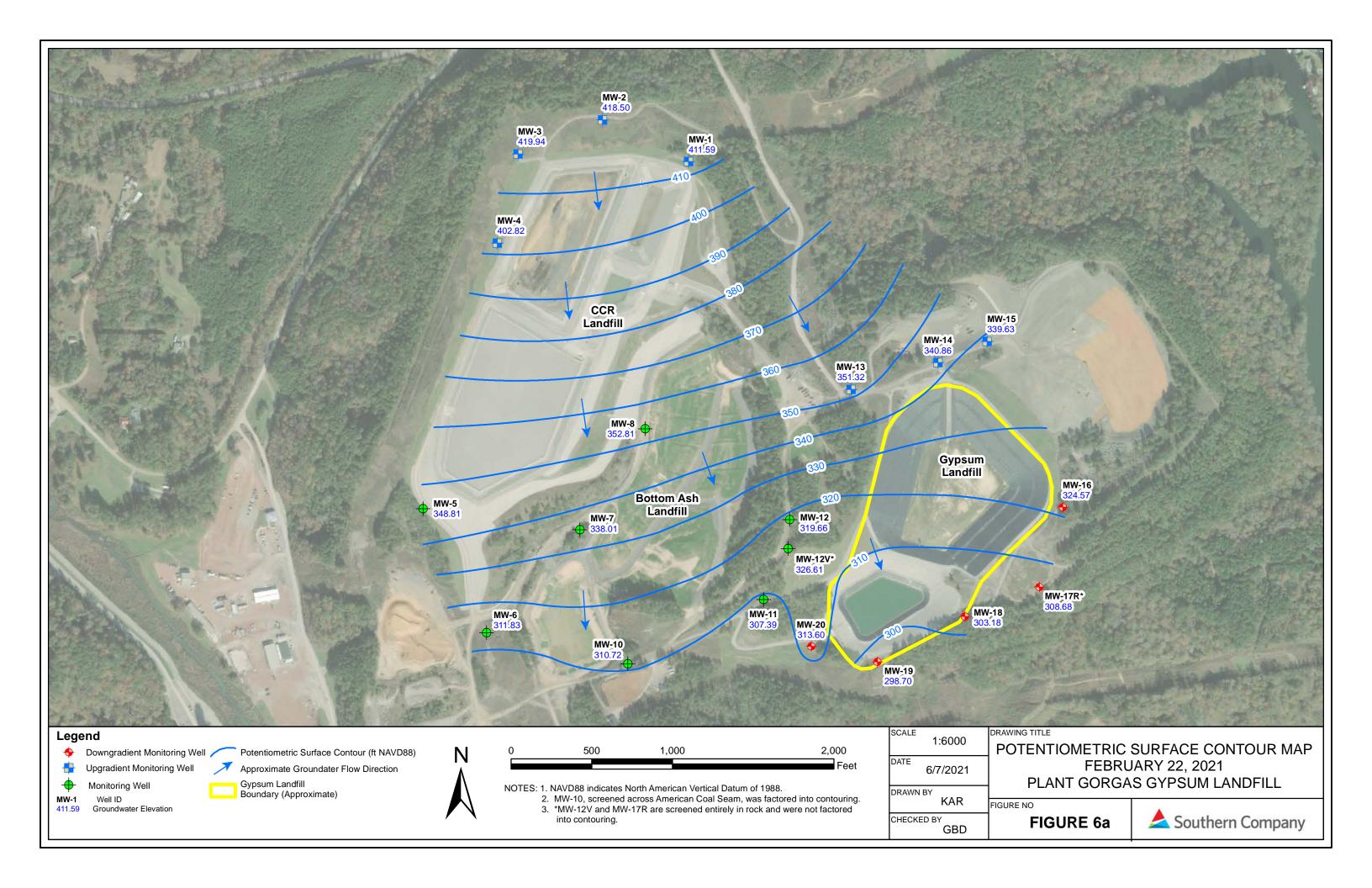

#### 9.0 REFERENCES

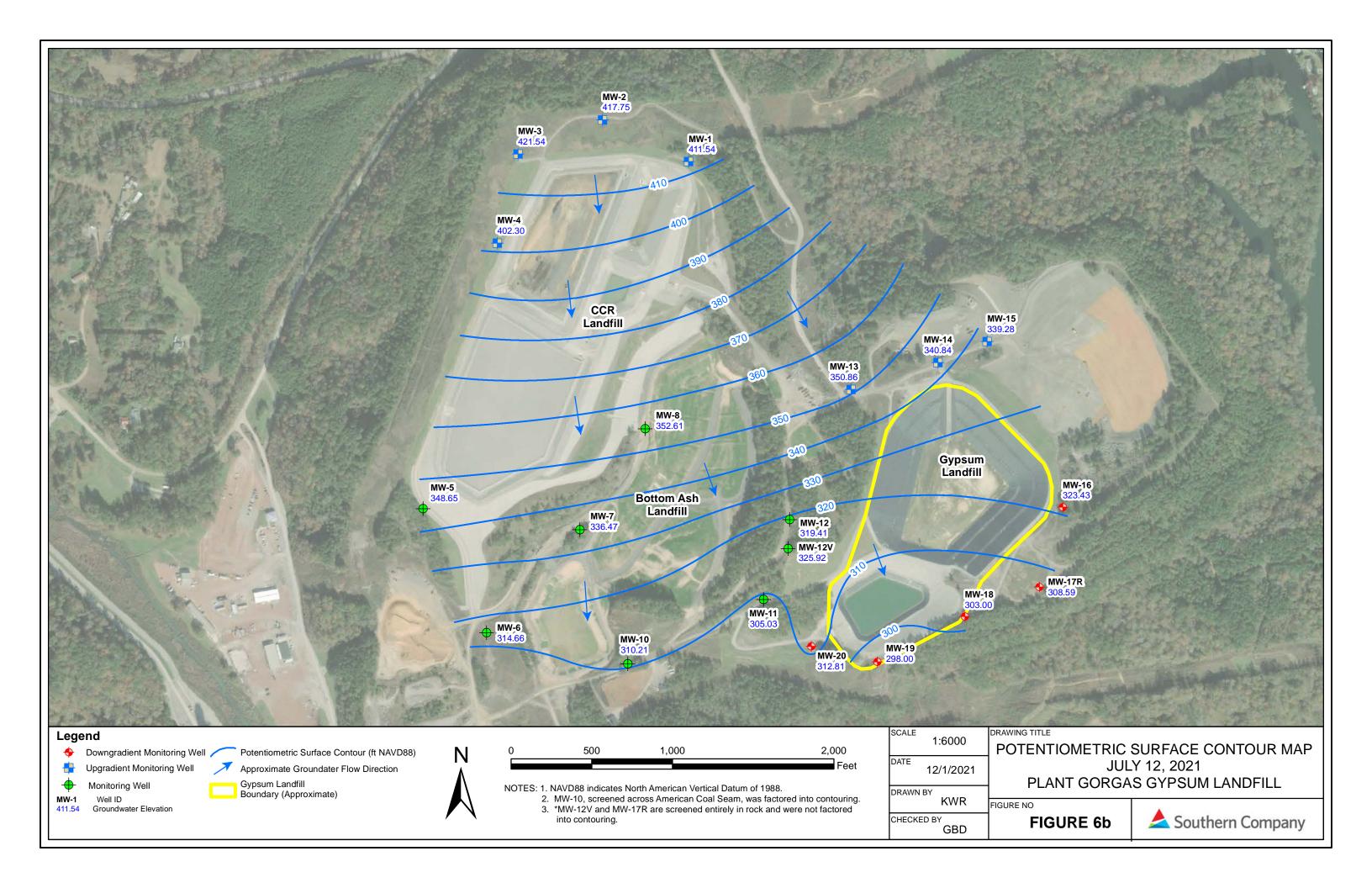

- Alabama Department of Environmental Management (ADEM), 2018, Solid Waste Program, Division 13, ADEM Admin. Code r. 335-13-15.
- Anchor QEA, 2021, Semi-Annual Remedy Selection and Design Progress Report Plant Gorgas.
- ASTM Standard D5092, 2004(2010)e1, Standard Practice for Design and Installation of Groundwater Monitoring Wells, ASTM International, West Conshohocken, PA, DOI 10.1520/D5092-04R10E01, www.astm.org.
- Bragg, L.J., Oman, J.K., Tewalt, S.J., Oman, C.L., Rega, N.H., Washington, P.M., and Finkelman, R.B., 1997, U.S. Geological Survey Coal Quality (COALQUAL) database; version 2.0, U.S.
- Diehl, S.F., Goldhaber, M.B., and Hatch, J.R., 2004, Modes of occurrence of mercury and other traceelements in coals from the warrior field, Black Warrior Basin, Northwestern Alabama, International Journal of Coal Geology, v. 59, p. 193-208.
- Geological Survey of Alabama (GSA), 2010b, Digital Geologic Map of Alabama, URL: http://www.gsa.state.al.us/index.html, accessed November, 2010.
- Goldhaber, M.B., Lee, R.C., Hatch, J.R., Pashin, J.C., and Treworgy, J., 2002, The role of large-scale fluid flow in subsurface arsenic enrichment, In: Welch, A., Stollenwerk, K (Eds.), Arsenic in Ground Water: Occurrence and Geochemistry, v. 5, p. 127-176.
- Jennings, S.P., and Cook, M.R., 2010, A Report to the Hanceville Water Works and Sewer Board, Open File Report 1001.
- Kolker, A., and Nordstrom, D.K. 1997, Occurrence and Micro-Distribution of Arsenic in Pyrite, U.S. Geological Survey.
- O'Rear, D.M., Wahl, K.D., and Jefferson, P.O., 1972, Water availability and geology of Walker County, Alabama: Geological Survey of Alabama Map 120, 21p.
- Palmer, C.A., Oman, C.L., Park, A.J., and Luppens, J.A., 2015, The U.S. Geological Survey coal quality (COALQUAL) database version 3.0: U.S. Geological Survey Data Series 975, 43 p.with appendixes, http://dx.doi.org/10.3133/ds975.
- Pashin, J.C., and Raymond, D.E., 2004, Glacial-eustatic control of coalbed methane reservoir distribution (Pottsville Formation; Lower Pennsylvanian) in the Black Warrior Basin of Alabama: Tuscaloosa, Alabama, University of Alabama College of Continuing Studies, 2004 International Coalbed Methane Symposium Proceedings, Paper 0413, 15 p.
- Pashin, J.C., 2007, Hydrodynamics of Coalbed Methane Reservoirs in the Black Warrior Basin: Key to Understanding Reservoir Performance and Environmental Issues, Applied Geochemistry, v. 22, I. 10, p. 2257-2272.
- Raymond, D.E., Osborne, W.E., Copeland, C.W. Jr, and Neathery, T.L., 1988, Alabama Stratigraphy: Alabama Geological Survey Circular, v. 140, p. 1-97.
- Sapp, C.D., and Emplaincourt, J., 1975, Physiographic regions of Alabama, Special Map 168, Geological Survey of Alabama.
- Stricklin, V.E., 1989, Geohydrology and Susceptibility of Major Aquifers to Surface Contamination in Alabama: Area 3, U.S. Geological Survey, Water-Resources Investigations Report 88-4120.

- Southern Company Services, Inc., 2021, 2020 Annual Groundwater Monitoring and Corrective Action Report.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance.
- USEPA. 2011. Data Validation Standard Operating Procedures. Science and Ecosystem Support Division. Region IV. September.
- USEPA. 2014. National Functional Guidelines for Inorganic Superfund Data Review. Office of Superfund Remediation and Technology Innovation (OSRTI). August.
- USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER]. RIN-2050-AE81. April.
- United States Geological Survey (USGS), 1975 (Photo revised 1983), Goodsprings Quadrangle, 7.5 Minute Series Topographic Map.
- Ward II, W.E., Barnett, R.L., Rheams, L.J., 1989, Coal Resources of Walker County, Alabama, Geological Survey of Alabama, Special Map 205.


# Figures














# **Tables**



#### Table 1. - Compliance Monitoring Well Network Details Plant Gorgas Gypsum Landfill

| Well ID      | Hydraulic Location | Geologic Unit                           | Latitude | Longitude | Ground<br>Surface<br>Elevation<br>(ft NAVD) | Top Of<br>Casing<br>Elevation<br>(ft NAVD) | Well<br>Depth<br>(ft BTOC) | Top Of Screen<br>Elevation<br>(ft NAVD) | Bottom Of<br>Screen<br>Elevation<br>(ft NAVD) | Screen<br>Length<br>(ft) | Date Of<br>Installation |
|--------------|--------------------|-----------------------------------------|----------|-----------|---------------------------------------------|--------------------------------------------|----------------------------|-----------------------------------------|-----------------------------------------------|--------------------------|-------------------------|
| WELL NETWORK |                    |                                         |          |           |                                             |                                            |                            |                                         |                                               |                          |                         |
| MW-1         | Upgradient         | Mine Spoil - Pottsville<br>Fm Interface | 33.65827 | -87.19083 | 499.19                                      | 502.38                                     | 104.5                      | 405.10                                  | 395.10                                        | 10                       | 1/15/2014               |
| MW-2         | Upgradient         | Mine Spoil - Pottsville<br>Fm Interface | 33.65899 | -87.19258 | 498.54                                      | 502.17                                     | 91.0                       | 417.90                                  | 407.90                                        | 10                       | 10/23/2014              |
| MW-3         | Upgradient         | Mine Spoil - Pottsville<br>Fm Interface | 33.65841 | -87.1943  | 522.23                                      | 525.90                                     | 115.5                      | 417.10                                  | 407.10                                        | 10                       | 10/23/2014              |
| MW-4         | Upgradient         | Mine Spoil - Pottsville<br>Fm Interface | 33.65689 | -87.19473 | 516.67                                      | 517.89                                     | 126.7                      | 400.40                                  | 390.40                                        | 10                       | 2/19/2012               |
| MW-13        | Upgradient         | Mine Spoil - Pottsville<br>Fm Interface | 33.652   | -87.18878 | 442.00                                      | 445.04                                     | 109.0                      | 346.40                                  | 336.40                                        | 10                       | 11/4/2014               |
| MW-14        | Upgradient         | Mine Spoil - Pottsville<br>Fm Interface | 33.65421 | -87.18753 | 426.90                                      | 429.90                                     | 103.5                      | 336.80                                  | 326.80                                        | 10                       | 11/5/2014               |
| MW-15        | Upgradient         | Mine Spoil - Pottsville<br>Fm Interface | 33.65466 | -87.18575 | 403.10                                      | 406.05                                     | 87.2                       | 329.30                                  | 319.30                                        | 10                       | 11/17/2013              |
| MW-16        | Downgradient       | Mine Spoil - Pottsville<br>Fm Interface | 33.65502 | -87.18475 | 411.57                                      | 414.57                                     | 110.0                      | 314.97                                  | 304.97                                        | 10                       | 11/5/2014               |
| MW-18        | Downgradient       | Mine Spoil - Pottsville<br>Fm Interface | 33.65034 | -87.18523 | 411.42                                      | 414.42                                     | 118.0                      | 306.82                                  | 296.82                                        | 10                       | 11/6/2014               |
| MW-19        | Downgradient       | Mine Spoil - Pottsville<br>Fm Interface | 33.64957 | -87.187   | 375.11                                      | 377.32                                     | 97.3                       | 290.41                                  | 280.41                                        | 10                       | 11/4/2013               |
| MW-20        | Downgradient       | Mine Spoil - Pottsville<br>Fm Interface | 33.64984 | -87.18835 | 329.89                                      | 332.89                                     | 73.5                       | 269.79                                  | 259.79                                        | 10                       | 11/10/2014              |
| MW-17R       | Downgradient       | Mine Spoil - Pottsville<br>Fm Interface | 33.6522  | -87.18323 | 431.46                                      | 434.57                                     | 138.1                      | 306.12                                  | 296.12                                        | 10                       |                         |

#### Notes:

ft = feet; ft NAVD = elevation in feet, referenced to North American Vertical Datum; ft BTOC = depth, referenced in feet below top of casing

<sup>(1)</sup> Coordinates have been transformed into WGS 84 from NAD 27/83, State Plane, Alabama, feet.

<sup>(2)</sup> Vertical elevations are in feet relative to the North American Vertical Datum (NAVD)1988.

<sup>(3)</sup> Total well depth accounts for sump if data provided on well construction logs.



#### **Table 2. Parameters And Reporting Limits**

Plant Gorgas Gypsum Landfill 02/22/2021 - 07/21/2021

|                           | Appendix III Param       | eters            |                  |
|---------------------------|--------------------------|------------------|------------------|
| Parameters                | Analytical Methods       | Reporting Limits | Units of Measure |
| Boron                     | EPA 200.7                | 0.1015           | mg/L             |
| Calcium                   | EPA 200.7                | 4.06-20.3        | mg/L             |
| Chloride                  | SM4500Cl E               | 1-16             | mg/L             |
| Fluoride                  | SM4500F G 2017           | 0.1              | mg/L             |
| pH (Field)                | Field Sampling           | NA               | SU               |
| Sulfate                   | SM4500SO4 E 2011         | 32-160           | mg/L             |
| TDS                       | NA                       | NA               | mg/L             |
|                           | Appendix IV Param        | eters            |                  |
| Parameters                | Analytical Methods       | Reporting Limits | Units of Measure |
| Antimony                  | EPA 200.8                | 0.001015         | mg/L             |
| Arsenic                   | EPA 200.8                | 0.000203         | mg/L             |
| Barium                    | EPA 200.8                | 0.000203         | mg/L             |
| Beryllium                 | EPA 200.8                | 0.001015         | mg/L             |
| Cadmium                   | EPA 200.8                | 0.000203         | mg/L             |
| Chromium                  | EPA 200.8                | 0.001015         | mg/L             |
| Cobalt                    | EPA 200.8                | 0.000203         | mg/L             |
| Fluoride                  | SM4500F G 2017           | 0.1              | mg/L             |
| Lead                      | EPA 200.8                | 0.000203         | mg/L             |
| Lithium                   | EPA 200.7                | 0.02             | mg/L             |
| Mercury                   | EPA 245.1                | 0.0005           | mg/L             |
| Molybdenum                | EPA 200.8                | 0.000203         | mg/L             |
| Selenium                  | EPA 200.8                | 0.001015         | mg/L             |
| Thallium                  | EPA 200.8                | 0.000203         | mg/L             |
| Combined Radium 226 + 228 | Total Radium Calculation | NA               | pCi/L            |

- 1. Reporting Limit values can display range depending upon matrix interferences and dilution factors
- 2. pH is a field acquired parameter and does not have a laboratory method or reporting limit
- 3. Combined Radium 226 + 228 product of radium-226 + radium-228; reporting limits presented are sum of radium 226, radium 228 reporting limits
- 4. EPA 200.7 EPA methodology for the "Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry"
- 5. EPA 200.8 EPA methodology for the "Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)"
- 6. SM 2320, 2540, 4500 Standard Methods for Examination of Water and Wastewater.
- 7. Total Radium Calculation Term used herein for EPA 9315 + EPA 9320
- 8. EPA 9315 Used for Radium-226; SW-846: Alpha-Emitting Radium Isotopes, part of Test Methods for Evaluation Solid Waste, Physical/Chemical Methods
- 9. EPA 9320 Used for Radium-228; SW-846: Alpha-Emitting Radium Isotopes, part of Test Methods for Evaluation Solid Waste, Physical/Chemical Methods



## **Table 3. - Recent Groundwater Elevations Summary**

#### Plant Gorgas Gypsum Landfill

| Well Name | Top of Casing |           |          |           |            | G          | roundwater E |           |           |          |           |           |           |
|-----------|---------------|-----------|----------|-----------|------------|------------|--------------|-----------|-----------|----------|-----------|-----------|-----------|
|           | Elevation     | 2/12/2018 | 4/9/2018 | 5/21/2018 | 10/29/2018 | 11/19/2018 | 3/13/2019    | 5/13/2019 | 10/7/2019 | 4/6/2020 | 7/13/2020 | 2/22/2021 | 7/12/2021 |
| MW-1      | 502.25        | 410.89    | 411.35   | 411.47    | 410.62     | 410.80     | 412.11       | 411.77    | 410.79    | 412.16   | 411.22    | 411.59    | 411.54    |
| MW-2      | 502.12        | 419.29    | 417.32   | 417.33    | 416.30     | 417.67     | 417.70       | 417.64    | 416.63    | 417.81   | 416.93    | 418.50    | 417.75    |
| MW-3      | 525.90        | 418.49    | 416.25   | 416.28    | 414.85     | 416.31     | 418.31       | 416.40    | 415.17    | 417.64   | 415.34    | 419.94    | 421.54    |
| MW-4      | 518.63        | 402.67    | 402.22   | 402.24    | 400.18     | 402.08     | 402.68       | 402.43    | 400.33    | 402.59   | 401.42    | 402.82    | 402.30    |
| MW-13     | 445.04        | 351.53    | 350.92   | 350.63    | 350.53     | 350.92     | 350.90       | 351.08    | 350.86    | 335.80   | 350.50    | 351.32    | 350.86    |
| MW-14     | 429.90        | 340.91    | 340.69   | 340.73    | 340.40     | 340.76     | 340.84       | 340.10    | 340.38    | 340.80   | 340.67    | 340.86    | 340.84    |
| MW-15     | 406.05        | 339.32    | 339.13   | 339.09    | 338.72     | 339.13     | 339.32       | 339.14    | 338.86    | 339.61   | 339.18    | 339.63    | 339.28    |
| MW-16     | 414.57        | 325.28    | 323.32   | 323.36    | 322.57     | 324.16     | 324.21       | 323.98    | 322.73    | 304.01   | 322.99    | 324.57    | 323.43    |
| MW-17R    | 434.57        | 306.55    | 308.47   | 308.91    | 306.78     | 306.63     | 309.23       | 308.94    | 307.64    | 309.00   | 308.24    | 308.68    | 308.59    |
| MW-18     | 414.42        | 298.97    | 301.31   | 302.38    | 298.89     | 298.77     | 304.14       | 303.40    | 301.80    | 303.79   | 302.62    | 303.18    | 303.00    |
| MW-19     | 377.32        | 296.23    | 295.40   | 295.88    | 293.85     | 295.84     | 299.07       | 298.02    | 295.86    | 298.88   | 297.19    | 298.70    | 298.00    |
| MW-20     | 332.89        | 311.21    | 310.29   | 310.83    | 309.37     | 311.61     | 313.63       | 313.31    | 310.30    | 312.15   | 310.70    | 313.60    | 312.81    |

Notes:

1. ft. AMSL - feet above mean sea level

2. -- Not Measured



### **Table 4a. Relative Percent Difference (RPD) Calculations**

Plant Gorgas Gypsum Landfill 02/23/2021 - 07/21/2021

|            |       | MW-16                         |                  |         |
|------------|-------|-------------------------------|------------------|---------|
|            |       | <b>Sample Date = 2/23/202</b> | 21               |         |
| Analyte    | Units | Original Result               | Duplicate Result | RPD (%) |
| Boron      | mg/L  | 0.0487                        | 0.0475           | 2.49%   |
| Calcium    | mg/L  | 317                           | 319              | 0.63%   |
| Chloride   | mg/L  | 3.08                          | 3.08             | 0.00%   |
| Fluoride   | mg/L  | 0.161                         | 0.163            | 1.23%   |
| Sulfate    | mg/L  | 1330                          | 1320             | 0.75%   |
| TDS        | mg/L  | 2480                          | 2440             | 1.63%   |
| Arsenic    | mg/L  | 0.00257                       | 0.00245          | 4.78%   |
| Barium     | mg/L  | 0.0127                        | 0.0123           | 3.20%   |
| Cobalt     | mg/L  | 0.01                          | 0.01             | 0.00%   |
| Lithium    | mg/L  | 0.02                          | 0.0197           | 1.51%   |
| Molybdenum | mg/L  | 0.000486                      | 0.000524         | 7.52%   |
|            |       | MW-19                         |                  |         |
|            |       | <b>Sample Date = 2/24/202</b> | 21               |         |
| Analyte    | Units | Original Result               | Duplicate Result | RPD (%) |
| Boron      | mg/L  | 0.0393                        | 0.0391           | 0.51%   |
| Calcium    | mg/L  | 332                           | 328              | 1.21%   |
| Chloride   | mg/L  | 2.02                          | 1.98             | 2.00%   |
| Fluoride   | mg/L  | 0.343                         | 0.337            | 1.76%   |
| Sulfate    | mg/L  | 1970                          | 1900             | 3.62%   |
| TDS        | mg/L  | 3070                          | 3060             | 0.33%   |
| Arsenic    | mg/L  | 0.000212                      | 0.000218         | 2.79%   |
| Barium     | mg/L  | 0.00981                       | 0.00981          | 0.00%   |
| Cobalt     | mg/L  | 0.0382                        | 0.0379           | 0.79%   |
| Lithium    | mg/L  | 0.0739                        | 0.0752           | 1.74%   |
| Molybdenum | mg/L  | 0.000197                      | 0.000194         | 1.53%   |
|            |       |                               |                  |         |



### Table 4a. Relative Percent Difference (RPD) Calculations

Plant Gorgas Gypsum Landfill 02/23/2021 - 07/21/2021

|            |       | MW-16                          |                  |         |
|------------|-------|--------------------------------|------------------|---------|
|            |       | <b>Sample Date = 7/21/202</b>  | 21               |         |
| Analyte    | Units | Original Result                | Duplicate Result | RPD (%) |
| Calcium    | mg/L  | 295                            | 295              | 0.00%   |
| Chloride   | mg/L  | 2.97                           | 2.95             | 0.68%   |
| Fluoride   | mg/L  | 0.201                          | 0.202            | 0.50%   |
| Sulfate    | mg/L  | 1370                           | 1290             | 6.02%   |
| TDS        | mg/L  | 2290                           | 2340             | 2.16%   |
| Arsenic    | mg/L  | 0.00269                        | 0.00257          | 4.56%   |
| Barium     | mg/L  | 0.0132                         | 0.0127           | 3.86%   |
| Cobalt     | mg/L  | 0.00887                        | 0.00887          | 0.00%   |
| Molybdenum | mg/L  | 0.00043                        | 0.00048          | 11.71%  |
|            |       | MW-1                           |                  |         |
|            |       | <b>Sample Date = 7/12/20</b> 2 | 21               |         |
| Analyte    | Units | Original Result                | Duplicate Result | RPD (%) |
| Calcium    | mg/L  | 149                            | 152              | 1.99%   |
| Chloride   | mg/L  | 2.19                           | 2.25             | 2.70%   |
| Fluoride   | mg/L  | 0.125                          | 0.112            | 10.97%  |
| Sulfate    | mg/L  | 1560                           | 1500             | 3.92%   |
| TDS        | mg/L  | 2210                           | 2210             | 0.00%   |
| Arsenic    | mg/L  | 0.00036                        | 0.0003           | 19.01%  |
| Barium     | mg/L  | 0.00991                        | 0.00984          | 0.71%   |
| Cadmium    | mg/L  | 0.00193                        | 0.00185          | 4.23%   |
| Cobalt     | mg/L  | 0.0556                         | 0.0549           | 1.27%   |
| Lithium    | mg/L  | 0.0266                         | 0.0267           | 0.38%   |
| Selenium   | mg/L  | 0.0028                         | 0.00245          | 13.33%  |

- 1. The RPD calculations presented are for analyte pairs where original and duplicate results are valid, unqualified detections.
- 2. RPD calculation results less than or equal to 20% are considered acceptable.
- 3. Results greater than 20% are given data validation flags to indicate RPD criteria failure. Communication to sampling team and lab may be necessary to explore nature of RPD failure(s).



### **Table 4b. - Field QC: Blank Detections**

## Plant Gorgas Gypsum Landfill 02/22/2021 - 07/21/2021

|             | l           | Parameters Detected Abo | ve MDL              |       |          |
|-------------|-------------|-------------------------|---------------------|-------|----------|
| Sample Date | QC Location | Parameter               | Blank Concentration | Units | MDL      |
| 02/25/2021  | EB-1        | Barium                  | 0.000179 J          | mg/L  | 0.000101 |
| 07/21/2021  | EB-1        | Arsenic                 | 8E-05 J             | mg/L  | 0.00007  |

- 1. Lab qualifiers have been appended to result when applicable
- 2. MDL = Method Detection Limit
- 3. Only Appendix 4 Constituents were compared and validated. Radium data was not validated.
- 4. mg/L = milligrams per liter



### **Table 4c – Field QC: Data Validation Results (Blanks)**

Plant Gorgas Gypsum Landfill 02/22/2021 - 07/21/2021

|             |           | List of Compli | ance Sample Concentration | ons < 5x Blank Concentrations | 3         |       |                 |
|-------------|-----------|----------------|---------------------------|-------------------------------|-----------|-------|-----------------|
| Sample Date | QC Sample | Parameter      | QC Sample Result (5x)     | Sample Location               | Result    | Units | Validation Flag |
| 07/21/2021  | EB-1      | Arsenic        | 0.00042                   | MW-19                         | 0.00018 J | mg/L  | +(U)*           |

- Lab qualifiers have been appended to result when applicable
   QC Sample listed represents the source of comparison, validation flag.
   Only Appendix 4 Constituents were compared and validated. Radium data was not validated.
- 4. mg/L = milligrams per liter
- 5. Wells with concentrations less than 5x Blank Detections are flagged with (U)\*.



## **Table 5. Summary of Background Levels and Groundwater Protection Standards Plant Gorgas Gypsum Landfill**

| Appendix IV Analytes           Analyte         Units         Background         GWPS           Antimony         mg/L         0.00143         0.006           Arsenic         mg/L         0.005         0.01           Barium         mg/L         0.0166         2           Beryllium         mg/L         0.0121         0.0185           Cadmium         mg/L         0.00652         0.005           Chromium         mg/L         0.0105         0.1           Cobalt         mg/L         0.64         1.07           Fluoride         mg/L         0.63         4           Lead         mg/L         0.00692         0.015           Lithium         mg/L         0.419         0.419           Mercury         mg/L         0.0005         0.002 |       |            |        |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|--------|--|--|--|--|--|--|--|--|--|
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Units | Background | GWPS   |  |  |  |  |  |  |  |  |  |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L  | 0.00143    | 0.006  |  |  |  |  |  |  |  |  |  |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L  | 0.005      | 0.01   |  |  |  |  |  |  |  |  |  |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L  | 0.0166     | 2      |  |  |  |  |  |  |  |  |  |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L  | 0.0121     | 0.0185 |  |  |  |  |  |  |  |  |  |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L  | 0.00652    | 0.005  |  |  |  |  |  |  |  |  |  |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L  | 0.0105     | 0.1    |  |  |  |  |  |  |  |  |  |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L  | 0.64       | 1.07   |  |  |  |  |  |  |  |  |  |
| Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L  | 0.63       | 4      |  |  |  |  |  |  |  |  |  |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L  | 0.00692    | 0.015  |  |  |  |  |  |  |  |  |  |
| Lithium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L  | 0.419      | 0.419  |  |  |  |  |  |  |  |  |  |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L  | 0.0005     | 0.002  |  |  |  |  |  |  |  |  |  |
| Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L  | 0.0002     | 0.1    |  |  |  |  |  |  |  |  |  |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L  | 0.0181     | 0.05   |  |  |  |  |  |  |  |  |  |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L  | 0.000226   | 0.002  |  |  |  |  |  |  |  |  |  |
| Combined Radium 226 + 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pCi/L | 1.47       | 5      |  |  |  |  |  |  |  |  |  |

- 1. mg/L Milligrams per liter
- 2. pCi/L Picocuries per liter
- 3. Background concentrations/limits are used when determining the groundwater protection standard (GWPS) under 40 CFR §257.95(h) and ADEM Rule 335-13-15-.06(h).
- 4. GWPS are generally updated on a 2 year basis which began in the Fall of 2019 (Fall 2019, Fall 2021, etc).



#### Table 6a. First Semi-Annual Monitoring Event Analytical Summary

## Plant Gorgas Gypsum Landfill 02/22/2021 - 02/24/2021

|                              |       |            |             |            |             | GROU       | JNDWATER N | IONITORING \ | WELLS      |            |            |            |            |
|------------------------------|-------|------------|-------------|------------|-------------|------------|------------|--------------|------------|------------|------------|------------|------------|
| Analyte                      | Units | MW-1       | MW-2        | MW-3       | MW-4        | MW-13      | MW-14      | MW-15        | MW-16      | MW-18      | MW-19      | MW-20      | MW-17R     |
|                              |       | 02/22/2021 | 02/22/2021  | 02/22/2021 | 02/22/2021  | 02/23/2021 | 02/23/2021 | 02/23/2021   | 02/23/2021 | 02/23/2021 | 02/24/2021 | 02/23/2021 | 02/23/2021 |
| Appendix III                 |       |            |             |            |             |            |            |              |            |            |            |            |            |
| Boron                        | mg/L  | 0.0307 J   | <0.03       | <0.03      | 0.0397 J    | 0.065 J    | 0.0516 J   | 0.0534 J     | 0.0487 J   | 0.0343 J   | 0.0393 J   | 0.11       | 0.0536 J   |
| Calcium                      | mg/L  | 151        | 178         | 312        | 271         | 238        | 312        | 302          | 317        | 284        | 332        | 343        | 389        |
| Chloride                     | mg/L  | 2.16       | 1.72        | 2.22       | 1.52        | 1.6        | 1.53       | 1.41         | 3.08       | 1.34       | 2.02       | 129        | 2.36       |
| Fluoride                     | mg/L  | 0.082 J    | 0.209       | 0.246      | 0.357       | 0.224      | 0.22       | 0.275        | 0.161      | 0.29       | 0.343      | 0.117      | 0.154      |
| pH_Field                     | SU    | 5.06       | 6.1         | 5.59       | 6.19        | 6.55       | 6.38       | 6.07         | 6.47       | 6.47       | 6.26       | 6.75       | 5.91       |
| Sulfate                      | mg/L  | 1400       | 864         | 3040       | 2040        | 1470       | 1850       | 1740         | 1330       | 1560       | 1970       | 1420       | 2380       |
| TDS                          | mg/L  | 2230       | 1620        | 4670       | 3190        | 2370       | 3020       | 2890         | 2480       | 2570       | 3070       | 2460       | 3930       |
| Appendix IV                  |       |            |             |            |             |            |            |              |            |            |            |            |            |
| Antimony                     | mg/L  | <0.000507  | <0.000507   | <0.000507  | <0.000507   | <0.000507  | <0.000507  | <0.000507    | <0.000507  | <0.000507  | <0.000507  | <0.000507  | <0.000507  |
| Arsenic                      | mg/L  | 0.000403   | 0.000295    | 0.000789   | 0.000125 J  | 0.000293   | 0.000893   | 0.000217     | 0.00257    | <6.8e-005  | 0.000212   | 0.000849   | 0.0019     |
| Barium                       | mg/L  | 0.0107     | 0.0132      | 0.00981    | 0.0111      | 0.011      | 0.0133     | 0.013        | 0.0127     | 0.0103     | 0.00981    | 0.0167     | 0.013      |
| Beryllium                    | mg/L  | <0.000406  | <0.000406   | <0.000406  | <0.000406   | <0.000406  | <0.000406  | <0.000406    | <0.000406  | <0.000406  | <0.000406  | <0.000406  | <0.000406  |
| Cadmium                      | mg/L  | 0.00184    | 8.96e-005 J | 0.00536    | 8.96e-005 J | <6.8e-005  | 0.000122 J | <6.8e-005    | <6.8e-005  | <6.8e-005  | <6.8e-005  | <6.8e-005  | <6.8e-005  |
| Chromium                     | mg/L  | 0.000382 J | <0.000203   | 0.00035 J  | <0.000203   | 0.000295 J | 0.000253 J | <0.000203    | <0.000203  | <0.000203  | <0.000203  | <0.000203  | <0.000203  |
| Cobalt                       | mg/L  | 0.0657     | 0.0161      | 0.0515     | <6.8e-005   | 0.00685    | 0.00918    | 0.0755       | 0.01       | <6.8e-005  | 0.0382     | 0.000234   | 0.385      |
| Combined Radium<br>226 + 228 | pCi/L | 0.677 U    | 0.434 U     | 0.472 U    | 0 U         | 0.453 U    | 0.804 U    | 0.587 U      | 0.546 U    | 0.748 U    | 0.82 U     | 1.19 U     | 0.44 U     |
| Lead                         | mg/L  | <6.8e-005  | <6.8e-005   | 8.8e-005 J | <6.8e-005   | <6.8e-005  | 0.000108 J | <6.8e-005    | <6.8e-005  | <6.8e-005  | <6.8e-005  | <6.8e-005  | <6.8e-005  |
| Lithium                      | mg/L  | 0.0301     | 0.0625      | 0.126      | 0.0558      | 0.024      | 0.0398     | 0.0741       | 0.02       | 0.0627     | 0.0739     | 0.27       | 0.0569     |
| Mercury                      | mg/L  | <0.0003    | <0.0003     | <0.0003    | <0.0003     | <0.0003    | <0.0003    | <0.0003      | <0.0003    | <0.0003    | <0.0003    | <0.0003    | <0.0003    |
| Molybdenum                   | mg/L  | <6.8e-005  | <6.8e-005   | <6.8e-005  | 0.000131 J  | 0.000495   | 0.000933   | 7.97e-005 J  | 0.000486   | 0.00012 J  | 0.000197 J | 0.00108    | 0.000159 J |
| Selenium                     | mg/L  | 0.00241    | <0.000507   | 0.0181     | 0.00222     | 0.0017     | <0.000507  | <0.000507    | <0.000507  | 0.0031     | <0.000507  | <0.000507  | 0.000778 J |
| Thallium                     | mg/L  | <6.8e-005  | <6.8e-005   | <6.8e-005  | <6.8e-005   | <6.8e-005  | <6.8e-005  | <6.8e-005    | <6.8e-005  | <6.8e-005  | <6.8e-005  | <6.8e-005  | <6.8e-005  |

<sup>1.</sup> mg/L - Milligrams per Liter

<sup>2.</sup> pCi/L - picocuries per Liter

<sup>3.</sup> J - Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantita



#### Table 6b. Second Semi-Annual Monitoring Event Analytical Summary

## Plant Gorgas Gypsum Landfill 07/12/2021 - 07/21/2021

|                 |       |            |             |             |             | GROU       | JNDWATER M | ONITORING V | VELLS      |            |            |            |             |
|-----------------|-------|------------|-------------|-------------|-------------|------------|------------|-------------|------------|------------|------------|------------|-------------|
| Analyte         | Units | MW-1       | MW-2        | MW-3        | MW-4        | MW-13      | MW-14      | MW-15       | MW-16      | MW-18      | MW-19      | MW-20      | MW-17R      |
|                 |       | 07/12/2021 | 07/12/2021  | 07/12/2021  | 07/12/2021  | 07/20/2021 | 07/20/2021 | 07/20/2021  | 07/21/2021 | 07/21/2021 | 07/21/2021 | 07/21/2021 | 07/21/2021  |
| Appendix III    |       |            |             |             |             |            |            |             |            |            |            |            |             |
| Boron           | mg/L  | <0.03      | <0.03       | <0.03       | 0.0411 J    | 0.0592 J   | 0.0485 J   | 0.0514 J    | 0.0437 J   | 0.0318 J   | 0.035 J    | 0.0999 J   | 0.0549 J    |
| Calcium         | mg/L  | 152        | 159         | 252         | 242         | 262        | 316        | 274         | 295        | 289        | 332        | 336        | 380         |
| Chloride        | mg/L  | 2.19       | 2.36        | 2.13        | 1.56        | 1.7        | 3.65       | 3.16        | 2.97       | 1.4        | 1.74       | 67.9       | 2.38        |
| Fluoride        | mg/L  | 0.112      | 0.196       | 0.287       | 0.35        | 0.323      | 0.276      | 0.288       | 0.202      | 0.348      | 0.429      | 0.143      | 0.183       |
| pH_Field        | SU    | 5.13       | 6.16        | 5.86        | 6.06        | 6.59       | 6.38       | 6.03        | 6.24       | 6.33       | 6.23       | 6.6        | 5.79        |
| Sulfate         | mg/L  | 1500       | 763         | 2380        | 1930        | 1560       | 1830       | 1700        | 1370       | 1650       | 1990       | 1480       | 2450        |
| TDS             | mg/L  | 2210       | 1390        | 3510        | 3000        | 2520       | 2990       | 2600        | 2290       | 2620       | 3130       | 2320       | 3860        |
| Appendix IV     |       |            |             |             |             |            |            |             |            |            |            |            |             |
| Antimony        | mg/L  | <0.000508  | <0.000508   | <0.000508   | <0.000508   | <0.000508  | <0.000508  | <0.000508   | <0.000508  | <0.000508  | <0.000508  | <0.000508  | <0.000508   |
| Arsenic         | mg/L  | 0.000363   | 0.000364    | 0.000376    | 0.000116 J  | 0.000154 J | 0.000783   | 0.000286    | 0.00257    | <6.8e-005  | 0.000176 J | 0.000835   | 0.00196     |
| Barium          | mg/L  | 0.00984    | 0.013       | 0.00857     | 0.0108      | 0.0118     | 0.0116     | 0.0118      | 0.0132     | 0.0105     | 0.01       | 0.016      | 0.014       |
| Beryllium       | mg/L  | <0.000406  | <0.000406   | <0.000406   | <0.000406   | <0.000406  | <0.000406  | <0.000406   | <0.000406  | <0.000406  | <0.000406  | <0.000406  | <0.000406   |
| Cadmium         | mg/L  | 0.00185    | 8.27e-005 J | 0.000937    | 8.19e-005 J | <6.8e-005  | <6.8e-005  | <6.8e-005   | <6.8e-005  | <6.8e-005  | <6.8e-005  | <6.8e-005  | <6.8e-005   |
| Chromium        | mg/L  | 0.000487 J | 0.000251 J  | 0.000307 J  | 0.000302 J  | <0.000203  | <0.000203  | <0.000203   | <0.000203  | <0.000203  | <0.000203  | <0.000203  | 0.00036 J   |
| Cobalt          | mg/L  | 0.0549     | 0.0155      | 0.00567     | <6.8e-005   | 0.00414    | 0.00847    | 0.0721      | 0.00887    | <6.8e-005  | 0.0293     | 0.000231   | 0.329       |
| Combined Radium | pCi/L | 0.476 U    | 0.155 U     | 0.114 U     | 0.301 U     | 0.574 U    | 0.733 U    | 0.877 U     | 0.485 U    | 0.389 U    | 0.629 U    | 1.48       | 0.72 U      |
| Lead            | mg/L  | <6.8e-005  | <6.8e-005   | 8.42e-005 J | <6.8e-005   | <6.8e-005  | <6.8e-005  | <6.8e-005   | <6.8e-005  | <6.8e-005  | <6.8e-005  | <6.8e-005  | 9.22e-005 J |
| Lithium         | mg/L  | 0.0267     | 0.0495      | 0.0808      | 0.0533      | 0.0282     | 0.0376     | 0.0661      | 0.0179 J   | 0.0574     | 0.0617     | 0.239      | 0.0504      |
| Mercury         | mg/L  | <0.0003    | <0.0003     | <0.0003     | <0.0003     | <0.0003    | <0.0003    | <0.0003     | <0.0003    | <0.0003    | <0.0003    | <0.0003    | <0.0003     |
| Molybdenum      | mg/L  | <6.8e-005  | <6.8e-005   | <6.8e-005   | 0.000138 J  | 0.000506   | 0.00028    | 6.91e-005 J | 0.000479   | 0.000103 J | 0.000214   | 0.00101    | 0.000172 J  |
| Selenium        | mg/L  | 0.0028     | <0.000508   | 0.0133      | 0.00155     | 0.00315    | <0.000508  | <0.000508   | <0.000508  | 0.00294    | <0.000508  | <0.000508  | 0.000666 J  |
| Thallium        | mg/L  | <6.8e-005  | <6.8e-005   | <6.8e-005   | <6.8e-005   | <6.8e-005  | <6.8e-005  | <6.8e-005   | <6.8e-005  | <6.8e-005  | <6.8e-005  | <6.8e-005  | <6.8e-005   |

<sup>1.</sup> mg/L - Milligrams per Liter

<sup>2.</sup> pCi/L - picocuries per Liter

<sup>3.</sup> J - Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantita



|                           | Wells |            |            |            |            |            |            |            |            |            |            |            |            | MV         | V-1        |            |            |            |            |            |            |            |            |            |            |               |               |
|---------------------------|-------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---------------|---------------|
| Analytes                  | Date  | 04/26/2016 | 06/20/2016 | 08/08/2016 | 08/24/2016 | 10/03/2016 | 10/26/2016 | 11/21/2016 | 01/17/2017 | 03/22/2017 | 04/18/2017 | 05/30/2017 | 08/23/2017 | 02/13/2018 | 05/22/2018 | 06/12/2018 | 10/17/2018 | 11/19/2018 | 05/14/2019 | 10/08/2019 | 10/16/2019 | 02/03/2020 | 04/06/2020 | 07/13/2020 | 08/03/2020 | 02/22/2021    | 07/12/2021    |
| Appendix III              |       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |               |               |
| Boron                     | mg/L  | 0.0231 J   | 0.0227 J   | 0.0278 J   | 0.0247 J   | 0.0307 J   | 0.0241 J   | 0.0202 J   | 0.0201 J   | 0.0224 J   | <0.02      | <0.02      | 0.0253 J   |            | 0.0224 J   | 0.0214 J   | 0.0216 J   | 0.0237 J   | <0.0609    | <0.03      | 0.0385 J   | < 0.03     | <0.03      | < 0.03     | <0.03      | 0.0307 J      | <0.03         |
| Calcium                   | mg/L  | 147        | 152        | 150        | 142        | 139        | 133        | 144        | 131        | 141        | 149        | 140        | 152        |            | 166        | 203        | 171        | 154        | 167        | 157        | 157        | 172        | 149        | 147        | 148        | 151           | 152           |
| Chloride                  | mg/L  | 1.94       | 2.09       | 2.18       | 2.22       | 2.34       | 2.34       | 2.5        | 2.68       | 2.4        | 2.4        | 2.6        | 2.7        |            | 2.3        | 2.3        |            | 1.7 J      | 2.28       | 2.31       | 2.42       | 2.07       | 2.01       | 2.1        | 2.05       | 2.16          | 2.25          |
| Fluoride                  | mg/L  | 0.146 J    | 0.148 J    | 0.137 J    | 0.133 J    | 0.103 J    | 0.05 J     | 0.047 J    | 0.09 J     | 0.12       | 0.12       | 0.13       | 0.16       | 0.14       | 0.16       | 0.16       |            | 0.15       | 0.119      | 0.0924 J   | 0.0756 J   | 0.0982 J   | 0.101      | 0.0678 J   | < 0.06     | 0.082 J       | 0.125         |
| pH_Field                  | рН    | 5.2        | 5.18       | 5.12       |            | 5.21       | 5.2        | 5.19       | 5.17       | 5.2        | 5.2        | 5.14       | 5.12       | 5.18       | 5.2        | 5.15       | 5.12       | 5.09       | 5.19       | 5.12       | 5.16       | 5          | 5.21       | 5.14       | 5.08       | 5.06          | 5.13          |
| Sulfate                   | mg/L  | 1490       | 1420       | 1460       | 1450       | 1460       | 1330       | 1420       | 1350       | 1500       | 1300       | 1400       | 1500       |            | 2100       | 1500       |            | 1300       | 1560       | 1540       | 1680       | 1510       | 1530       | 1450       | 1370       | 1400          | 1560          |
| TDS                       | mg/L  | 2080       | 2060       | 2070       | 2040       | 2110       | 2000       | 2070       | 1930       | 2060       | 2140       | 2240       | 2160       |            | 2380       | 2400       | 2220       | 2360       | 2340       | 2330       | 3650       | 2380       | 2240       | 2240       | 2200       | 2230          | 2210          |
| Appendix IV               |       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |               |               |
| Antimony                  | mg/L  | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    |            | <0.0006    | <0.0006    | <0.0006    | <0.0008    | <0.0008    | 0.00137 J  | <0.0008    | <0.0008    | <0.0008    | <0.0008    | <0.0008    | <0.0008    | <0.00050      | <0.00050      |
| Arsenic                   | mg/L  | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | <0.001     | <0.001     | < 0.001    |            | < 0.001    | < 0.001    | < 0.001    | <0.001     | <0.001     | < 0.001    | < 0.001    | < 0.001    | < 0.001    | <0.001     | < 0.001    | < 0.001    | 0.000403      | 0.000363      |
| Barium                    | mg/L  | 0.00941 J  | 0.00951 J  | 0.00991 J  | 0.00949 J  | 0.0105     | 0.00931 J  | 0.00879 J  | 0.00929 J  | 0.00938 J  | 0.00964 J  | 0.00982 J  |            | 0.00937 J  | 0.0102     | 0.0104     | 0.00952 J  | 0.00915 J  | 0.00913 J  | 0.0109     | 0.0106     | 0.00995 J  | 0.00971 J  | 0.0101     | 0.0107     | 0.0107        | 0.00984       |
| Beryllium                 | mg/L  | <0.0006    | <0.0006    | < 0.0006   | <0.0006    | < 0.0006   | < 0.0006   | < 0.0006   | < 0.0006   | <0.0006    | <0.0006    | < 0.0006   |            | < 0.0006   | <0.0006    | < 0.0006   | < 0.0006   | <0.0006    | <0.0006    | < 0.0006   | <0.0006    | < 0.0006   | <0.0006    | <0.0006    | <0.0006    | <0.00040<br>6 | <0.00040      |
| Cadmium                   | mg/L  | 0.00196    | 0.0021     | 0.00206    | 0.00182    | 0.00188    | 0.00175    | 0.00197    | 0.002      | 0.0019     | 0.00159    | 0.00214    |            | 0.0018     | 0.00201    | 0.00217    | 0.00228    | 0.00156    | 0.00238    | 0.00218    | 0.00225    | 0.00182    | 0.00184    | 0.0019     | 0.00237    | 0.00184       | 0.00193       |
| Chromium                  | mg/L  | <0.002     | <0.002     | <0.002     | <0.002     | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.002     | < 0.002    | < 0.002    | 1          | < 0.002    | < 0.002    | <0.002     | <0.002     | < 0.002    | <0.002     | < 0.002    | <0.002     | < 0.002    | < 0.002    | <0.002     | < 0.002    | 0.000382<br>J | 0.000487<br>J |
| Cobalt                    | mg/L  | 0.0343     | 0.0413     | 0.0513     | 0.0471     | 0.0525     | 0.0527     | 0.0569     | 0.0768     | 0.0535     | 0.0442     | 0.0465     |            | 0.062      | 0.0443     | 0.0512     | 0.0751     | 0.0825     | 0.0485     | 0.0778     | 0.08       | 0.0495     | 0.0417     | 0.0532     | 0.0722     | 0.0657        | 0.0556        |
| Combined Radium 226 + 228 | pCi/L | 0.622      | 0.159 U    | 0.511 U    | 0.566 U    | 0.537 U    | 0.636      | 0.807      | 0.308 U    | 0.344 U    | 0.934      | 0.149 U    | 1          | 0.774      | -0.091 U   | 1.18       |            | 0.862      | 0.509      | 1.47       | 0.204 U    | 0.521 U    | 0.309 U    | 0.219 U    | -0.127 U   | 0.677 U       | 0.476 U       |
| Lead                      | mg/L  | <0.001     | <0.001     | <0.001     | <0.001     | < 0.001    | < 0.001    | < 0.001    | < 0.001    | <0.001     | < 0.001    | < 0.001    |            | < 0.001    | < 0.001    | <0.001     | <0.001     | <0.001     | <0.001     | < 0.001    | <0.001     | < 0.001    | <0.001     | <0.001     | < 0.001    | <6.8e-005     | <6.8e-005     |
| Lithium                   | mg/L  | 0.0264 J   | 0.0246 J   | 0.0229 J   | 0.0236 J   | 0.0229 J   | 0.0227 J   | 0.0236 J   | 0.0228 J   | 0.0238 J   | 0.0242 J   | 0.0229 J   | 1          | 0.0233 J   | 0.0263 J   | 0.0251 J   | 0.025 J    | 0.0241     | 0.026 J    | 0.0268     | 0.0263     | 0.0292     | 0.0278     | 0.028      | 0.0259     | 0.0301        | 0.0266        |
| Mercury                   | mg/L  | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   |            | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.0003    | <0.0003    | <0.0003    | <0.0003    | <0.0003    | <0.0003    | <0.0003    | <0.0003       | <0.0003       |
| Molybdenum                | mg/L  | <0.002     | <0.002     | <0.002     | <0.002     | < 0.002    | <0.002     | < 0.002    | < 0.002    | <0.002     | < 0.002    | < 0.002    |            | <0.002     | < 0.002    | <0.002     | <0.002     | <0.002     | <0.002     | < 0.002    | <0.002     | < 0.002    | <0.002     | <0.002     | < 0.002    | <6.8e-005     | <6.8e-005     |
| Selenium                  | mg/L  | 0.00261 J  | 0.00242 J  | 0.00253 J  | <0.002     | 0.00211 J  | <0.002     | < 0.002    | < 0.002    | 0.0022 J   | 0.0027 J   | 0.00316 J  |            | 0.00211 J  | 0.00372 J  | 0.00409 J  | <0.002     | <0.002     | 0.00316 J  | < 0.002    | <0.002     | 0.00272 J  | 0.00275 J  | 0.0025 J   | 0.00278 J  | 0.00241       | 0.00245       |
| Thallium                  | mg/L  | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | < 0.0002   | 1          | <0.0002    | < 0.0002   | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | < 0.0002   | <0.0002    | <0.0002    | <0.0002    | <6.8e-005     | <6.8e-005     |

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. J Result is an estimated value
- 4. "<MDL" or "U" indicates non-detect



|                              | Wells |            |            |            |            |            |            |            |            |            |            |            |            |            | MW-2       |            |            |            |            |            |            |            |            |            |            |            |            |              |
|------------------------------|-------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|
| Analytes                     | Date  | 04/25/2016 | 05/05/2016 | 06/20/2016 | 08/08/2016 | 08/24/2016 | 10/03/2016 | 10/26/2016 | 11/21/2016 | 01/17/2017 | 03/22/2017 | 04/18/2017 | 05/31/2017 | 08/23/2017 | 02/13/2018 | 05/22/2018 | 06/12/2018 | 10/17/2018 | 11/19/2018 | 05/14/2019 | 10/08/2019 | 10/16/2019 | 02/03/2020 | 04/06/2020 | 07/13/2020 | 08/03/2020 | 02/22/2021 | 07/12/2021   |
| Appendix III                 |       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |
| Boron                        | mg/L  | 0.0241 J   |            | 0.0284 J   | 0.034 J    | 0.0316 J   | 0.0367 J   | 0.0331 J   | 0.035 J    | 0.0259 J   | 0.0243 J   | 0.0206 J   | 0.0234 J   | 0.0267 J   |            | 0.0251 J   | 0.0275 J   | 0.0321 J   | 0.0324 J   | <0.0609    | 0.0371 J   | 0.0419 J   | <0.03      | <0.03      | <0.03      | 0.0317 J   | <0.03      | <0.03        |
| Calcium                      | mg/L  | 123        |            | 168        | 180        | 180        | 184        | 171        | 179        | 188        | 155        | 156        | 151        | 155        |            | 172        | 179        | 200        | 221        | 168        | 190        | 194        | 172        | 152        | 163        | 172        | 178        | 159          |
| Chloride                     | mg/L  | 1.9        |            | 3.43       | 3.31       | 3.23       | 3.21       | 3.35       | 3.34       | 3.58       | 3          | 2.6        | 4.4 J      | 4.4        |            | 3.2        | 3.7        |            | 3          | 2.98       | 4.26       | 4.04       | 2.48       | 2.43       | 4.05       | 4.03       | 1.72       | 2.36         |
| Fluoride                     | mg/L  | 0.149 J    |            | 0.148 J    | 0.134 J    | 0.129 J    | 0.086 J    | 0.027 J    | 0.027 J    | 0.066 J    | 0.13       | 0.16       | 0.13       | 0.16       | 0.22       | 0.17       | 0.16       |            | 0.18       | 0.17       | 0.164      | 0.114      | 0.182      | 0.207      | 0.132      | 0.122      | 0.209      | 0.196        |
| pH_Field                     | pН    | 5.94       |            | 5.96       | 5.88       |            | 5.91       | 5.84       | 5.82       | 5.87       | 6.01       | 6.02       | 5.85       | 5.89       | 6.21       | 6.04       | 5.95       | 5.9        | 6.03       | 6.07       | 5.96       | 5.98       | 5.95       | 6.21       | 5.84       | 5.95       | 6.1        | 6.16         |
| Sulfate                      | mg/L  | 745        |            | 964        | 1100       | 1130       | 1140       | 1060       | 1100       | 1160       | 900        | 870        | 1100       | 920        |            | 1200       | 860        |            | 1000       | 948        | 1230       | 1170       | 803        | 786        | 843        | 907        | 864        | 763          |
| TDS                          | mg/L  | 1260       |            | 1620       | 1740       | 1720       | 1800       | 1800       | 1740       | 1960       | 1510       | 1580       | 1730       | 1550       |            | 1500       | 1550       | 1740       | 1990       | 1480       | 1840       | 1830       | 1440       | 1440       | 1540       | 1650       | 1620       | 1390         |
| Appendix IV                  |       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |
| Antimony                     | mg/L  | <0.0006    |            | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    |            | <0.0006    | <0.0006    | <0.0006    | <0.0008    | <0.0008    | 0.000989   | <0.0008    | <0.0008    | <0.0008    | < 0.0008   | <0.0008    | <0.0008    | <0.00050   | <0.00050     |
| Arsenic                      | mg/L  | <0.001     |            | <0.001     | < 0.001    | <0.001     | < 0.001    | < 0.001    | 0.00111 J  | <0.001     | <0.001     | <0.001     | <0.001     |            | <0.001     | <0.001     | <0.001     | < 0.001    | <0.001     | <0.001     | <0.001     | <0.001     | < 0.001    | < 0.001    | < 0.001    | < 0.001    | 0.000295   | 0.000364     |
| Barium                       | mg/L  | 0.0134     |            | 0.0165     | 0.0162     | 0.0139     | 0.0164     | 0.0138     | 0.0144     | 0.0135     | 0.0132     | 0.012      | 0.0126     |            | 0.0127     | 0.0131     | 0.0138     | 0.0137     | 0.0115     | 0.0109     | 0.0151     | 0.0146     | 0.0122     | 0.0125     | 0.0145     | 0.0147     | 0.0132     | 0.013        |
| Beryllium                    | mg/L  | <0.0006    |            | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    |            | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.00040   | <0.00040     |
| Cadmium                      | mg/L  | <0.0002    |            | <0.0002    | <0.0002    | <0.0002    | < 0.0002   | <0.0002    | <0.0002    | 0.000311   | <0.0002    | <0.0002    | 0.000212   |            | <0.0003    | <0.0003    | <0.0003    | <0.0003    | <0.0003    | < 0.0003   | <0.0003    | <0.0003    | <0.0003    | < 0.0003   | < 0.0003   | <0.0003    | 8.96e-005  | 8.27e-005    |
| Chromium                     | mg/L  | < 0.002    |            | < 0.002    | < 0.002    | <0.002     | < 0.002    | < 0.002    | < 0.002    | <0.002     | <0.002     | < 0.002    | <0.002     |            | < 0.002    | <0.002     | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.002     | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.00020   | 0.000251     |
| Cobalt                       | mg/L  | 0.0487     |            | 0.0767     | 0.103      | 0.093      | 0.0964     | 0.0904     | 0.0857     | 0.0745     | 0.0328     | 0.0242     | 0.0441     |            | 0.0179     | 0.028      | 0.0366     | 0.0745     | 0.0225     | 0.0222     | 0.0674     | 0.073      | 0.0193     | 0.0116     | 0.0405     | 0.0589     | 0.0161     | 0.0155       |
| Combined Radium<br>226 + 228 | pCi/L |            | -0.0718 U  | 0.295 U    | 0.231 U    | 0.65       | 0.845      | 0.994      | 0.537 U    | -0.0159 U  | 0.279 U    | 0.32 U     | 0.178 U    |            | 0.804      | 0.0077 U   | -0.315 U   |            | 0.654      | 0.579      | 0.493 U    | 0.046 U    | -0.0245 U  | 0.212 U    | 0.0814 U   | 0.888 U    | 0.434 U    | 0.155 U      |
| Lead                         | mg/L  | <0.001     |            | <0.001     | < 0.001    | <0.001     | < 0.001    | < 0.001    | < 0.001    | <0.001     | <0.001     | <0.001     | <0.001     |            | <0.001     | < 0.001    | <0.001     | < 0.001    | < 0.001    | <0.001     | < 0.001    | <0.001     | < 0.001    | < 0.001    | < 0.001    | < 0.001    | <6.8e-005  | <6.8e-005    |
| Lithium                      | mg/L  | 0.0353 J   |            | 0.0583     | 0.0627     | 0.0651     | 0.0622     | 0.0293 J   | 0.0667     | 0.0636     | 0.0464 J   | 0.0446 J   | 0.0496 J   |            | 0.0615     | 0.0465 J   | 0.0472 J   | 0.0633     | 0.0584     | 0.0445     | 0.0677     | 0.0661     | 0.0534     | 0.0496     | 0.0615     | 0.0611     | 0.0625     | 0.0495       |
| Mercury                      | mg/L  | <0.00025   |            | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   |            | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.0003    | < 0.0003   | < 0.0003   | <0.0003    | < 0.0003   | < 0.0003   | <0.0003    | <0.0003    | <0.0003      |
| Molybdenum                   | mg/L  | <0.002     |            | <0.002     | < 0.002    | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     |            | < 0.002    | <0.002     | <0.002     | < 0.002    | < 0.002    | <0.002     | <0.002     | <0.002     | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <6.8e-005  | <6.8e-005    |
| Selenium                     | mg/L  | <0.002     |            | <0.002     | < 0.002    | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     |            | < 0.002    | <0.002     | <0.002     | < 0.002    | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     | < 0.002    | < 0.002    | <0.00050   | <0.00050     |
| Thallium                     | mg/L  | <0.0002    |            | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    |            | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <6.8e-005  | 6 < 6.8e-005 |

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. J Result is an estimated value
- 4. "<MDL" or "U" indicates non-detect



|                           | Wells |               |            |            |            |               |               |            |            |            |            |            |            | MV         | W-3        |            |               |               |            |            |            |            |               |            |            |            |                |
|---------------------------|-------|---------------|------------|------------|------------|---------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---------------|---------------|------------|------------|------------|------------|---------------|------------|------------|------------|----------------|
| Analytes                  | Date  | 04/25/2016    | 06/22/2016 | 08/09/2016 | 08/24/2016 | 10/04/2016    | 10/26/2016    | 11/21/2016 | 01/18/2017 | 03/22/2017 | 04/18/2017 | 05/31/2017 | 08/23/2017 | 02/13/2018 | 05/24/2018 | 06/12/2018 | 11/19/2018    | 04/10/2019    | 05/14/2019 | 10/08/2019 | 10/16/2019 | 02/03/2020 | 04/06/2020    | 07/13/2020 | 08/03/2020 | 02/22/2021 | 07/12/2021     |
| Appendix III              |       |               |            |            |            |               |               |            |            |            |            |            |            |            |            |            |               |               |            |            |            |            |               |            |            |            |                |
| Boron                     | mg/L  | 0.028 J       | 0.0433 J   | 0.0429 J   | 0.0431 J   | 0.04 J        | 0.0375 J      | 0.0406 J   | 0.0548 J   | 0.0344 J   | < 0.02     | 0.0454 J   | 0.0425 J   |            | 0.0339 J   | 0.0371 J   | 0.0514 J      | < 0.03        | <0.0609    | 0.0537 J   | 0.05 J     |            | <0.03         | 0.0366 J   | 0.0424 J   | <0.03      | <0.03          |
| Calcium                   | mg/L  | 224           | 266        | 260        | 274        | 243           | 254           | 263        | 431        | 318        | 296        | 306        | 298        |            | 297        | 318        | 387           | 348           | 254        | 371        | 346        |            | 177           | 264        | 285        | 312        | 252            |
| Chloride                  | mg/L  | 1.32          | 1.46       | 1.35       | 1.47       | 1.59          | 1.27          | 1.38       | 1.34       | 2          | 2.2        | 1.5 J      | 1.8 J      |            | 1.6 J      | 1.4 J      | <1.4          | 2.25          | 2.28       | 1.36       | 1.4        |            | 1.72          | 1.34       | 1.17       | 2.22       | 2.13           |
| Fluoride                  | mg/L  | 0.243 J       | 0.269 J    | 0.363      | 0.346      | 0.266 J       | 0.266 J       | 0.244 J    | 0.385      | 0.41       | 0.29       | 0.37       | 0.55       | 0.27       | 0.6        | 0.53       | 0.31          | 0.273         | 0.281      | 0.225      | 0.106      |            | 0.314         | 0.13       | 0.0766 J   | 0.246      | 0.287          |
| pH_Field                  | рН    | 5.56          | 5.57       | 5.67       | 5.63       | 5.69          | 5.56          | 5.42       | 5.11       | 4.52       | 5.84       | 4.56       | 4.77       | 5.67       | 5.19       | 4.79       | 3.77          | 5.54          | 5.71       | 4.98       | 4.51       |            | 5.91          | 5.16       | 5.06       | 5.59       | 5.86           |
| Sulfate                   | mg/L  | 1890          | 2100       | 2050       | 2190       | 1950          | 1980          | 2060       | 2620       | 3200       | 2500       | 2800       | 2600       |            | 2700       | 2500       | 3000          | 2460          | 2460       | 2950       | 2820       |            | 1670          | 2130       | 2330       | 3040       | 2380           |
| TDS                       | mg/L  | 2720          | 3250       | 3050       | 3080       | 2900          | 2940          | 3090       | 4020       | 4180       | 4440       | 3970       | 4050       |            | 3680       | 3820       | 4710          | 3680          | 3580       | 4720       | 4210       |            | 2630          | 3650       | 3760       | 4670       | 3510           |
| Appendix IV               |       |               |            |            |            |               |               |            |            |            |            |            |            |            |            |            |               |               |            |            |            |            |               |            |            |            |                |
| Antimony                  | mg/L  | <0.0006       | <0.0006    | <0.0006    | < 0.0006   | <0.0006       | < 0.0006      | <0.0006    | < 0.0006   | <0.0006    | <0.0006    | <0.0006    |            | < 0.0006   | < 0.0006   | < 0.0006   | <0.0008       | 0.000978<br>J | <0.0008    | <0.0008    | <0.0008    |            | <0.0008       | <0.0008    | <0.0008    | <0.00050   | <0.00050       |
| Arsenic                   | mg/L  | <0.001        | <0.001     | < 0.001    | < 0.001    | < 0.001       | < 0.001       | <0.001     | < 0.001    | 0.00122 J  | < 0.001    | < 0.001    |            | < 0.001    | < 0.001    | 0.00103 J  | 0.0012 J      | < 0.001       | < 0.001    | 0.0048 J   | 0.00389 J  |            | < 0.001       | 0.0032 J   | 0.00426 J  | 0.000789   | 0.000376       |
| Barium                    | mg/L  | 0.00803 J     | 0.0101     | 0.00889 J  | 0.00962 J  | 0.00984 J     | 0.00878 J     | 0.00833 J  | 0.00966 J  | 0.00991 J  | 0.00976 J  | 0.00866 J  |            | 0.00821 J  | 0.00977 J  | 0.00997 J  | 0.0109        | 0.0101        | 0.00922 J  | 0.0154     | 0.0128     |            | 0.00931 J     | 0.0142     | 0.0166     | 0.00981    | 0.00857        |
| Beryllium                 | mg/L  | 0.00122 J     | 0.00144 J  | 0.00331    | 0.00308    | 0.00129 J     | 0.0071        | 0.00689    | 0.0169     | 0.00686    | <0.0006    | 0.00547    |            | <0.0006    | 0.00164 J  | 0.00306    | 0.0185        | <0.0006       | <0.0006    | 0.0084     | 0.0103     |            | <0.0006       | 0.0021 J   | 0.00405    | <0.00040   | <0.00040       |
| Cadmium                   | mg/L  | 0.0121        | 0.00163    | 0.00122    | <0.0002    | 0.000689<br>J | 0.00136       | 0.00171    | 0.003      | 0.00473    | 0.00117    | 0.00296    |            | 0.00232    | 0.00459    | 0.00351    | 0.00309       | 0.00337       | 0.0013     | 0.00598    | 0.00448    |            | 0.000645<br>J | 0.0089     | 0.00652    | 0.00536    | 0.000937       |
| Chromium                  | mg/L  | 0.00373 J     | 0.00606 J  | < 0.002    | < 0.002    | < 0.002       | < 0.002       | < 0.002    | < 0.002    | 0.00945 J  | 0.0105     | < 0.002    |            | < 0.002    | < 0.002    | < 0.002    | < 0.002       | < 0.002       | <0.002     | < 0.002    | < 0.002    |            | < 0.002       | < 0.002    | < 0.002    | 0.00035 J  | 0.000307<br>J  |
| Cobalt                    | mg/L  | 0.232         | 0.332      | 0.311      | 0.271      | 0.148         | 0.236         | 0.241      | 0.347      | 0.271      | 0.00324 J  | 0.225      |            | 0.00661 J  | 0.158      | 0.291      | 0.386         | 0.0144        | 0.00536    | 1.07       | 0.848      |            | < 0.002       | 0.47       | 0.64       | 0.0515     | 0.00567        |
| Combined Radium 226 + 228 | pCi/L | 0.484 U       | 0.2 U      | 0.378 U    | 0.131 U    | 0.514 U       | 0.755         | 0.7        | 0.606      | 0.927      | 0.334 U    | 0.8        |            | 0.649      | 0.448 U    | 0.234 U    | 0.521         |               | 0.176 U    | 0.833 U    | 0.0279 U   | 0.0246 U   | 0.569 U       | 0.53       | 0.765 U    | 0.472 U    | 0.114 U        |
| Lead                      | mg/L  | < 0.001       | <0.001     | < 0.001    | < 0.001    | < 0.001       | < 0.001       | < 0.001    | < 0.001    | <0.001     | < 0.001    | < 0.001    |            | < 0.001    | < 0.001    | < 0.001    | 0.00692       | < 0.001       | <0.001     | <0.001     | 0.00108 J  |            | < 0.001       | < 0.001    | 0.002 J    | 8.8e-005 J | 8.42e-005<br>J |
| Lithium                   | mg/L  | 0.0964        | 0.156      | 0.122      | 0.138      | 0.0966        | 0.134         | 0.167      | 0.237      | 0.203      | 0.0764     | 0.218      |            | 0.0964     | 0.145      | 0.194      | 0.323         | 0.0905        | 0.0828     | 0.419      | 0.337      |            | 0.0689        | 0.256      | 0.27       | 0.126      | 0.0808         |
| Mercury                   | mg/L  | <0.00025      | <0.00025   | <0.00025   | < 0.00025  | <0.00025      | <0.00025      | <0.00025   | <0.00025   | <0.00025   | < 0.00025  | <0.00025   |            | <0.00025   | <0.00025   | <0.00025   | <0.00025      | < 0.0003      | <0.0003    | <0.0003    | <0.0003    |            | < 0.0003      | <0.0003    | <0.0003    | <0.0003    | <0.0003        |
| Molybdenum                | mg/L  | < 0.002       | <0.002     | < 0.002    | < 0.002    | < 0.002       | < 0.002       | < 0.002    | < 0.002    | <0.002     | < 0.002    | <0.002     |            | < 0.002    | <0.002     | < 0.002    | < 0.002       | < 0.002       | < 0.002    | <0.002     | < 0.002    |            | < 0.002       | < 0.002    | < 0.002    | <6.8e-005  | <6.8e-005      |
| Selenium                  | mg/L  | < 0.002       | < 0.002    | <0.002     | < 0.002    | < 0.002       | < 0.002       | < 0.002    | < 0.002    | 0.0141     | 0.0158     | 0.00632 J  |            | 0.0209     | 0.00918 J  | 0.00836 J  | 0.00439 J     | 0.0113        | 0.0119     | 0.00256 J  | 0.00286 J  |            | 0.01          | 0.0134     | 0.0146     | 0.0181     | 0.0133         |
| Thallium                  | mg/L  | 0.000205<br>J | <0.0002    | <0.0002    | <0.0002    | < 0.0002      | 0.000209<br>J | <0.0002    | < 0.0002   | <0.0002    | <0.0002    | < 0.0002   |            | < 0.0002   | < 0.0002   | < 0.0002   | 0.000226<br>J | < 0.0002      | <0.0002    | <0.0002    | <0.0002    |            | < 0.0002      | <0.0002    | < 0.0002   | <6.8e-005  | <6.8e-005      |

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. J Result is an estimated value
- 4. "<MDL" or "U" indicates non-detect



|                           | Wells |            |            |            |            |            |            |            |            |            |            |            |            | MW-4       |            |            |            |            |            |            |            |            |            |            |                |                |
|---------------------------|-------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|----------------|
| Analytes                  | Date  | 04/25/2016 | 06/20/2016 | 08/09/2016 | 08/24/2016 | 10/03/2016 | 10/26/2016 | 11/21/2016 | 01/18/2017 | 03/22/2017 | 04/18/2017 | 05/31/2017 | 08/23/2017 | 02/13/2018 | 05/23/2018 | 06/12/2018 | 11/19/2018 | 04/10/2019 | 05/14/2019 | 10/10/2019 | 10/16/2019 | 02/03/2020 | 04/06/2020 | 07/14/2020 | 02/22/2021     | 07/12/2021     |
| Appendix III              |       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |                |                |
| Boron                     | mg/L  | 0.0414 J   | 0.0434 J   | 0.0453 J   | 0.0451 J   | 0.0511 J   | 0.0507 J   | 0.0458 J   | 0.0445 J   | 0.0432 J   | 0.0409 J   | 0.0392 J   | 0.042 J    |            | 0.0433 J   | 0.0478 J   | 0.0526 J   | 0.0438 J   | <0.0609    | 0.0487 J   | 0.0505 J   |            | 0.0428 J   | 0.0441 J   | 0.0397 J       | 0.0411 J       |
| Calcium                   | mg/L  | 261        | 295        | 318        | 319        | 293        | 311        | 320        | 417        | 292        | 302        | 284        | 297        |            | 296        | 355        | 289        | 356        | 254        | 302        | 356        |            | 222        | 259        | 271            | 242            |
| Chloride                  | mg/L  | 1.53       | 1.85       | 1.95       | 2.07       | 2.02       | 2.07       | 2.39       | 1.9        | 1.5 J      | 1.6 J      | 2.1        | 2.3        |            | 2          | 1.7 J      | <1.4       | 1.88       | 1.82       | 1.93       | 1.92       |            | 1.5        | 1.61       | 1.52           | 1.56           |
| Fluoride                  | mg/L  | 0.372      | 0.361      | 0.326      | 0.329      | 0.287 J    | 0.194 J    | 0.192 J    | 0.223 J    | 0.32       | 0.32       | 0.31       | 0.38       | 0.38       | 0.38       | 0.39       | 0.36       | 0.384      | 0.335      | 0.304      | 0.302      |            | 0.368      | 0.33       | 0.357          | 0.35           |
| pH_Field                  | рН    | 6.22       | 6.21       | 6.11       | 6.11       | 6.13       | 6.12       | 6.09       | 6.09       | 6.15       | 6.19       | 6.13       | 6.12       | 6.22       | 6.21       | 6.16       | 6.16       | 6.14       | 6.23       | 6.15       | 6.19       |            | 6.35       | 6.2        | 6.19           | 6.06           |
| Sulfate                   | mg/L  | 2260       | 2500       | 2750       | 2770       | 3060       | 2650       | 2720       | 2650       | 2700       | 2400       | 2700       | 2700       |            | 2400       | 2600       | 2400       | 2090       | 2240       | 2690       | 3050       |            | 1810       | 1970       | 2040           | 1930           |
| TDS                       | mg/L  | 3300       | 3870       | 4140       | 4190       | 4190       | 4400       | 4230       | 4120       | 3980       | 3880       | 4210       | 3990       |            | 3740       | 4080       | 3920       | 3280       | 3130       | 4000       | 4060       |            | 2820       | 3310       | 3190           | 3000           |
| Appendix IV               |       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |                |                |
| Antimony                  | mg/L  | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    |            | <0.0006    | <0.0006    | <0.0006    | <0.0008    | 0.00097 J  | <0.0008    | <0.0008    | < 0.0008   |            | <0.0008    | <0.0008    | <0.00050<br>7  | <0.00050       |
| Arsenic                   | mg/L  | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    |            | < 0.001    | <0.001     | < 0.001    | < 0.001    | < 0.001    | < 0.001    | <0.001     | < 0.001    |            | < 0.001    | < 0.001    | 0.000125<br>J  | 0.000116<br>J  |
| Barium                    | mg/L  | 0.0114     | 0.0103     | 0.0119     | 0.0118     | 0.0119     | 0.0104     | 0.0106     | 0.0101     | 0.0103     | 0.0107     | 0.0104     |            | 0.0111     | 0.0107     | 0.0108     | 0.0107     | 0.0107     | 0.00949 J  | 0.0116     | 0.0125     |            | 0.0115     | 0.0122     | 0.0111         | 0.0108         |
| Beryllium                 | mg/L  | < 0.0006   | < 0.0006   | < 0.0006   | < 0.0006   | <0.0006    | <0.0006    | < 0.0006   | < 0.0006   | < 0.0006   | <0.0006    | <0.0006    |            | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | < 0.0006   | <0.0006    | < 0.0006   |            | <0.0006    | <0.0006    | <0.00040       | <0.00040       |
| Cadmium                   | mg/L  | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   |            | < 0.0003   | < 0.0003   | < 0.0003   | <0.0003    | < 0.0003   | < 0.0003   | < 0.0003   | < 0.0003   |            | <0.0003    | < 0.0003   | 8.96e-005<br>J | 8.19e-005<br>J |
| Chromium                  | mg/L  | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | < 0.002    | < 0.002    | <0.00020       | 0.000302<br>J  |
| Cobalt                    | mg/L  | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.002     | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.002     |            | <0.002     | < 0.002    | <0.002     | <0.002     | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | <0.002     | < 0.002    | <6.8e-005      | <6.8e-005      |
| Combined Radium 226 + 228 | pCi/L | 0.434 U    | 0.287 U    | 0.516 U    | 0.266 U    | 0.59 U     | 0.164 U    | 0.296 U    | 0.0267 U   | 0.132 U    | -0.0439 U  | 0.3 U      |            | 0.69       | 0.186 U    | 0.153 U    | 0.794      |            | 0.352 U    | 1.02 U     | 0.356 U    | 0.254 U    | 0.459 U    | 0.169 U    | 0 U            | 0.301 U        |
| Lead                      | mg/L  | < 0.001    | < 0.001    | < 0.001    | <0.001     | <0.001     | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | <0.001     |            | <0.001     | <0.001     | <0.001     | <0.001     | < 0.001    | < 0.001    | <0.001     | < 0.001    |            | <0.001     | <0.001     | <6.8e-005      | <6.8e-005      |
| Lithium                   | mg/L  | 0.0528     | 0.0554     | 0.0452 J   | 0.0488 J   | 0.0476 J   | 0.049 J    | 0.0477 J   | 0.045 J    | 0.0493 J   | 0.0494 J   | 0.0501     |            | 0.0446 J   | 0.0513     | 0.0511     | 0.0467     | 0.0504     | 0.0485     | 0.054      | 0.052      |            | 0.0519     | 0.0543     | 0.0558         | 0.0533         |
|                           | mg/L  | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   |            | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.0003    | <0.0003    | <0.0003    | < 0.0003   |            | <0.0003    | <0.0003    | <0.0003        | <0.0003        |
|                           | mg/L  | < 0.002    | < 0.002    | < 0.002    | <0.002     | <0.002     | < 0.002    | <0.002     | <0.002     | < 0.002    | <0.002     | <0.002     |            | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     | < 0.002    | < 0.002    |            | <0.002     | <0.002     | 0.000131<br>J  | 0.000138<br>J  |
|                           | mg/L  | < 0.002    | < 0.002    | < 0.002    | <0.002     | <0.002     | < 0.002    | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     |            | 0.00403 J  | <0.002     | <0.002     | 0.00436 J  | <0.002     | 0.00201 J  | < 0.002    | < 0.002    |            | 0.00284 J  | < 0.002    | 0.00222        | 0.00155        |
| Thallium                  | mg/L  | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    |            | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    |            | <0.0002    | <0.0002    | <6.8e-005      | <6.8e-005      |

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. J Result is an estimated value
- 4. "<MDL" or "U" indicates non-detect



# Historical Groundwater Analytical Data Gorgas Gypsum Landfill 2016-Present

|                           | Wells |            |            |            |            |            |            |            |            | MV         | V-13       |            |            |            |            |            |            |               |               |
|---------------------------|-------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---------------|---------------|
| Analytes                  | Date  | 04/26/2016 | 06/22/2016 | 10/12/2017 | 10/13/2017 | 10/14/2017 | 10/15/2017 | 10/16/2017 | 10/17/2017 | 11/16/2017 | 02/13/2018 | 05/21/2018 | 11/19/2018 | 05/14/2019 | 10/08/2019 | 04/07/2020 | 07/14/2020 | 02/23/2021    | 07/20/2021    |
| Appendix III              |       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |               |               |
| Boron                     | mg/L  | 0.0585 J   | 0.0581 J   | 0.0673 J   | 0.06 J     | 0.0555 J   | 0.0567 J   | 0.0576 J   | 0.0561 J   | 0.0554 J   |            | 0.0651 J   | 0.0624 J   | <0.0609    | 0.0616 J   | 0.0577 J   | 0.0573 J   | 0.065 J       | 0.0592 J      |
| Calcium                   | mg/L  | 302        | 354        | 321        | 312        | 300        | 300        | 290        | 296        | 296        |            | 321        | 288        | 302        | 304        | 222        | 291        | 238           | 262           |
| Chloride                  | mg/L  | 1.71       | 2.1        | 2.3        | 2.5        | 1.6 J      | 1.6 J      | 1.5 J      | 2.1        | 2.4        |            | 2.6        | 1.6 J      | 1.96       | 2.1        | 1.67       | 1.9        | 1.6           | 1.7           |
| Fluoride                  | mg/L  | 0.197 J    | 0.208 J    | 0.22       | 0.2        | 0.21       | 0.22       | 0.22       | 0.2        | 0.2        | 0.24       | 0.22       | 0.2        | 0.196      | 0.184      | 0.189      | 0.174      | 0.224         | 0.323         |
| pH_Field                  | pН    |            |            |            |            |            |            |            |            |            | 6.5        |            |            | 6.41       | 6.34       | 6.53       | 6.33       | 6.55          | 6.59          |
| Sulfate                   | mg/L  | 1920       | 2270       | 2100       | 2000       | 1800       | 1800       | 1800       | 1700       | 1800       |            | 2400       | 1800       | 1600       | 1980       | 1400       | 1740       | 1470          | 1560          |
| TDS                       | mg/L  | 2940       | 3580       | 3350       | 3340       | 3120       | 3210       | 3150       | 3030       | 3150       |            | 2760       | 2960       | 2530       | 3050       | 2190       | 2860       | 2370          | 2520          |
| Appendix IV               |       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |               |               |
| Antimony                  | mg/L  | <0.0006    | < 0.0006   | <0.0006    | < 0.0006   | < 0.0006   | < 0.0006   | < 0.0006   | <0.0006    |            | < 0.0006   | <0.0006    | < 0.0008   | < 0.0008   | <0.0008    | <0.0008    | <0.0008    | <0.00050      | <0.00050      |
| Arsenic                   | mg/L  | < 0.001    | < 0.001    | 0.0011 J   | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    |            | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | 0.000293      | 0.000154<br>J |
| Barium                    | mg/L  | 0.0134     | 0.0151     | 0.0147     | 0.0149     | 0.0136     | 0.0128     | 0.0131     | 0.0122     |            | 0.0106     | 0.015      | 0.0114     | 0.0115     | 0.0143     | 0.0133     | 0.0142     | 0.011         | 0.0118        |
| Beryllium                 | mg/L  | <0.0006    | < 0.0006   | <0.0006    | <0.0006    | < 0.0006   | <0.0006    | <0.0006    | <0.0006    |            | < 0.0006   | <0.0006    | < 0.0006   | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.00040      | <0.00040      |
| Cadmium                   | mg/L  | <0.0002    | < 0.0002   | < 0.0002   | <0.0002    | < 0.0002   | < 0.0002   | <0.0002    | < 0.0002   |            | < 0.0003   | <0.0003    | < 0.0003   | < 0.0003   | < 0.0003   | <0.0003    | < 0.0003   | <6.8e-005     | <6.8e-005     |
| Chromium                  | mg/L  | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | 0.000295<br>J | <0.00020      |
| Cobalt                    | mg/L  | 0.0205     | 0.0261     | 0.0183     | 0.0214     | 0.0201     | 0.0193     | 0.0163     | 0.0155     |            | 0.0101     | 0.0114     | 0.0208     | 0.00941    | 0.0204     | 0.00814    | 0.0143     | 0.00685       | 0.00414       |
| Combined Radium 226 + 228 | pCi/L | 0.245 U    | 0.822      | 0.478 U    | 0.561 U    | 2.15 U     | 0.198 U    | 0.641 U    | 0.344 U    |            | 1 U        | 0.407 U    | 0.637      | 0.529      | 0.29 U     | 0.169 U    | 0.779      | 0.453 U       | 0.574 U       |
| Lead                      | mg/L  | <0.001     | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    |            | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | <6.8e-005     | <6.8e-005     |
| Lithium                   | mg/L  | 0.0184 J   | 0.0222 J   | 0.0211 J   | 0.0198 J   | 0.0193 J   | 0.0204 J   | 0.0206 J   | 0.0206 J   |            | 0.0249 J   | 0.0241 J   | 0.0195 J   | <0.0203    | 0.02 J     | 0.0224     | 0.017 J    | 0.024         | 0.0282        |
| Mercury                   | mg/L  | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   |            | <0.00025   | <0.00025   | <0.00025   | <0.0003    | <0.0003    | <0.0003    | <0.0003    | <0.0003       | <0.0003       |
| Molybdenum                | mg/L  | <0.002     | < 0.002    | <0.002     | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.002     |            | < 0.002    | <0.002     | < 0.002    | <0.002     | <0.002     | < 0.002    | < 0.002    | 0.000495      | 0.000506      |
| Selenium                  | mg/L  | <0.002     | < 0.002    | <0.002     | < 0.002    | < 0.002    | <0.002     | <0.002     | 0.00274 J  |            | 0.0034 J   | 0.0023 J   | < 0.002    | <0.002     | <0.002     | <0.002     | < 0.002    | 0.0017        | 0.00315       |
| Thallium                  | mg/L  | <0.0002    | <0.0002    | <0.0002    | <0.0002    | < 0.0002   | <0.0002    | <0.0002    | <0.0002    |            | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <6.8e-005     | <6.8e-005     |

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. J Result is an estimated value
- 4. "<MDL" or "U" indicates non-detect



# Historical Groundwater Analytical Data Gorgas Gypsum Landfill 2016-Present

|                           | Wells |            |            |            |            |            |            |            |            | MV         | V-14       |            |            |            |            |            |            |               |            |
|---------------------------|-------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---------------|------------|
| Analytes                  | Date  | 04/26/2016 | 06/22/2016 | 10/12/2017 | 10/13/2017 | 10/14/2017 | 10/15/2017 | 10/16/2017 | 10/17/2017 | 11/16/2017 | 02/13/2018 | 05/21/2018 | 11/19/2018 | 05/14/2019 | 10/08/2019 | 04/07/2020 | 07/14/2020 | 02/23/2021    | 07/20/2021 |
| Appendix III              |       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |               |            |
| Boron                     | mg/L  | 0.0491 J   | 0.0504 J   | 0.0493 J   | 0.0464 J   | 0.0458 J   | 0.046 J    | 0.0438 J   | 0.046 J    | 0.0568 J   |            | 0.0478 J   | 0.0518 J   | <0.0609    | 0.0522 J   | 0.0477 J   | 0.0492 J   | 0.0516 J      | 0.0485 J   |
| Calcium                   | mg/L  | 335        | 360        | 315        | 317        | 315        | 325        | 333        | 309        | 313        |            | 349        | 323        | 337        | 341        | 290        | 332        | 312           | 316        |
| Chloride                  | mg/L  | 1.48       | 1.83       | 2.2        | 2.2        | 1.3 J      | 1.4 J      | 1.3 J      | 1.8 J      | 1.9 J      |            | 2.3        | <1.4       | 1.97       | 2.01       | 1.59       | 1.73       | 1.53          | 3.65       |
| Fluoride                  | mg/L  | 0.271 J    | 0.265 J    | 0.26       | 0.25       | 0.26       | 0.26       | 0.25       | 0.25       | 0.25       | 0.25       | 0.26       | 0.25       | 0.225      | 0.224      | 0.201      | 0.227      | 0.22          | 0.276      |
| pH_Field                  | рН    |            |            |            |            |            |            |            |            |            | 6.36       |            |            | 6.39       | 6.32       | 6.42       | 6.37       | 6.38          | 6.38       |
| Sulfate                   | mg/L  | 2150       | 2080       | 1900       | 1800       | 1700       | 1800       | 1800       | 1900       | 1700       |            | 2500       | 1900       | 2000       | 2030       | 1760       | 1840       | 1850          | 1830       |
| TDS                       | mg/L  | 3400       | 3400       | 3170       | 3070       | 3090       | 3190       | 3110       | 3110       | 3160       |            | 2980       | 3270       | 3150       | 3120       | 2820       | 3160       | 3020          | 2990       |
| Appendix IV               |       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |               |            |
| Antimony                  | mg/L  | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    |            | <0.0006    | <0.0006    | <0.0008    | < 0.0008   | <0.0008    | <0.0008    | < 0.0008   | <0.00050<br>7 | <0.00050   |
| Arsenic                   | mg/L  | 0.00106 J  | 0.00169 J  | 0.00149 J  | 0.00152 J  | 0.00145 J  | 0.00145 J  | 0.00135 J  | 0.00133 J  |            | 0.00139 J  | 0.00125 J  | 0.00127 J  | 0.00114 J  | 0.0012 J   | 0.00102 J  | < 0.001    | 0.000893      | 0.000783   |
| Barium                    | mg/L  | 0.0122     | 0.0122     | 0.0131     | 0.013      | 0.0124     | 0.0125     | 0.0121     | 0.0119     |            | 0.0115     | 0.0115     | 0.0109     | 0.0105     | 0.0132     | 0.0127     | 0.0127     | 0.0133        | 0.0116     |
| Beryllium                 | mg/L  | <0.0006    | < 0.0006   | < 0.0006   | <0.0006    | <0.0006    | < 0.0006   | < 0.0006   | <0.0006    |            | <0.0006    | <0.0006    | < 0.0006   | < 0.0006   | < 0.0006   | <0.0006    | < 0.0006   | <0.00040<br>6 | <0.00040   |
| Cadmium                   | mg/L  | <0.0002    | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   |            | < 0.0003   | <0.0003    | < 0.0003   | < 0.0003   | < 0.0003   | < 0.0003   | < 0.0003   | 0.000122<br>J | <6.8e-005  |
| Chromium                  | mg/L  | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | 0.000253<br>J | <0.00020   |
| Cobalt                    | mg/L  | 0.00716 J  | 0.0113     | 0.0108     | 0.0115     | 0.0113     | 0.0108     | 0.00981 J  | 0.00949 J  |            | 0.0104     | 0.00826 J  | 0.0119     | 0.0085     | 0.0108     | 0.00781    | 0.00839    | 0.00918       | 0.00847    |
| Combined Radium 226 + 228 | pCi/L | 0.429      | 0.293 U    | 0.34 U     | 0.511 U    | 0.701 U    | 0.311 U    | 0.755 U    | 0.214 U    | 1          | 1.26       | 0.375 U    | 0.636      | 0.518      | 0.478 U    | 0.276 U    | 0.651      | 0.804 U       | 0.733 U    |
| Lead                      | mg/L  | <0.001     | <0.001     | <0.001     | <0.001     | < 0.001    | < 0.001    | < 0.001    | < 0.001    | 1          | < 0.001    | <0.001     | <0.001     | < 0.001    | <0.001     | <0.001     | < 0.001    | 0.000108<br>J | <6.8e-005  |
| Lithium                   | mg/L  | 0.0373 J   | 0.0374 J   | 0.0338 J   | 0.0333 J   | 0.0327 J   | 0.0351 J   | 0.0352 J   | 0.0352 J   | 1          | 0.0325 J   | 0.0339 J   | 0.0346     | 0.0334 J   | 0.0389     | 0.0372     | 0.0384     | 0.0398        | 0.0376     |
| Mercury                   | mg/L  | <0.00025   | <0.00025   | <0.00025   | <0.00025   | < 0.00025  | < 0.00025  | <0.00025   | < 0.00025  |            | <0.00025   | <0.00025   | <0.00025   | < 0.0003   | <0.0003    | <0.0003    | < 0.0003   | <0.0003       | <0.0003    |
| Molybdenum                | mg/L  | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | <0.002     | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | 0.000933      | 0.00028    |
| Selenium                  | mg/L  | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | 0.00205 J  |            | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.00050<br>7 | <0.00050   |
| Thallium                  | mg/L  | <0.0002    | < 0.0002   | < 0.0002   | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    |            | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <6.8e-005     | <6.8e-005  |

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. J Result is an estimated value
- 4. "<MDL" or "U" indicates non-detect



# Historical Groundwater Analytical Data Gorgas Gypsum Landfill 2016-Present

|                           | Wells |            |            |            |            |            |            |            |            | MV         | V-15       |            |            |            |            |            |            |                |                |
|---------------------------|-------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|----------------|
| Analytes                  | Date  | 04/26/2016 | 06/22/2016 | 10/12/2017 | 10/13/2017 | 10/14/2017 | 10/15/2017 | 10/16/2017 | 10/17/2017 | 11/15/2017 | 02/14/2018 | 05/21/2018 | 11/19/2018 | 05/14/2019 | 10/08/2019 | 04/07/2020 | 07/14/2020 | 02/23/2021     | 07/20/2021     |
| Appendix III              |       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |                |                |
| Boron                     | mg/L  | 0.0476 J   | 0.0472 J   | 0.054 J    | 0.0535 J   | 0.0533 J   | 0.0592 J   | 0.0608 J   | 0.0641 J   | 0.0483 J   |            | 0.0478 J   | 0.0615 J   | <0.0609    | 0.0644 J   | 0.0542 J   | 0.0557 J   | 0.0534 J       | 0.0514 J       |
| Calcium                   | mg/L  | 257        | 282        | 256        | 269        | 262        | 275        | 258        | 263        | 254        |            | 298        | 272        | 280        | 299        | 276        | 281        | 302            | 274            |
| Chloride                  | mg/L  | 1.11       | 1.19       | 1.8 J      | 1.8 J      | 1.1 J      | 0.93 J     | 0.83 J     | 1.4 J      | 1.4 J      |            | 1.6 J      | <1.4       | 1.87       | 1.8        | 1.4        | 1.5        | 1.41           | 3.16           |
| Fluoride                  | mg/L  | 0.379      | 0.347      | 0.37       | 0.36       | 0.37       | 0.35       | 0.36       | 0.35       | 0.35       | 0.35       | 0.35       | 0.34       | 0.34       | 0.382      | 0.303      | 0.305      | 0.275          | 0.288          |
| pH_Field                  | рН    |            |            |            |            |            |            |            |            |            | 6.1        |            |            | 6.1        | 5.99       | 6.1        | 6.05       | 6.07           | 6.03           |
| Sulfate                   | mg/L  | 1640       | 1720       | 1600       | 1600       | 1500       | 1500       | 1400       | 1600       | 1500       |            | 2100       | 1500       | 1940       | 1650       | 1670       | 1630       | 1740           | 1700           |
| TDS                       | mg/L  | 2540       | 2520       | 2660       | 2680       | 2530       | 2640       | 2550       | 2600       | 2620       |            | 2510       | 2630       | 2520       | 2640       | 2760       | 2750       | 2890           | 2600           |
| Appendix IV               |       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |                |                |
| Antimony                  | mg/L  | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    |            | <0.0006    | <0.0006    | <0.0008    | <0.0008    | < 0.0008   | <0.0008    | <0.0008    | <0.00050       | <0.00050       |
| Arsenic                   | mg/L  | < 0.001    | < 0.001    | < 0.001    | < 0.001    | <0.001     | < 0.001    | < 0.001    | < 0.001    |            | < 0.001    | < 0.001    | < 0.001    | <0.001     | <0.001     | < 0.001    | < 0.001    | 0.000217       | 0.000286       |
| Barium                    | mg/L  | 0.00969 J  | 0.012      | 0.0117     | 0.0126     | 0.0117     | 0.0112     | 0.0115     | 0.0112     |            | 0.0121     | 0.0113     | 0.0105     | 0.0101     | 0.013      | 0.0127     | 0.0124     | 0.013          | 0.0118         |
| Beryllium                 | mg/L  | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    |            | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.00040       | <0.00040       |
| Cadmium                   | mg/L  | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | <0.0002    | < 0.0002   |            | < 0.0003   | < 0.0003   | < 0.0003   | <0.0003    | < 0.0003   | <0.0003    | < 0.0003   | <6.8e-005      | <6.8e-005      |
| Chromium                  | mg/L  | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.00020       | <0.00020       |
| Cobalt                    | mg/L  | 0.0686     | 0.0745     | 0.0687     | 0.0705     | 0.0716     | 0.0696     | 0.0632     | 0.0563     |            | 0.0685     | 0.062      | 0.0787     | 0.0739     | 0.0725     | 0.0697     | 0.0694     | 0.0755         | 0.0721         |
| Combined Radium 226 + 228 | pCi/L | 0.139 U    | 0.318 U    | 0.575 U    | 0.593 U    | 0.573 U    | 0.769 U    | 0.441 U    | 0.189 U    |            | 1.91       | 0.209 U    | 0.306 U    | 0.817      | 0.712 U    | 0.389 U    | 0.369 U    | 0.587 U        | 0.877 U        |
| Lead                      | mg/L  | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    |            | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | <0.001     | < 0.001    | <6.8e-005      | <6.8e-005      |
| Lithium                   | mg/L  | 0.0634     | 0.0666     | 0.0618     | 0.0614     | 0.0596     | 0.0634     | 0.0687     | 0.0634     |            | 0.0637     | 0.0634     | 0.0664     | 0.0679     | 0.0772     | 0.0711     | 0.0705     | 0.0741         | 0.0661         |
| Mercury                   | mg/L  | <0.00025   | < 0.00025  | < 0.00025  | <0.00025   | <0.00025   | <0.00025   | <0.00025   | < 0.00025  |            | < 0.00025  | < 0.00025  | < 0.00025  | < 0.0003   | < 0.0003   | < 0.0003   | <0.0003    | <0.0003        | <0.0003        |
| Molybdenum                | mg/L  | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.002     | <0.002     | <0.002     | < 0.002    |            | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.002     | <0.002     | <0.002     | 7.97e-005<br>J | 6.91e-005<br>J |
| Selenium                  | mg/L  | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.002     | <0.002     | < 0.002    | < 0.002    |            | < 0.002    | < 0.002    | < 0.002    | <0.002     | < 0.002    | <0.002     | < 0.002    | <0.00050       | <0.00050       |
| Thallium                  | mg/L  | <0.0002    | <0.0002    | <0.0002    | < 0.0002   | <0.0002    | <0.0002    | <0.0002    | <0.0002    |            | <0.0002    | <0.0002    | <0.0002    | <0.0002    | < 0.0002   | <0.0002    | <0.0002    | <6.8e-005      | <6.8e-005      |

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. J Result is an estimated value
- 4. "<MDL" or "U" indicates non-detect



# 2016-Present

|                           | Wells |            |            |            |            |            |            |            |            | MV         | V-16       |            |            |            |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Analytes                  | Date  | 04/27/2016 | 06/22/2016 | 10/12/2017 | 10/13/2017 | 10/14/2017 | 10/15/2017 | 10/16/2017 | 10/17/2017 | 11/15/2017 | 02/14/2018 | 05/21/2018 | 11/19/2018 | 05/14/2019 | 10/08/2019 | 04/06/2020 | 07/14/2020 | 02/23/2021 | 07/21/2021 |
| Appendix III              |       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Boron                     | mg/L  | 0.0425 J   | 0.0469 J   | 0.05 J     | 0.0468 J   | 0.0471 J   | 0.0456 J   | 0.0486 J   | 0.0452 J   | 0.044 J    |            | 0.0463 J   | 0.0524 J   | <0.0609    | 0.0528 J   | 0.0507 J   | 0.0484 J   | 0.0487 J   | 0.0437 J   |
| Calcium                   | mg/L  | 276        | 301        | 320        | 297        | 299        | 307        | 310        | 297        | 287        |            | 338        | 301        | 319        | 325        | 302        | 306        | 317        | 295        |
| Chloride                  | mg/L  | 2.76       | 3.08       | 4.4        | 4.3        | 3.4        | 3.6        | 3.9        | 3.8        | 4.3        |            | 4.1        | 3.7        | 4.12       | 3.88       | 3.26       | 3.61       | 3.08       | 2.97       |
| Fluoride                  | mg/L  | 0.168 J    | 0.176 J    | 0.18       | 0.17       | 0.18       | 0.18       | 0.18       | 0.17       | 0.17       | 0.17       | 0.18       | 0.17       | 0.153      | 0.161      | 0.141      | 0.16       | 0.161      | 0.202      |
| pH_Field                  | рН    |            |            |            |            |            |            |            |            |            | 6.45       |            |            | 6.44       | 6.16       | 6.37       | 6.43       | 6.47       | 6.24       |
| Sulfate                   | mg/L  | 1220       | 1160       | 1300       | 1300       | 1200       | 1200       | 1200       | 1300       | 1200       |            | 1700       | 1200       | 1490       | 1490       | 1270       | 1270       | 1330       | 1290       |
| TDS                       | mg/L  | 2130       | 2270       | 2380       | 2340       | 2340       | 2440       | 2330       | 2380       | 2400       |            | 2340       | 2420       | 2350       | 2460       | 2360       | 2360       | 2480       | 2340       |
| Appendix IV               |       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Antimony                  | mg/L  | <0.0006    | < 0.0006   | < 0.0006   | < 0.0006   | < 0.0006   | < 0.0006   | < 0.0006   | < 0.0006   |            | < 0.0006   | <0.0006    | < 0.0008   | < 0.0008   | <0.0008    | < 0.0008   | < 0.0008   | <0.00050   | <0.00050   |
| Arsenic                   | mg/L  | 0.00244 J  | 0.00422 J  | 0.00454 J  | 0.00399 J  | 0.00325 J  | 0.00323 J  | 0.00327 J  | 0.00315 J  |            | 0.00275 J  | 0.00343 J  | 0.00301 J  | 0.00362 J  | 0.00372 J  | 0.00333 J  | 0.00275 J  | 0.00257    | 0.00257    |
| Barium                    | mg/L  | 0.0124     | 0.0135     | 0.0134     | 0.0141     | 0.0126     | 0.0133     | 0.0133     | 0.0124     |            | 0.0137     | 0.0136     | 0.0128     | 0.011      | 0.014      | 0.0131     | 0.0128     | 0.0127     | 0.0132     |
| Beryllium                 | mg/L  | <0.0006    | < 0.0006   | < 0.0006   | < 0.0006   | < 0.0006   | < 0.0006   | <0.0006    | < 0.0006   |            | < 0.0006   | <0.0006    | < 0.0006   | <0.0006    | <0.0006    | < 0.0006   | < 0.0006   | <0.00040   | <0.00040   |
| Cadmium                   | mg/L  | <0.0002    | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   |            | < 0.0003   | <0.0003    | < 0.0003   | < 0.0003   | < 0.0003   | < 0.0003   | < 0.0003   | <6.8e-005  | <6.8e-005  |
| Chromium                  | mg/L  | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.00020   | <0.00020   |
| Cobalt                    | mg/L  | 0.00779 J  | 0.0093 J   | 0.00923 J  | 0.00981 J  | 0.00954 J  | 0.00979 J  | 0.00919 J  | 0.00786 J  |            | 0.00965 J  | 0.0092 J   | 0.0117     | 0.00943    | 0.0111     | 0.00859    | 0.00979    | 0.01       | 0.00887    |
| Combined Radium 226 + 228 | pCi/L | 0.35 U     | 0.231 U    | 0.241 U    | 0.964 U    | 0.858 U    | -0.0572 U  | 0.558 U    | 0.783 U    |            | 0.621      | 2.13       | 0.292 U    | 0.53       | 0.748 U    | 0.391 U    | 0.565      | 0.546 U    | 0.485 U    |
| Lead                      | mg/L  | <0.001     | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    |            | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | <6.8e-005  | <6.8e-005  |
| Lithium                   | mg/L  | 0.018 J    | 0.0191 J   | 0.0174 J   | 0.0164 J   | 0.0167 J   | 0.0165 J   | 0.0176 J   | 0.0164 J   |            | 0.0168 J   | 0.0171 J   | 0.0174 J   | < 0.0203   | 0.0194 J   | 0.019 J    | 0.0182 J   | 0.02       | 0.0179 J   |
| Mercury                   | mg/L  | <0.00025   | <0.00025   | <0.00025   | <0.00025   | < 0.00025  | <0.00025   | <0.00025   | <0.00025   |            | <0.00025   | <0.00025   | <0.00025   | < 0.0003   | < 0.0003   | <0.0003    | < 0.0003   | < 0.0003   | <0.0003    |
| Molybdenum                | mg/L  | <0.002     | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.002     | <0.002     |            | < 0.002    | <0.002     | < 0.002    | <0.002     | <0.002     | < 0.002    | < 0.002    | 0.000486   | 0.000426   |
| Selenium                  | mg/L  | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.00050   | <0.00050   |
| Thallium                  | mg/L  | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    |            | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <6.8e-005  | <6.8e-005  |

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. J Result is an estimated value
- 4. "<MDL" or "U" indicates non-detect



# Historical Groundwater Analytical Data Gorgas Gypsum Landfill 2016-Present

|                           | Wells |            |            |            |            |            |            |            |            | MV         | V-18       |            |            |            |            |            |            |            |               |
|---------------------------|-------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---------------|
| Analytes                  | Date  | 04/26/2016 | 06/22/2016 | 10/12/2017 | 10/13/2017 | 10/14/2017 | 10/15/2017 | 10/16/2017 | 10/17/2017 | 11/15/2017 | 02/14/2018 | 05/22/2018 | 11/19/2018 | 05/15/2019 | 10/08/2019 | 04/08/2020 | 07/14/2020 | 02/23/2021 | 07/21/2021    |
| Appendix III              |       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |               |
| Boron                     | mg/L  | 0.0408 J   | 0.0369 J   | 0.0351 J   | 0.0357 J   | 0.0333 J   | 0.0325 J   | 0.0295 J   | 0.033 J    | 0.0313 J   |            | 0.0331 J   | 0.039 J    | <0.0609    | 0.038 J    | 0.0353 J   | 0.0421 J   | 0.0343 J   | 0.0318 J      |
| Calcium                   | mg/L  | 319        | 354        | 340        | 326        | 345        | 327        | 325        | 341        | 318        |            | 364        | 356        | 337        | 312        | 283        | 316        | 284        | 289           |
| Chloride                  | mg/L  | 1.45       | 1.64       | 1.8 J      | 2.3        | 1 J        | 1.3 J      | 1 J        | 2          | 3.6        |            | 2.1        | <1.4       | 1.61       | 1.48       | 1.43       | 1.48       | 1.34       | 1.4           |
| Fluoride                  | mg/L  | 0.329      | 0.303      | 0.31       | 0.32       | 0.32       | 0.32       | 0.31       | 0.31       | 0.31       | 0.3        | 0.31       | 0.3        | 0.27       | 0.284      | 0.305      | 0.28       | 0.29       | 0.348         |
| pH_Field                  | рН    |            |            |            |            |            |            |            |            |            | 6.53       |            |            | 6.48       | 6.43       | 6.57       | 6.36       | 6.47       | 6.33          |
| Sulfate                   | mg/L  | 1960       | 1950       | 2000       | 1900       | 1800       | 1800       | 1900       | 1800       | 1900       |            | 2000       | 1800       | 1800       | 1900       | 1750       | 1690       | 1560       | 1650          |
| TDS                       | mg/L  | 3130       | 3120       | 3290       | 3140       | 3150       | 3210       | 2610       | 3180       | 3170       |            | 2960       | 3260       | 2860       | 2860       | 2670       | 2890       | 2570       | 2620          |
| Appendix IV               |       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |               |
| Antimony                  | mg/L  | <0.0006    | < 0.0006   | < 0.0006   | < 0.0006   | < 0.0006   | < 0.0006   | < 0.0006   | <0.0006    |            | <0.0006    | <0.0006    | <0.0008    | < 0.0008   | <0.0008    | <0.0008    | < 0.0008   | <0.00050   | <0.00050      |
| Arsenic                   | mg/L  | <0.001     | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    |            | < 0.001    | < 0.001    | < 0.001    | < 0.001    | <0.001     | < 0.001    | < 0.001    | <6.8e-005  | <6.8e-005     |
| Barium                    | mg/L  | 0.00912 J  | 0.00941 J  | 0.0102     | 0.0104     | 0.00927 J  | 0.00964 J  | 0.00907 J  | 0.0087 J   |            | 0.0161     | 0.0113     | 0.0104     | 0.00875 J  | 0.00971 J  | 0.00976 J  | 0.0102     | 0.0103     | 0.0105        |
| Beryllium                 | mg/L  | <0.0006    | < 0.0006   | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    |            | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.00040   | <0.00040      |
| Cadmium                   | mg/L  | <0.0002    | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   |            | < 0.0003   | <0.0003    | <0.0003    | <0.0003    | <0.0003    | <0.0003    | < 0.0003   | <6.8e-005  | <6.8e-005     |
| Chromium                  | mg/L  | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.00020   | <0.00020      |
| Cobalt                    | mg/L  | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | 0.00286 J  | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <6.8e-005  | <6.8e-005     |
| Combined Radium 226 + 228 | pCi/L | -0.105 U   | 0.109 U    | 0.0572 U   | 0.433 U    | 1.59 U     | -0.0872 U  | 0.267 U    | 0.427 U    |            | 1.15       | 0.34 U     | 0.274 U    | 0.287 U    | -0.169 U   | 0.456 U    | 0.205 U    | 0.748 U    | 0.389 U       |
| Lead                      | mg/L  | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    |            | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | <6.8e-005  | <6.8e-005     |
| Lithium                   | mg/L  | 0.0589     | 0.0647     | 0.0601     | 0.0614     | 0.0581     | 0.0592     | 0.0542     | 0.0618     |            | 0.055      | 0.0604     | 0.0586     | 0.0593     | 0.0658     | 0.0633     | 0.0686     | 0.0627     | 0.0574        |
| Mercury                   | mg/L  | <0.00025   | < 0.00025  | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   |            | <0.00025   | <0.00025   | <0.00025   | <0.0003    | <0.0003    | <0.0003    | <0.0003    | <0.0003    | <0.0003       |
| Molybdenum                | mg/L  | <0.002     | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.002     | < 0.002    | < 0.002    | 0.00012 J  | 0.000103<br>J |
| Selenium                  | mg/L  | 0.00263 J  | < 0.002    | 0.00268 J  | 0.00267 J  | 0.00295 J  | 0.00349 J  | 0.0027 J   | 0.00404 J  |            | < 0.002    | 0.00278 J  | < 0.002    | 0.0028 J   | 0.00279 J  | 0.00387 J  | 0.00243 J  | 0.0031     | 0.00294       |
| Thallium                  | mg/L  | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    |            | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <6.8e-005  | <6.8e-005     |

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. J Result is an estimated value
- 4. "<MDL" or "U" indicates non-detect



# Historical Groundwater Analytical Data Gorgas Gypsum Landfill 2016-Present

|                           | Wells |            |            |            |            |            |            |            |            | MV         | V-19       |            |            |            |            |            |            |               |               |
|---------------------------|-------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---------------|---------------|
| Analytes                  | Date  | 04/26/2016 | 06/22/2016 | 10/12/2017 | 10/13/2017 | 10/14/2017 | 10/15/2017 | 10/16/2017 | 10/17/2017 | 11/15/2017 | 02/14/2018 | 05/22/2018 | 11/20/2018 | 05/15/2019 | 10/08/2019 | 04/08/2020 | 07/15/2020 | 02/24/2021    | 07/21/2021    |
| Appendix III              |       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |               |               |
| Boron                     | mg/L  | 0.0367 J   | 0.039 J    | 0.039 J    | 0.0384 J   | 0.0372 J   | 0.0354 J   | 0.0373 J   | 0.0367 J   | 0.0348 J   |            | 0.0362 J   | 0.0421 J   | <0.0609    | 0.0413 J   | 0.0373 J   | 0.0412 J   | 0.0393 J      | 0.035 J       |
| Calcium                   | mg/L  | 342        | 365        | 373        | 381        | 399        | 375        | 381        | 386        | 371        |            | 325        | 325        | 372        | 357        | 288        | 315        | 332           | 332           |
| Chloride                  | mg/L  | 1.76       | 2.19       | 2.9        | 2.6        | 1.8 J      | 2          | 2.4        | 2.5        | 2.9        |            | 2.9        | 1.8 J      | 2.22       | 2.13       | 1.63       | 1.71       | 2.02          | 1.74          |
| Fluoride                  | mg/L  | 0.332      | 0.334      | 0.34       | 0.34       | 0.34       | 0.34       | 0.35       | 0.33       | 0.34       | 0.28       | 0.29       | 0.28       | 0.277      | 0.345      | 0.304      | 0.342      | 0.343         | 0.429         |
| pH_Field                  | рН    |            |            |            |            |            |            |            |            |            | 6.18       |            |            | 6.21       | 6.19       | 6.26       | 6.28       | 6.26          | 6.23          |
| Sulfate                   | mg/L  | 2200       | 2230       | 2300       | 2200       | 2300       | 2200       | 2000       | 2300       | 2100       |            | 2300       | 1700       | 1900       | 2380       | 1890       | 1770       | 1970          | 1990          |
| TDS                       | mg/L  | 3350       | 3090       | 3720       | 3890       | 3800       | 3800       | 3770       | 3780       | 3710       |            | 2700       | 2580       | 2990       | 3300       | 2710       | 3030       | 3070          | 3130          |
| Appendix IV               |       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |               |               |
| Antimony                  | mg/L  | <0.0006    | < 0.0006   | < 0.0006   | <0.0006    | <0.0006    | < 0.0006   | < 0.0006   | < 0.0006   |            | <0.0006    | <0.0006    | < 0.0008   | <0.0008    | < 0.0008   | < 0.0008   | <0.0008    | <0.00050<br>7 | <0.00050      |
| Arsenic                   | mg/L  | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    |            | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | 0.000212      | 0.000176<br>J |
| Barium                    | mg/L  | 0.00969 J  | 0.00917 J  | 0.0106     | 0.0113     | 0.01       | 0.0105     | 0.00993 J  | 0.00943 J  |            | 0.01       | 0.0118     | 0.00942 J  | 0.00909 J  | 0.0106     | 0.00979 J  | 0.0102     | 0.00981       | 0.01          |
| Beryllium                 | mg/L  | <0.0006    | < 0.0006   | < 0.0006   | < 0.0006   | < 0.0006   | < 0.0006   | < 0.0006   | < 0.0006   | -          | <0.0006    | < 0.0006   | < 0.0006   | < 0.0006   | < 0.0006   | <0.0006    | <0.0006    | <0.00040      | <0.00040<br>6 |
| Cadmium                   | mg/L  | <0.0002    | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | -          | <0.0003    | < 0.0003   | < 0.0003   | < 0.0003   | < 0.0003   | <0.0003    | <0.0003    | <6.8e-005     | <6.8e-005     |
| Chromium                  | mg/L  | <0.002     | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.00020      | <0.00020      |
| Cobalt                    | mg/L  | 0.0717     | 0.0844     | 0.173      | 0.171      | 0.168      | 0.166      | 0.15       | 0.13       | -          | 0.0741     | 0.077      | 0.071      | 0.0454     | 0.0545     | 0.0257     | 0.0299     | 0.0382        | 0.0293        |
| Combined Radium 226 + 228 | pCi/L | 0.415 U    | 0.536      | 0.188 U    | 0.561 U    | 0.754 U    | 1.06 U     | 0.6 U      | 0.521 U    |            | 1.08       | 0.384 U    | 0.302 U    | 0.286 U    | 0.616 U    | 0.502 U    | 0.371 U    | 0.82 U        | 0.629 U       |
| Lead                      | mg/L  | <0.001     | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    |            | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | <0.001     | <6.8e-005     | <6.8e-005     |
| Lithium                   | mg/L  | 0.0702     | 0.0761     | 0.0863     | 0.0853     | 0.087      | 0.084      | 0.09       | 0.0826     |            | 0.0569     | 0.0543     | 0.0526     | 0.059      | 0.0698     | 0.0657     | 0.0714     | 0.0739        | 0.0617        |
| Mercury                   | mg/L  | <0.00025   | <0.00025   | < 0.00025  | <0.00025   | <0.00025   | <0.00025   | < 0.00025  | <0.00025   |            | <0.00025   | <0.00025   | < 0.00025  | <0.0003    | < 0.0003   | < 0.0003   | <0.0003    | <0.0003       | <0.0003       |
| Molybdenum                | mg/L  | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.002     | <0.002     | 0.000197<br>J | 0.000214      |
| Selenium                  | mg/L  | <0.002     | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | <0.002     | <0.00050      | <0.00050      |
| Thallium                  | mg/L  | <0.0002    | <0.0002    | <0.0002    | < 0.0002   | < 0.0002   | <0.0002    | <0.0002    | <0.0002    |            | <0.0002    | < 0.0002   | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <0.0002    | <6.8e-005     | <6.8e-005     |

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. J Result is an estimated value
- 4. "<MDL" or "U" indicates non-detect



|                              | Wells   |            |            |            |            |            |            |            |            | MV         | V-20       |            |            |            |            |            |            |            |            |            |            |            |              | MW-17R     |            |            |               |                |
|------------------------------|---------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|------------|------------|------------|---------------|----------------|
| Analytes                     | Date    | 04/26/2016 | 06/22/2016 | 10/12/2017 | 10/13/2017 | 10/14/2017 | 10/15/2017 | 10/16/2017 | 10/17/2017 | 11/15/2017 | 02/14/2018 | 05/22/2018 | 11/20/2018 | 05/15/2019 | 10/10/2019 | 04/08/2020 | 07/15/2020 | 02/23/2021 | 07/21/2021 | 02/15/2018 | 05/22/2018 | 11/19/2018 | 8 05/14/2019 | 10/08/2019 | 04/07/2020 | 07/14/2020 | 02/23/2021    | 07/21/2021     |
| Appendix III                 |         |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |            |            |            |               |                |
| Boron                        | mg/L    | 0.105      | 0.107      | 0.105      | 0.106      | 0.106      | 0.107      | 0.111      | 0.107      | 0.101      |            | 0.105      | 0.114      | 0.103 J    | 0.115      | 0.104      | 0.114      | 0.11       | 0.0999 J   |            | 0.0472 J   |            | <0.0609      | 0.0907 J   | 0.0561 J   | 0.0618 J   | 0.0536 J      | 0.0549 J       |
| Calcium                      | mg/L    | 368        | 386        | 353        | 354        | 346        | 353        | 347        | 337        | 334        |            | 398        | 349        | 381        | 407        | 345        | 342        | 343        | 336        |            | 378        |            | 402          | 392        | 385        | 399        | 389           | 380            |
| Chloride                     | mg/L    | 2.66       | 2.68       | 5.6        | 5          | 4.4        | 4.8        | 4.9        | 5.1        | 6.3        |            | 24         | 43         | 57.7       | 66.1       | 62.7       | 68.4       | 129        | 67.9       |            | 3          |            | 3.23         | 3.14       | 2.55       | 2.42       | 2.36          | 2.38           |
| Fluoride                     | mg/L    | 0.115 J    | 0.126 J    | 0.12       | 0.13       | 0.13       | 0.14       | 0.13       | 0.13       | 0.13       | 0.12       | 0.13       | 0.12       | 0.12       | 0.103      | 0.107      | 0.11       | 0.117      | 0.143      | 0.15       | 0.17       |            | 0.152        | 0.169      | 0.137      | 0.134      | 0.154         | 0.183          |
| pH_Field                     | рН      |            |            |            |            |            |            |            |            |            | 6.84       |            |            | 6.76       | 6.78       | 6.81       | 6.87       | 6.75       | 6.6        | 6          |            |            | 6.02         | 5.89       | 5.92       | 5.91       | 5.91          | 5.79           |
| Sulfate                      | mg/L    | 1650       | 1680       | 1600       | 1600       | 1500       | 1500       | 1400       | 1500       | 1500       |            | 2000       | 1500       | 1560       | 1700       | 1530       | 1480       | 1420       | 1480       |            | 2300       |            | 2640         | 2750       | 2450       | 2360       | 2380          | 2450           |
| TDS                          | mg/L    | 2690       | 2500       | 2670       | 2640       | 2590       | 2700       | 2670       | 2570       | 2600       |            | 2540       | 2420       | 2600       | 2580       | 2480       | 2480       | 2460       | 2320       |            | 3660       |            | 3710         | 4030       | 3820       | 3830       | 3930          | 3860           |
| Appendix IV                  |         |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |            |            |            |               |                |
| Antimony                     | mg/L    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | <0.0006    | < 0.0006   | <0.0006    | <0.0006    |            | <0.0006    | <0.0006    | <0.0008    | <0.0008    | <0.0008    | <0.0008    | <0.0008    | <0.00050   | <0.00050   | <0.0006    | <0.0006    |            | <0.0008      | <0.0008    | <0.0008    | <0.0008    | <0.00050      | <0.00050       |
| Arsenic                      | mg/L    | < 0.001    | < 0.001    | < 0.001    | <0.001     | < 0.001    | < 0.001    | < 0.001    | < 0.001    |            | < 0.001    | < 0.001    | < 0.001    | <0.001     | < 0.001    | 0.00129 J  | <0.001     | 0.000849   | 0.000835   | 0.00337 J  | 0.00267 J  |            | 0.0021 J     | 0.00224 J  | 0.00173 J  | 0.00195 J  | 0.0019        | 0.00196        |
| Barium                       | mg/L    | 0.0146     | 0.0148     | 0.0162     | 0.0161     | 0.0153     | 0.0156     | 0.0156     | 0.0147     |            | 0.0154     | 0.0164     | 0.0145     | 0.0141     | 0.0173     | 0.019      | 0.0173     | 0.0167     | 0.016      | 0.0203     | 0.02       |            | 0.013        | 0.0171     | 0.0149     | 0.0143     | 0.013         | 0.014          |
| Beryllium                    | mg/L    | < 0.0006   | < 0.0006   | <0.0006    | <0.0006    | <0.0006    | <0.0006    | < 0.0006   | <0.0006    |            | < 0.0006   | <0.0006    | <0.0006    | <0.0006    | < 0.0006   | < 0.0006   | <0.0006    | <0.00040   | <0.00040   | <0.0006    | <0.0006    |            | <0.0006      | <0.0006    | <0.0006    | <0.0006    | <0.00040      | <0.00040       |
| Cadmium                      | mg/L    | < 0.0002   | < 0.0002   | < 0.0002   | <0.0002    | < 0.0002   | < 0.0002   | < 0.0002   | <0.0002    |            | < 0.0003   | < 0.0003   | < 0.0003   | <0.0003    | < 0.0003   | < 0.0003   | <0.0003    | <6.8e-005  | <6.8e-005  | <0.0003    | <0.0003    |            | <0.0003      | < 0.0003   | <0.0003    | <0.0003    | <6.8e-005     | <6.8e-005      |
| Chromium                     | mg/L    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | 0.00312 J  | < 0.002    | <0.00020   | <0.00020   | < 0.002    | <0.002     |            | < 0.002      | < 0.002    | < 0.002    | < 0.002    | <0.00020      | 0.00036 J      |
| Cobalt                       | mg/L    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | 0.000234   | 0.000231   | 0.199      | 0.146      |            | 0.461        | 0.743      | 0.279      | 0.273      | 0.385         | 0.329          |
| Combined Radium<br>226 + 228 | n pCi/L | 0.967      | 0.595      | 0.646 U    | 1.25 U     | 1.16 U     | 0.935 U    | 0.929 U    | 0.736 U    |            | 1.47       | 0.581      | 0.65       | 0.418      | 1.18       | 0.7        | 0.96       | 1.19 U     | 1.48       | 1.13       | 0.584      | 0.647      | 0.889        | 0.587 U    | 0.933      | 0.717      | 0.44 U        | 0.72 U         |
| Lead                         | mg/L    | < 0.001    | < 0.001    | < 0.001    | <0.001     | < 0.001    | < 0.001    | < 0.001    | < 0.001    |            | < 0.001    | < 0.001    | < 0.001    | < 0.001    | < 0.001    | 0.00686    | <0.001     | <6.8e-005  | <6.8e-005  | <0.001     | < 0.001    |            | < 0.001      | < 0.001    | < 0.001    | <0.001     | <6.8e-005     | 9.22e-005<br>J |
| Lithium                      | mg/L    | 0.256      | 0.271      | 0.259      | 0.253      | 0.265      | 0.262      | 0.278      | 0.26       |            | 0.256      | 0.262      | 0.253      | 0.241      | 0.264      | 0.238      | 0.256      | 0.27       | 0.239      | 0.0335 J   | 0.0466 J   |            | 0.0456       | 0.0481     | 0.0547     | 0.0532     | 0.0569        | 0.0504         |
| Mercury                      | mg/L    | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   | <0.00025   |            | <0.00025   | <0.00025   | <0.00025   | <0.0003    | <0.0003    | <0.0003    | <0.0003    | < 0.0003   | <0.0003    | <0.00025   | <0.00025   |            | < 0.0003     | <0.0003    | <0.0003    | <0.0003    | <0.0003       | <0.0003        |
| Molybdenum                   | mg/L    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | 0.00108    | 0.00101    | <0.002     | < 0.002    |            | < 0.002      | < 0.002    | < 0.002    | < 0.002    | 0.000159<br>J | 0.000172<br>J  |
| Selenium                     | mg/L    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    | < 0.002    |            | < 0.002    | < 0.002    | < 0.002    | <0.002     | < 0.002    | < 0.002    | <0.002     | <0.00050   | <0.00050   | <0.002     | <0.002     |            | < 0.002      | < 0.002    | < 0.002    | < 0.002    | 0.000778<br>J | 0.000666<br>J  |
| Thallium                     | mg/L    | <0.0002    | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | <0.0002    |            | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | < 0.0002   | <0.0002    | <0.0002    | <6.8e-005  | <6.8e-005  | <0.0002    | <0.0002    |            | <0.0002      | <0.0002    | < 0.0002   | < 0.0002   | <6.8e-005     | <6.8e-005      |

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. J Result is an estimated value
- 4. "<MDL" or "U" indicates non-detect

# Appendix B

### Appendix B Historical Groundwater Elevations Summary

| Well Name | Top of Casing |           |           |          |           |            |           |           | er Elevation      |           |            |            |            |            |            |
|-----------|---------------|-----------|-----------|----------|-----------|------------|-----------|-----------|-------------------|-----------|------------|------------|------------|------------|------------|
|           | Elevation     | 4/25/2016 | 6/20/2016 | 8/8/2016 | 10/3/2016 | 11/21/2016 | 1/17/2017 | 3/20/2017 | MSL)<br>4/10/2017 | 5/30/2017 | 8/23/20107 | 10/12/2017 | 10/13/2017 | 10/14/2017 | 10/15/2017 |
| MW-1      | 502.25        | 411.22    | 410.70    | 410.49   | 410.31    | 410.10     | 410.07    | 410.67    | 410.89            | 410.80    | 411.06     | 410.70     | 410.72     | 410.68     | 410.73     |
| MW-2      | 502.12        | 417.36    | 416.76    | 416.60   | 416.21    | 415.98     | 416.62    | 417.24    | 417.66            | 416.94    | 417.02     | 416.50     | 416.54     | 416.49     | 416.53     |
| MW-3      | 525.90        | 416.41    | 415.45    | 415.00   | 414.82    | 414.43     | 415.27    | 416.07    | 418.23            | 415.53    | 415.73     | 415.10     | 415.14     | 415.15     | 415.17     |
| MW-4      | 518.63        | 402.31    | 401.79    | 400.61   | 400.09    | 399.53     | 400.51    | 402.02    | 402.50            | 401.68    | 401.77     | 400.79     | 400.76     | 400.67     | 400.67     |
| MW-13     | 445.04        | 350.84    | 350.84    | 350.33   | 350.05    | 349.64     | 350.55    | 350.70    | 350.87            | 350.73    | 350.71     | 350.93     | 350.91     | 350.88     | 350.84     |
| MW-14     | 429.90        | 340.76    | 340.53    | 340.38   | 340.25    | 340.13     | 340.23    | 340.23    | 340.77            | 340.55    | 340.59     | 340.52     | 340.51     | 340.48     | 340.47     |
| MW-15     | 406.05        | 338.71    | 338.53    | 338.53   | 338.47    | 338.42     | 338.58    | 338.75    | 338.90            | 338.78    | 338.91     | 338.80     | 338.81     | 338.81     | 338.82     |
| MW-16     | 414.57        | 324.58    | 323.12    | 322.75   | 322.60    | 322.32     | 323.20    | 323.22    | 324.13            | 323.13    | 323.05     | 323.16     | 323.17     | 323.13     | 323.13     |
| MW-17R    | 434.57        |           |           | -        |           |            |           |           | -                 |           |            | -          |            |            |            |
| MW-18     | 414.42        | 303.25    | 302.37    | 300.92   | 301.21    | 300.30     | 299.55    | 300.38    | 300.66            | 300.59    | 301.60     | 300.21     | 300.18     | 300.14     | 300.12     |
| MW-19     | 377.32        | 297.31    | 296.28    | 295.87   | 295.15    | 294.47     | 294.51    | 294.83    | 295.84            | 294.68    | 295.01     | 294.51     | 294.51     | 294.48     | 294.47     |
| MW-20     | 332.89        | 308.89    | 306.64    | 305.93   | 304.05    | 302.22     | 303.14    | 304.65    | 307.21            | 305.62    | 307.98     | 308.21     | 309.50     | 309.52     | 309.54     |

Notes:

1. ft. AMSL - feet above mean sea level

2. -- Not Measured

### Appendix B Historical Groundwater Elevations Summary

| Well Name | Top of Casing<br>Elevation |            |            |            |           |          |           |            | vater Elevatio | n         |           |           |          |           |           |           |
|-----------|----------------------------|------------|------------|------------|-----------|----------|-----------|------------|----------------|-----------|-----------|-----------|----------|-----------|-----------|-----------|
|           |                            | 10/16/2017 | 10/17/2017 | 11/15/2017 | 2/12/2018 | 4/9/2018 | 5/21/2018 | 10/29/2018 | 11/19/2018     | 3/13/2019 | 5/13/2019 | 10/7/2019 | 4/6/2020 | 7/13/2020 | 2/22/2021 | 7/12/2021 |
| MW-1      | 502.25                     | 410.68     | 410.65     | 410.66     | 410.89    | 411.35   | 411.47    | 410.62     | 410.80         | 412.11    | 411.77    | 410.79    | 412.16   | 411.22    | 411.59    | 411.54    |
| MW-2      | 502.12                     | 416.50     | 416.51     | 416.74     | 419.29    | 417.32   | 417.33    | 416.30     | 417.67         | 417.70    | 417.64    | 416.63    | 417.81   | 416.93    | 418.50    | 417.75    |
| MW-3      | 525.90                     | 415.13     | 415.12     | 415.41     | 418.49    | 416.25   | 416.28    | 414.85     | 416.31         | 418.31    | 416.40    | 415.17    | 417.64   | 415.34    | 419.94    | 421.54    |
| MW-4      | 518.63                     | 400.59     | 400.62     | 400.60     | 402.67    | 402.22   | 402.24    | 400.18     | 402.08         | 402.68    | 402.43    | 400.33    | 402.59   | 401.42    | 402.82    | 402.30    |
| MW-13     | 445.04                     | 350.85     | 350.94     | 350.68     | 351.53    | 350.92   | 350.63    | 350.53     | 350.92         | 350.90    | 351.08    | 350.86    | 335.80   | 350.50    | 351.32    | 350.86    |
| MW-14     | 429.90                     | 340.52     | 340.50     | 340.43     | 340.91    | 340.69   | 340.73    | 340.40     | 340.76         | 340.84    | 340.10    | 340.38    | 340.80   | 340.67    | 340.86    | 340.84    |
| MW-15     | 406.05                     | 338.84     | 338.82     | 338.83     | 339.32    | 339.13   | 339.09    | 338.72     | 339.13         | 339.32    | 339.14    | 338.86    | 339.61   | 339.18    | 339.63    | 339.28    |
| MW-16     | 414.57                     | 323.30     | 323.15     | 323.09     | 325.28    | 323.32   | 323.36    | 322.57     | 324.16         | 324.21    | 323.98    | 322.73    | 304.01   | 322.99    | 324.57    | 323.43    |
| MW-17R    | 434.57                     |            | -          | -          | 306.55    | 308.47   | 308.91    | 306.78     | 306.63         | 309.23    | 308.94    | 307.64    | 309.00   | 308.24    | 308.68    | 308.59    |
| MW-18     | 414.42                     | 300.07     | 300.08     | 299.64     | 298.97    | 301.31   | 302.38    | 298.89     | 298.77         | 304.14    | 303.40    | 301.80    | 303.79   | 302.62    | 303.18    | 303.00    |
| MW-19     | 377.32                     | 294.47     | 294.47     | 294.35     | 296.23    | 295.40   | 295.88    | 293.85     | 295.84         | 299.07    | 298.02    | 295.86    | 298.88   | 297.19    | 298.70    | 298.00    |
| MW-20     | 332.89                     | 309.58     | 309.55     | 309.68     | 311.21    | 310.29   | 310.83    | 309.37     | 311.61         | 313.63    | 313.31    | 310.30    | 312.15   | 310.70    | 313.60    | 312.81    |

Notes:

1. ft. AMSL - feet above mean sea level

2. -- Not Measured

# Appendix C

# 1st Semi-Annual Monitoring Event

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

#### Field Case Narrative



### **Plant Gorgas Pooled Upgradient Wells**

#### 2021 Compliance Event 1

All samples were collected using methods defined in Alabama Power's Water Field Group Low-Flow Groundwater Sampling Procedure and the associated site-specific Sampling and Analysis Plan (SAP).

Field quality control procedures were performed as follows:

- Blanks and Sample Duplicates were collected as described in the SAP.
- Calibration verifications for all required field parameters were performed daily, before and after sample collection.

## Analytical Report



Sample Group: WMWGORPU\_1308

Project/Site: Gorgas Pooled Upgradient

Parrish, AL 35580

For: Southern Company Services

3535 Colonnade Parkway Birmingham, AL 35243

Attention: Dustin Brooks & Greg Dyer

Released By: Laura Midkiff

lbmidkif@southernco.com

(205) 664-6197



Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040 (205) 664-6001

March 24, 2021

Dear Dustin Brooks,

Enclosed are the analytical results for sample(s) received by the laboratory on February 23, 2021. All results reported herein conform to the laboratory's most current Quality Assurance Manual. Results marked with an asterisk conform to the most current applicable TNI/NELAC requirements. Exceptions will be noted in the body of the report.

Laboratory certification ID: E571114

Issued By: State of Florida, Department of Health

Expiration: June 30, 2021

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Quality Control: Laura Midkiff October Structure Structu

T. Durant Supervision:

Maske

Date: 2021.03.25 14:30:30 -05'00'





This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.



Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **Total Metals ICP**

### Gorgas Pooled Upgradient

### WMWGORPU 1308

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB03928   | 693672   | WMWGORPU_1308 |
| BB03929   | 693672   | WMWGORPU_1308 |
| BB03930   | 693672   | WMWGORPU_1308 |
| BB03931   | 693672   | WMWGORPU_1308 |
| BB03932   | 693672   | WMWGORPU_1308 |
| BB03933   | 693672   | WMWGORPU_1308 |
| BB03934   | 693672   | WMWGORPU_1308 |

- 4. All of the above samples were analyzed by EPA 200.7 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- All calibration curve requirements were within acceptance criteria.
- All sample internal standard criteria were met.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



• It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u>             | <b>Dilution factor</b> |
|-----------|----------------------------|------------------------|
| BB03928   | Calcium, Magnesium         | 20.3                   |
| BB03929   | Calcium, Magnesium         | 20.3                   |
| BB03930   | Calcium, Magnesium         | 20.3                   |
| BB03931   | Calcium, Magnesium, Sodium | 50.75                  |
| BB03933   | Calcium, Magnesium         | 20.3                   |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **Dissolved Metals ICP**

#### Gorgas Pooled Upgradient

### WMWGORPU 1308

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB03928   | 693642   | WMWGORPU_1308 |
| BB03929   | 693642   | WMWGORPU_1308 |
| BB03930   | 693642   | WMWGORPU_1308 |
| BB03931   | 693642   | WMWGORPU_1308 |
| BB03933   | 693642   | WMWGORPU_1308 |

- 4. All of the above samples were analyzed and prepared by EPA 200.7 for dissolved analysis.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- Due to no filtered method blank (MB) or laboratory control sample (LCS) submitted with the sample set, an unfiltered MB and LCS were analyzed with the samples in each batch.
- All laboratory control sample criteria were met.
- The method blank associated with each batch passed all acceptance criteria for all requested analytes.
- All calibration curve requirements were within acceptance criteria.
- All sample internal standard criteria were met.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were analyzed with each ICP batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were analyzed with each ICP batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution factor.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **Total Metals ICPMS**

### **Gorgas Pooled Upgradient**

### WMWGORPU 1308

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB03928   | 693232   | WMWGORPU_1308 |
| BB03929   | 693232   | WMWGORPU_1308 |
| BB03930   | 693232   | WMWGORPU_1308 |
| BB03931   | 693232   | WMWGORPU_1308 |
| BB03932   | 693232   | WMWGORPU_1308 |
| BB03933   | 693232   | WMWGORPU_1308 |
| BB03934   | 693232   | WMWGORPU_1308 |

- 4. All of the above samples were analyzed by EPA 200.8 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u> | <u>Dilution factor</u> |
|-----------|----------------|------------------------|
| BB03928   | Manganese      | 10.15                  |
| BB03929   | Manganese      | 10.15                  |
| BB03930   | Manganese      | 5.075                  |
| BB03931   | Manganese      | 5.075                  |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **Dissolved Metals ICPMS**

#### Gorgas Pooled Upgradient

### WMWGORPU 1308

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB03928   | 693188   | WMWGORPU_1308 |
| BB03929   | 693188   | WMWGORPU_1308 |
| BB03930   | 693188   | WMWGORPU_1308 |
| BB03931   | 693188   | WMWGORPU_1308 |
| BB03933   | 693188   | WMWGORPU_1308 |

- 4. All of the above samples were analyzed and prepared by EPA 200.8 for dissolved analysis.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- Due to no filtered method blank (MB) or laboratory control sample (LCS) submitted with the sample set, an unfiltered MB and LCS were analyzed with the samples in each batch.
- All laboratory control sample criteria were met.
- The method blank associated with each preparation batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were analyzed with each ICPMS batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were analyzed with each ICPMS batch. All acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| <u>Sample</u> | <u>Analyte</u> | <u>Dilution</u> |
|---------------|----------------|-----------------|
| BB03928       | Manganese      | 10.15           |
| BB03929       | Manganese      | 10.15           |
| BB03930       | Manganese      | 5.075           |
| BB03931       | Manganese      | 5.075           |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### Mercury

### **Gorgas Pooled Upgradient**

### WMWGORPU 1308

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB03928   | 693427   | WMWGORPU_1308 |
| BB03929   | 693427   | WMWGORPU_1308 |
| BB03930   | 693427   | WMWGORPU_1308 |
| BB03931   | 693427   | WMWGORPU_1308 |
| BB03932   | 693427   | WMWGORPU_1308 |
| BB03933   | 693427   | WMWGORPU_1308 |
| BB03934   | 693427   | WMWGORPU_1308 |

- 4. All of the above samples were analyzed and prepared by EPA 245.1.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the method detection limit for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch was below the limit of quantitation for the requested analyte.
- All calibration met criteria for the requested analyte.
- All response signals were satisfactory.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



**TDS** 

### Gorgas Pooled Upgradient

### WMWGORPU 1308

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB03928   | 692991   | WMWGORPU_1308 |
| BB03929   | 692991   | WMWGORPU_1308 |
| BB03930   | 692991   | WMWGORPU_1308 |
| BB03931   | 692991   | WMWGORPU_1308 |
| BB03932   | 692991   | WMWGORPU_1308 |
| BB03933   | 692991   | WMWGORPU_1308 |
| BB03934   | 692991   | WMWGORPU_1308 |

- 4. All of the above samples were analyzed by Standard Method 2540C.
- 5. All samples were analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

- A Method Blank was analyzed with each batch. All criteria were met.
- All final weights of samples, standards, and blanks agreed within 0.5mg of the previous weight.
- A sample duplicate was analyzed with each batch. RPD/2 was less than 5%.
- A laboratory control sample was analyzed with each batch. All criteria were met.
- Samples were between 2.5mg and 200mg residue.
- All samples with residue <2.5mg had the maximum volume of 150mL filtered. Affected samples are as follows:
  - o BB03932
  - o BB03934

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **Anions**

#### Gorgas Pooled Upgradient

### WMWGORPU 1308

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID                 | Project ID    |
|-----------|--------------------------|---------------|
| BB03928   | 693007, 693045, & 692856 | WMWGORPU_1308 |
| BB03929   | 693007, 693045, & 692856 | WMWGORPU_1308 |
| BB03930   | 693007, 693045, & 692856 | WMWGORPU_1308 |
| BB03931   | 693007, 693045, & 692856 | WMWGORPU_1308 |
| BB03932   | 693007, 693045, & 692856 | WMWGORPU_1308 |
| BB03933   | 693007, 693045, & 692856 | WMWGORPU_1308 |
| BB03934   | 693007, 693045, & 692856 | WMWGORPU_1308 |

- 4. All of the above samples were analyzed and prepared by SM4500 Cl E, SM4500 F G, and SM4500 SO4 E.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

- All calibration met criteria for the requested analyte.
- Prior to sample analysis, an initial calibration verification (ICV), and all criteria were met.
- Prior to sample analysis, an initial calibration blank (ICB) was analyzed and was below half the limit of quantitation for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below half the limit of quantitation for the requested analyte.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical
  sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range,
  any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any
  qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of
  review.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike was analyzed with each batch. Acceptance criteria for accuracy were met.
- A sample duplicate was analyzed with each batch. Acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u> | <b>Dilution factor</b> |
|-----------|----------------|------------------------|
| BB03928   | Sulfate        | 50                     |
| BB03929   | Sulfate        | 50                     |
| BB03930   | Sulfate        | 40                     |
| BB03931   | Sulfate        | 80                     |
| BB03933   | Sulfate        | 80                     |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



### Alkalinity

### **Gorgas Pooled Upgradient**

### WMWGORPU 1308

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID       | Project ID    |
|-----------|----------------|---------------|
| BB03928   | 693348, 693349 | WMWGORPU_1308 |
| BB03929   | 693348, 693349 | WMWGORPU_1308 |
| BB03930   | 693348, 693349 | WMWGORPU_1308 |
| BB03931   | 693348, 693349 | WMWGORPU_1308 |
| BB03933   | 693348, 693349 | WMWGORPU_1308 |

- 4. All of the above samples were analyzed by Standard Method 2320B.
- 5. All samples were analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

- An initial pH check was analyzed with each batch. The acceptance criteria were met.
- A final pH check was analyzed with each batch. The acceptance criteria were met.
- An alkalinity laboratory control sample was analyzed with each batch. Range criteria of within 10% of true value was met.
- An alkalinity sample duplicate was analyzed with each batch. Precision criteria less than 10 RPD was met.

# Certificate Of Analysis



Description: Gorgas Pooled Upgradient - MW-1Location Code:WMWGORPUCollected:2/22/21 10:47

Customer ID:

Laboratory ID Number: BB03928 Submittal Date: 2/23/21 09:37

| Name                         | Prepared      | Analyzed      | Vio Spec DF | Results      | Units      | MDL      | RL         | Q |
|------------------------------|---------------|---------------|-------------|--------------|------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Analy         | st: RDA       |             | Preparati    | on Method: | EPA 1638 |            |   |
| * Boron, Total               | 3/11/21 14:53 | 3/12/21 14:3  | 1 1.015     | 0.0307       | mg/L       | 0.030000 | 0.1015     | J |
| * Calcium, Total             | 3/11/21 14:53 | 3/12/21 15:3  | 7 20.3      | 151          | mg/L       | 1.4007   | 8.12       |   |
| * Iron, Total                | 3/11/21 14:53 | 3/12/21 14:3  | 1 1.015     | 0.0280       | mg/L       | 0.008120 | 0.0406     | J |
| * Lithium, Total             | 3/11/21 14:53 | 3/12/21 14:3  | 1 1.015     | 0.0301       | mg/L       | 0.007105 | 0.01999956 | 6 |
| * Magnesium, Total           | 3/11/21 14:53 | 3/12/21 15:3  | 7 20.3      | 279          | mg/L       | 0.4263   | 8.12       |   |
| * Sodium, Total              | 3/11/21 14:53 | 3/12/21 14:3  | 1 1.015     | 38.5         | mg/L       | 0.02030  | 0.406      |   |
| Analytical Method: EPA 200.7 | Analy         | st: RDA       |             |              |            |          |            |   |
| * Iron, Dissolved            | 3/11/21 11:00 | 3/12/21 11:03 | 3 1.015     | Not Detected | mg/L       | 0.008120 | 0.0406     | U |
| Analytical Method: EPA 200.8 | Analy         | st: DLJ       |             | Preparati    | on Method: | EPA 1638 |            |   |
| * Antimony, Total            | 2/23/21 13:40 | 2/25/21 11:0  | 5 1.015     | Not Detected | mg/L       | 0.000507 | 0.001015   | U |
| * Arsenic, Total             | 2/23/21 13:40 | 2/25/21 11:0  | 5 1.015     | 0.000403     | mg/L       | 0.000068 | 0.000203   |   |
| * Barium, Total              | 2/23/21 13:40 | 2/25/21 11:0  | 5 1.015     | 0.0107       | mg/L       | 0.000101 | 0.000203   |   |
| * Beryllium, Total           | 2/23/21 13:40 | 2/25/21 11:0  | 5 1.015     | Not Detected | mg/L       | 0.000406 | 0.001015   | U |
| * Cadmium, Total             | 2/23/21 13:40 | 2/25/21 11:0  | 5 1.015     | 0.00184      | mg/L       | 0.000068 | 0.000203   |   |
| * Chromium, Total            | 2/23/21 13:40 | 2/25/21 11:0  | 5 1.015     | 0.000382     | mg/L       | 0.000203 | 0.001015   | J |
| * Cobalt, Total              | 2/23/21 13:40 | 2/25/21 11:0  | 5 1.015     | 0.0657       | mg/L       | 0.000068 | 0.000203   |   |
| * Lead, Total                | 2/23/21 13:40 | 2/25/21 11:0  | 5 1.015     | Not Detected | mg/L       | 0.000068 | 0.000203   | U |
| * Molybdenum, Total          | 2/23/21 13:40 | 2/25/21 11:0  | 5 1.015     | Not Detected | mg/L       | 0.000068 | 0.000203   | U |
| * Potassium, Total           | 2/23/21 13:40 | 2/25/21 11:0  | 5 1.015     | 7.22         | mg/L       | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 2/23/21 13:40 | 2/26/21 15:3  | 7 10.15     | 9.75         | mg/L       | 0.000680 | 0.00203    |   |
| * Selenium, Total            | 2/23/21 13:40 | 2/25/21 11:0  | 5 1.015     | 0.00241      | mg/L       | 0.000507 | 0.001015   |   |
| * Thallium, Total            | 2/23/21 13:40 | 2/25/21 11:0  | 5 1.015     | Not Detected | mg/L       | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Analy         | st: DLJ       |             |              |            |          |            |   |
| * Manganese, Dissolved       | 2/23/21 14:25 | 2/26/21 15:19 | 9 10.15     | 9.75         | mg/L       | 0.000680 | 0.00203    |   |
| Analytical Method: EPA 245.1 | Analy         | st: ABB       |             |              |            |          |            |   |
| * Mercury, Total by CVAA     | 3/8/21 11:16  | 3/9/21 11:47  | 1           | Not Detected | mg/L       | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B |               | /st: JAG      |             |              |            |          |            |   |
| Alkalinity, Total as CaCO3   | 3/3/21 10:35  | 3/3/21 11:07  | 1           | 22.6         | mg/L       |          | 0.1        |   |
| Analytical Method: SM 2540C  |               | st: TJW       |             |              |            |          |            |   |
| * Solids, Dissolved          | 2/25/21 10:55 |               | 1           | 2230         | mg/L       |          | 125        |   |

MDL's and RL's are adjusted for sample dilution, as applicable

Laboratory ID Number: BB03928

## Certificate Of Analysis



Description: Gorgas Pooled Upgradient - MW-1

**Location Code:** 

**WMWGORPU** 

Collected:

**Customer ID:** 

2/22/21 10:47

Submittal Date:

2/23/21 09:37

| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|-------------|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anai          | lyst: JAG    |             |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 10:35  | 3/3/21 11:07 | 1           | 22.6    | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 10:35  | 3/3/21 11:07 | 1           | 0.00    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Anai          | lyst: JCC    |             |         |       |       |     |    |
| * Chloride                            | 2/25/21 10:30 | 2/25/21 10:3 | 0 1         | 2.16    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Anai          | lyst: JCC    |             |         |       |       |     |    |
| * Fluoride                            | 2/25/21 15:08 | 2/25/21 15:0 | 8 1         | 0.0820  | mg/L  | 0.06  | 0.1 | J  |
| Analytical Method: SM4500SO4 E 2011   | Anai          | yst: JCC     |             |         |       |       |     |    |
| * Sulfate                             | 2/23/21 15:13 | 2/23/21 15:1 | 3 50        | 1400    | mg/L  | 25.00 | 50  |    |
| Analytical Method: Field Measurements | Anai          | lyst: TJD    |             |         |       |       |     |    |
| Conductivity                          | 2/22/21 10:44 | 2/22/21 10:4 | 4           | 2369.76 | uS/cm |       |     | FA |
| рН                                    | 2/22/21 10:44 | 2/22/21 10:4 | 4           | 5.06    | SU    |       |     | FA |
| Temperature                           | 2/22/21 10:44 | 2/22/21 10:4 | 4           | 19.04   | С     |       |     | FA |
| Turbidity                             | 2/22/21 10:44 | 2/22/21 10:4 | 4           | 0.4     | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORPU **Sample Date:** 2/22/21 10:47

**Customer ID:** 

**Delivery Date:** 2/23/21 09:37

Description: Gorgas Pooled Upgradient - MW-1

Laboratory ID Number: BB03928

|         |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB03933 | Iron, Dissolved        | mg/L  | -0.0000794 | 0.0176   | 0.2   | 0.197   | 0.200   | 0.205    | 0.170 to 0.230     | 98.5 | 70.0 to 130 | 1.51  | 20.0          |
| BB03934 | Arsenic, Total         | mg/L  | 0.0000056  | 0.000147 | 0.10  | 0.105   | 0.104   | 0.105    | 0.0850 to 0.115    | 105  | 70.0 to 130 | 0.957 | 20.0          |
| 3B03934 | Barium, Total          | mg/L  | 0.0000266  | 0.000200 | 0.10  | 0.0985  | 0.102   | 0.0996   | 0.0850 to 0.115    | 98.5 | 70.0 to 130 | 3.49  | 20.0          |
| 3B03934 | Beryllium, Total       | mg/L  | 0.0000157  | 0.000880 | 0.10  | 0.0921  | 0.0961  | 0.0977   | 0.0850 to 0.115    | 92.1 | 70.0 to 130 | 4.25  | 20.0          |
| BB03934 | Sodium, Total          | mg/L  | 0.00835    | 0.0440   | 5.00  | 5.04    | 4.98    | 5.24     | 4.25 to 5.75       | 101  | 70.0 to 130 | 1.20  | 20.0          |
| BB03934 | Boron, Total           | mg/L  | -0.00165   | 0.0650   | 1.00  | 1.00    | 1.00    | 1.02     | 0.850 to 1.15      | 100  | 70.0 to 130 | 0.00  | 20.0          |
| BB03934 | Cadmium, Total         | mg/L  | 0.0000032  | 0.000147 | 0.10  | 0.0999  | 0.0977  | 0.101    | 0.0850 to 0.115    | 99.9 | 70.0 to 130 | 2.23  | 20.0          |
| BB03934 | Lithium, Total         | mg/L  | -0.0000744 | 0.0154   | 0.20  | 0.202   | 0.200   | 0.210    | 0.170 to 0.230     | 101  | 70.0 to 130 | 0.995 | 20.0          |
| BB03934 | Manganese, Total       | mg/L  | 0.0000409  | 0.000147 | 0.10  | 0.0998  | 0.102   | 0.101    | 0.0850 to 0.115    | 99.7 | 70.0 to 130 | 2.18  | 20.0          |
| BB03934 | Antimony, Total        | mg/L  | 0.000234   | 0.00100  | 0.10  | 0.0937  | 0.0965  | 0.0942   | 0.0850 to 0.115    | 93.7 | 70.0 to 130 | 2.94  | 20.0          |
| BB03933 | Manganese, Dissolved   | mg/L  | 0.0000275  | 0.000147 | 0.10  | 0.100   | 0.0992  | 0.102    | 0.0850 to 0.115    | 99.7 | 70.0 to 130 | 0.803 | 20.0          |
| BB03934 | Calcium, Total         | mg/L  | 0.000993   | 0.152    | 5.00  | 5.03    | 5.02    | 4.98     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.199 | 20.0          |
| BB03934 | Cobalt, Total          | mg/L  | -0.0000680 | 0.000147 | 0.10  | 0.103   | 0.103   | 0.104    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 0.00  | 20.0          |
| BB03934 | Iron, Total            | mg/L  | 0.000896   | 0.0176   | 0.2   | 0.202   | 0.202   | 0.201    | 0.170 to 0.230     | 101  | 70.0 to 130 | 0.00  | 20.0          |
| BB03934 | Potassium, Total       | mg/L  | -0.000271  | 0.367    | 10.0  | 10.1    | 9.95    | 10.1     | 8.50 to 11.5       | 101  | 70.0 to 130 | 1.50  | 20.0          |
| BB03934 | Thallium, Total        | mg/L  | -0.0000628 | 0.000147 | 0.10  | 0.108   | 0.104   | 0.104    | 0.0850 to 0.115    | 108  | 70.0 to 130 | 3.77  | 20.0          |
| BB03934 | Mercury, Total by CVAA | mg/L  | 0.000103   | 0.000500 | 0.004 | 0.00427 | 0.00420 | 0.00414  | 0.00340 to 0.00460 | 107  | 70.0 to 130 | 1.65  | 20.0          |
| BB03934 | Magnesium, Total       | mg/L  | -0.000195  | 0.0462   | 5.00  | 5.07    | 5.04    | 5.12     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.593 | 20.0          |
| BB03934 | Lead, Total            | mg/L  | 0.0000041  | 0.000147 | 0.10  | 0.113   | 0.109   | 0.109    | 0.0850 to 0.115    | 113  | 70.0 to 130 | 3.60  | 20.0          |
| BB03934 | Selenium, Total        | mg/L  | 0.0000614  | 0.00100  | 0.10  | 0.0984  | 0.0971  | 0.101    | 0.0850 to 0.115    | 98.4 | 70.0 to 130 | 1.33  | 20.0          |
| 3B03934 | Chromium, Total        | mg/L  | -0.000107  | 0.000440 | 0.10  | 0.102   | 0.104   | 0.104    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 1.94  | 20.0          |
| BB03934 | Molybdenum, Total      | mg/L  | -0.0000018 | 0.000147 | 0.10  | 0.0968  | 0.0945  | 0.0970   | 0.0850 to 0.115    | 96.8 | 70.0 to 130 | 2.40  | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORPU

Sample Date:

2/22/21 10:47

**Customer ID:** 

**Delivery Date:** 

2/23/21 09:37

Description: Gorgas Pooled Upgradient - MW-1

Laboratory ID Number: BB03928

|         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB03933 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 186       | 52.0     | 45.0 to 55.0 |      |             | 2.13  | 10.0          |
| BB03934 | Chloride                   | mg/L  | -0.0953 | 0.500  | 10.0  | 10.5 | -0.0804   | 10.1     | 9.00 to 11.0 | 105  | 80.0 to 120 | 0.00  | 20.0          |
| BB03933 | Solids, Dissolved          | mg/L  | -1.00   | 25.0   |       |      | 3230      | 51.0     | 40.0 to 60.0 |      |             | 0.623 | 5.00          |
| BB03934 | Fluoride                   | mg/L  | 0.0288  | 0.0500 | 2.50  | 2.50 | 0.0282    | 2.60     | 2.25 to 2.75 | 100  | 80.0 to 120 | 0.00  | 20.0          |
| BB03934 | Sulfate                    | mg/L  | -0.466  | 0.500  | 20.0  | 19.6 | -0.457    | 19.8     | 18.0 to 22.0 | 98.0 | 80.0 to 120 | 0.00  | 20.0          |

## Certificate Of Analysis



Description: Gorgas Pooled Upgradient - MW-1 DUPLocation Code:WMWGORPUCollected:2/22/21 10:47

Customer ID:

**Submittal Date:** 2/23/21 09:37

Laboratory ID Number: BB03929

| Name                         | Prepared      | Analyzed     | Vio Spec | DF    | Results      | Units        | MDL      | RL         | Q |
|------------------------------|---------------|--------------|----------|-------|--------------|--------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Anal          | yst: RDA     |          |       | Preparati    | on Method: E | PA 1638  |            |   |
| * Boron, Total               | 3/11/21 14:53 | 3/12/21 14:3 | 34       | 1.015 | Not Detected | mg/L         | 0.030000 | 0.1015     | U |
| * Calcium, Total             | 3/11/21 14:53 | 3/12/21 15:4 | 10       | 20.3  | 152          | mg/L         | 1.4007   | 8.12       |   |
| * Iron, Total                | 3/11/21 14:53 | 3/12/21 14:3 | 34       | 1.015 | 0.0357       | mg/L         | 0.008120 | 0.0406     | J |
| * Lithium, Total             | 3/11/21 14:53 | 3/12/21 14:3 | 34       | 1.015 | 0.0308       | mg/L         | 0.007105 | 0.01999956 |   |
| * Magnesium, Total           | 3/11/21 14:53 | 3/12/21 15:4 | 0        | 20.3  | 280          | mg/L         | 0.4263   | 8.12       |   |
| * Sodium, Total              | 3/11/21 14:53 | 3/12/21 14:3 | 34       | 1.015 | 38.0         | mg/L         | 0.02030  | 0.406      |   |
| Analytical Method: EPA 200.7 | Anal          | yst: RDA     |          |       |              |              |          |            |   |
| * Iron, Dissolved            | 3/11/21 11:00 | 3/12/21 11:0 | )7       | 1.015 | Not Detected | mg/L         | 0.008120 | 0.0406     | U |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |          |       | Preparati    | on Method: E | PA 1638  |            |   |
| * Antimony, Total            | 2/23/21 13:40 | 2/25/21 11:0 | 7        | 1.015 | Not Detected | mg/L         | 0.000507 | 0.001015   | U |
| * Arsenic, Total             | 2/23/21 13:40 | 2/25/21 11:0 | 7        | 1.015 | 0.000462     | mg/L         | 0.000068 | 0.000203   |   |
| * Barium, Total              | 2/23/21 13:40 | 2/25/21 11:0 | 7        | 1.015 | 0.0106       | mg/L         | 0.000101 | 0.000203   |   |
| * Beryllium, Total           | 2/23/21 13:40 | 2/25/21 11:0 | 7        | 1.015 | Not Detected | mg/L         | 0.000406 | 0.001015   | U |
| * Cadmium, Total             | 2/23/21 13:40 | 2/25/21 11:0 | 7        | 1.015 | 0.00174      | mg/L         | 0.000068 | 0.000203   |   |
| * Chromium, Total            | 2/23/21 13:40 | 2/25/21 11:0 | 7        | 1.015 | 0.000321     | mg/L         | 0.000203 | 0.001015   | J |
| * Cobalt, Total              | 2/23/21 13:40 | 2/25/21 11:0 | 7        | 1.015 | 0.0636       | mg/L         | 0.000068 | 0.000203   |   |
| * Lead, Total                | 2/23/21 13:40 | 2/25/21 11:0 | 7        | 1.015 | 0.0000725    | mg/L         | 0.000068 | 0.000203   | J |
| * Molybdenum, Total          | 2/23/21 13:40 | 2/25/21 11:0 | )7       | 1.015 | Not Detected | mg/L         | 0.000068 | 0.000203   | U |
| * Potassium, Total           | 2/23/21 13:40 | 2/25/21 11:0 | 7        | 1.015 | 7.15         | mg/L         | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 2/23/21 13:40 | 2/26/21 15:4 | 0        | 10.15 | 9.88         | mg/L         | 0.000680 | 0.00203    |   |
| * Selenium, Total            | 2/23/21 13:40 | 2/25/21 11:0 | )7       | 1.015 | 0.00250      | mg/L         | 0.000507 | 0.001015   |   |
| * Thallium, Total            | 2/23/21 13:40 | 2/25/21 11:0 | )7       | 1.015 | Not Detected | mg/L         | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |          |       |              |              |          |            |   |
| * Manganese, Dissolved       | 2/23/21 14:25 | 2/26/21 15:2 | 22       | 10.15 | 9.81         | mg/L         | 0.000680 | 0.00203    |   |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB     |          |       |              |              |          |            |   |
| * Mercury, Total by CVAA     | 3/8/21 11:16  | 3/9/21 11:50 | )        | 1     | Not Detected | mg/L         | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |          |       |              |              |          |            |   |
| Alkalinity, Total as CaCO3   | 3/3/21 10:35  | 3/3/21 11:07 | •        | 1     | 28.4         | mg/L         |          | 0.1        |   |
| Analytical Method: SM 2540C  | Anal          | lyst: TJW    |          |       |              |              |          |            |   |
| * Solids, Dissolved          | 2/25/21 10:55 | •            | )        | 1     | 2220         | mg/L         |          | 125        |   |

MDL's and RL's are adjusted for sample dilution, as applicable

# Certificate Of Analysis



Description: Gorgas Pooled Upgradient - MW-1 DUP

**Location Code:** 

WMWGORPU

Collected:

Customer ID: Submittal Date:

2/22/21 10:47

2/23/21 09:37

Laboratory ID Number: BB03929

| Prepared      | Analyzed                                                                                                                               | Vio Spec                                                                                                                                                                                                                                                               | DF                         | Results                    | Units                      | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                | RL                         | Q                          |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|
| Ana           | lyst: JAG                                                                                                                              |                                                                                                                                                                                                                                                                        |                            |                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                            |
| 3/3/21 10:35  | 3/3/21 11:07                                                                                                                           | •                                                                                                                                                                                                                                                                      | 1                          | 28.4                       | mg/L                       |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                            |
| 3/3/21 10:35  | 3/3/21 11:07                                                                                                                           | •                                                                                                                                                                                                                                                                      | 1                          | 0.00                       | mg/L                       |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                            |
| Ana           | lyst: JCC                                                                                                                              |                                                                                                                                                                                                                                                                        |                            |                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                            |
| 2/25/21 10:31 | 2/25/21 10:3                                                                                                                           | 1                                                                                                                                                                                                                                                                      | 1                          | 2.17                       | mg/L                       | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                          |                            |
| Ana           | lyst: JCC                                                                                                                              |                                                                                                                                                                                                                                                                        |                            |                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                            |
| 2/25/21 15:09 | 2/25/21 15:0                                                                                                                           | 9                                                                                                                                                                                                                                                                      | 1                          | 0.0774                     | mg/L                       | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                        | J                          |
| Ana           | lyst: JCC                                                                                                                              |                                                                                                                                                                                                                                                                        |                            |                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                            |
| 2/23/21 15:14 | 2/23/21 15:1                                                                                                                           | 4                                                                                                                                                                                                                                                                      | 50                         | 1400                       | mg/L                       | 25.00                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                         |                            |
| Ana           | lyst: TJD                                                                                                                              |                                                                                                                                                                                                                                                                        |                            |                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                            |
| 2/22/21 10:44 | 2/22/21 10:4                                                                                                                           | 4                                                                                                                                                                                                                                                                      |                            | 2369.76                    | uS/cm                      |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | FA                         |
| 2/22/21 10:44 | 2/22/21 10:4                                                                                                                           | 4                                                                                                                                                                                                                                                                      |                            | 5.06                       | SU                         |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | FA                         |
| 2/22/21 10:44 | 2/22/21 10:4                                                                                                                           | 4                                                                                                                                                                                                                                                                      |                            | 19.04                      | С                          |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | FA                         |
| 2/22/21 10:44 | 2/22/21 10:4                                                                                                                           | 4                                                                                                                                                                                                                                                                      |                            | 0.4                        | NTU                        |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | FA                         |
|               | Ana. 3/3/21 10:35 3/3/21 10:35 Ana. 2/25/21 10:31 Ana. 2/25/21 15:09 Ana. 2/23/21 15:14 Ana. 2/22/21 10:44 2/22/21 10:44 2/22/21 10:44 | Analyst: JAG  3/3/21 10:35 3/3/21 11:07  3/3/21 10:35 3/3/21 11:07  Analyst: JCC  2/25/21 10:31 2/25/21 10:3  Analyst: JCC  2/25/21 15:09 2/25/21 15:0  Analyst: JCC  2/23/21 15:14 2/23/21 15:1  Analyst: TJD  2/22/21 10:44 2/22/21 10:4  2/22/21 10:44 2/22/21 10:4 | Analyst: JAG  3/3/21 10:35  3/3/21 11:07  1  28.4  mg/L  3/3/21 10:35  3/3/21 11:07  1  0.00  mg/L  Analyst: JCC  2/25/21 10:31  2/25/21 10:31  1  2.17  mg/L  Analyst: JCC  2/25/21 15:09  2/25/21 15:09  1  0.0774  mg/L  Analyst: JCC  2/23/21 15:14  2/23/21 15:14  50  1400  mg/L  Analyst: TJD  2/22/21 10:44  2/22/21 10:44  2369.76  uS/cm  2/22/21 10:44  2/22/21 10:44  5.06  SU  2/22/21 10:44  2/22/21 10:44  19.04  C | Analyst: JAG  3/3/21 10:35 | Analyst: JAG  3/3/21 10:35 |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORPU **Sample Date:** 2/22/21 10:47

Customer ID:

**Delivery Date:** 2/23/21 09:37

**Description**: Gorgas Pooled Upgradient - MW-1 DUP

Laboratory ID Number: BB03929

|         |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| 3B03933 | Iron, Dissolved        | mg/L  | -0.0000794 | 0.0176   | 0.2   | 0.197   | 0.200   | 0.205    | 0.170 to 0.230     | 98.5 | 70.0 to 130 | 1.51  | 20.0          |
| 3B03934 | Arsenic, Total         | mg/L  | 0.0000056  | 0.000147 | 0.10  | 0.105   | 0.104   | 0.105    | 0.0850 to 0.115    | 105  | 70.0 to 130 | 0.957 | 20.0          |
| 3B03934 | Barium, Total          | mg/L  | 0.0000266  | 0.000200 | 0.10  | 0.0985  | 0.102   | 0.0996   | 0.0850 to 0.115    | 98.5 | 70.0 to 130 | 3.49  | 20.0          |
| 3B03934 | Beryllium, Total       | mg/L  | 0.0000157  | 0.000880 | 0.10  | 0.0921  | 0.0961  | 0.0977   | 0.0850 to 0.115    | 92.1 | 70.0 to 130 | 4.25  | 20.0          |
| 3B03934 | Sodium, Total          | mg/L  | 0.00835    | 0.0440   | 5.00  | 5.04    | 4.98    | 5.24     | 4.25 to 5.75       | 101  | 70.0 to 130 | 1.20  | 20.0          |
| 3B03934 | Mercury, Total by CVAA | mg/L  | 0.000103   | 0.000500 | 0.004 | 0.00427 | 0.00420 | 0.00414  | 0.00340 to 0.00460 | 107  | 70.0 to 130 | 1.65  | 20.0          |
| 3B03934 | Magnesium, Total       | mg/L  | -0.000195  | 0.0462   | 5.00  | 5.07    | 5.04    | 5.12     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.593 | 20.0          |
| 3B03934 | Lead, Total            | mg/L  | 0.0000041  | 0.000147 | 0.10  | 0.113   | 0.109   | 0.109    | 0.0850 to 0.115    | 113  | 70.0 to 130 | 3.60  | 20.0          |
| 3B03934 | Selenium, Total        | mg/L  | 0.0000614  | 0.00100  | 0.10  | 0.0984  | 0.0971  | 0.101    | 0.0850 to 0.115    | 98.4 | 70.0 to 130 | 1.33  | 20.0          |
| 3B03933 | Manganese, Dissolved   | mg/L  | 0.0000275  | 0.000147 | 0.10  | 0.100   | 0.0992  | 0.102    | 0.0850 to 0.115    | 99.7 | 70.0 to 130 | 0.803 | 20.0          |
| 3B03934 | Calcium, Total         | mg/L  | 0.000993   | 0.152    | 5.00  | 5.03    | 5.02    | 4.98     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.199 | 20.0          |
| 3B03934 | Cobalt, Total          | mg/L  | -0.0000680 | 0.000147 | 0.10  | 0.103   | 0.103   | 0.104    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 0.00  | 20.0          |
| 3B03934 | Iron, Total            | mg/L  | 0.000896   | 0.0176   | 0.2   | 0.202   | 0.202   | 0.201    | 0.170 to 0.230     | 101  | 70.0 to 130 | 0.00  | 20.0          |
| 3B03934 | Potassium, Total       | mg/L  | -0.000271  | 0.367    | 10.0  | 10.1    | 9.95    | 10.1     | 8.50 to 11.5       | 101  | 70.0 to 130 | 1.50  | 20.0          |
| 3B03934 | Thallium, Total        | mg/L  | -0.0000628 | 0.000147 | 0.10  | 0.108   | 0.104   | 0.104    | 0.0850 to 0.115    | 108  | 70.0 to 130 | 3.77  | 20.0          |
| 3B03934 | Boron, Total           | mg/L  | -0.00165   | 0.0650   | 1.00  | 1.00    | 1.00    | 1.02     | 0.850 to 1.15      | 100  | 70.0 to 130 | 0.00  | 20.0          |
| 3B03934 | Cadmium, Total         | mg/L  | 0.0000032  | 0.000147 | 0.10  | 0.0999  | 0.0977  | 0.101    | 0.0850 to 0.115    | 99.9 | 70.0 to 130 | 2.23  | 20.0          |
| 3B03934 | Lithium, Total         | mg/L  | -0.0000744 | 0.0154   | 0.20  | 0.202   | 0.200   | 0.210    | 0.170 to 0.230     | 101  | 70.0 to 130 | 0.995 | 20.0          |
| 3B03934 | Manganese, Total       | mg/L  | 0.0000409  | 0.000147 | 0.10  | 0.0998  | 0.102   | 0.101    | 0.0850 to 0.115    | 99.7 | 70.0 to 130 | 2.18  | 20.0          |
| 3B03934 | Antimony, Total        | mg/L  | 0.000234   | 0.00100  | 0.10  | 0.0937  | 0.0965  | 0.0942   | 0.0850 to 0.115    | 93.7 | 70.0 to 130 | 2.94  | 20.0          |
| 3B03934 | Chromium, Total        | mg/L  | -0.000107  | 0.000440 | 0.10  | 0.102   | 0.104   | 0.104    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 1.94  | 20.0          |
| 3B03934 | Molybdenum, Total      | mg/L  | -0.0000018 | 0.000147 | 0.10  | 0.0968  | 0.0945  | 0.0970   | 0.0850 to 0.115    | 96.8 | 70.0 to 130 | 2.40  | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORPU

Sample Date:

2/22/21 10:47

**Customer ID:** 

**Delivery Date:** 

2/23/21 09:37

Description: Gorgas Pooled Upgradient - MW-1 DUP

Laboratory ID Number: BB03929

|         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB03933 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 186       | 52.0     | 45.0 to 55.0 |      |             | 2.13  | 10.0          |
| BB03934 | Chloride                   | mg/L  | -0.0953 | 0.500  | 10.0  | 10.5 | -0.0804   | 10.1     | 9.00 to 11.0 | 105  | 80.0 to 120 | 0.00  | 20.0          |
| BB03933 | Solids, Dissolved          | mg/L  | -1.00   | 25.0   |       |      | 3230      | 51.0     | 40.0 to 60.0 |      |             | 0.623 | 5.00          |
| BB03934 | Fluoride                   | mg/L  | 0.0288  | 0.0500 | 2.50  | 2.50 | 0.0282    | 2.60     | 2.25 to 2.75 | 100  | 80.0 to 120 | 0.00  | 20.0          |
| BB03934 | Sulfate                    | mg/L  | -0.466  | 0.500  | 20.0  | 19.6 | -0.457    | 19.8     | 18.0 to 22.0 | 98.0 | 80.0 to 120 | 0.00  | 20.0          |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 3/23/21

Reported: 3/24/2021 Version: 3.2 COA\_CCR

## Certificate Of Analysis



Description: Gorgas Pooled Upgradient - MW-2Location Code:WMWGORPUCollected:2/22/21 11:47

Customer ID:

Laboratory ID Number: BB03930 Submittal Date: 2/23/21 09:37

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units         | MDL      | RL         | Q |
|------------------------------|---------------|--------------|-------------|--------------|---------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Anal          | yst: RDA     |             | Preparati    | ion Method: I | EPA 1638 |            |   |
| * Boron, Total               | 3/11/21 14:53 | 3/12/21 14:3 | 7 1.015     | Not Detected | mg/L          | 0.030000 | 0.1015     | U |
| * Calcium, Total             | 3/11/21 14:53 | 3/12/21 15:4 | 4 20.3      | 178          | mg/L          | 1.4007   | 8.12       |   |
| * Iron, Total                | 3/11/21 14:53 | 3/12/21 14:3 | 7 1.015     | 1.20         | mg/L          | 0.008120 | 0.0406     |   |
| * Lithium, Total             | 3/11/21 14:53 | 3/12/21 14:3 | 7 1.015     | 0.0625       | mg/L          | 0.007105 | 0.01999956 | 6 |
| * Magnesium, Total           | 3/11/21 14:53 | 3/12/21 15:4 | 4 20.3      | 193          | mg/L          | 0.4263   | 8.12       |   |
| * Sodium, Total              | 3/11/21 14:53 | 3/12/21 14:3 | 7 1.015     | 24.0         | mg/L          | 0.02030  | 0.406      |   |
| Analytical Method: EPA 200.7 | Anal          | yst: RDA     |             |              |               |          |            |   |
| * Iron, Dissolved            | 3/11/21 11:00 | 3/12/21 11:1 | 0 1.015     | 0.924        | mg/L          | 0.008120 | 0.0406     |   |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             | Preparati    | ion Method: I | EPA 1638 |            |   |
| * Antimony, Total            | 2/23/21 13:40 | 2/25/21 11:1 | 0 1.015     | Not Detected | mg/L          | 0.000507 | 0.001015   | U |
| * Arsenic, Total             | 2/23/21 13:40 | 2/25/21 11:1 | 0 1.015     | 0.000295     | mg/L          | 0.000068 | 0.000203   |   |
| * Barium, Total              | 2/23/21 13:40 | 2/25/21 11:1 | 0 1.015     | 0.0132       | mg/L          | 0.000101 | 0.000203   |   |
| * Beryllium, Total           | 2/23/21 13:40 | 2/25/21 11:1 | 0 1.015     | Not Detected | mg/L          | 0.000406 | 0.001015   | U |
| * Cadmium, Total             | 2/23/21 13:40 | 2/25/21 11:1 | 0 1.015     | 0.0000896    | mg/L          | 0.000068 | 0.000203   | J |
| * Chromium, Total            | 2/23/21 13:40 | 2/25/21 11:1 | 0 1.015     | Not Detected | mg/L          | 0.000203 | 0.001015   | U |
| * Cobalt, Total              | 2/23/21 13:40 | 2/25/21 11:1 | 0 1.015     | 0.0161       | mg/L          | 0.000068 | 0.000203   |   |
| * Lead, Total                | 2/23/21 13:40 | 2/25/21 11:1 | 0 1.015     | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Molybdenum, Total          | 2/23/21 13:40 | 2/25/21 11:1 | 0 1.015     | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Potassium, Total           | 2/23/21 13:40 | 2/25/21 11:1 | 0 1.015     | 6.21         | mg/L          | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 2/23/21 13:40 | 2/26/21 15:4 | 4 5.075     | 3.54         | mg/L          | 0.000340 | 0.001015   |   |
| * Selenium, Total            | 2/23/21 13:40 | 2/25/21 11:1 | 0 1.015     | Not Detected | mg/L          | 0.000507 | 0.001015   | U |
| * Thallium, Total            | 2/23/21 13:40 | 2/25/21 11:1 | 0 1.015     | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             |              |               |          |            |   |
| * Manganese, Dissolved       | 2/23/21 14:25 | 2/26/21 15:2 | 6 5.075     | 3.49         | mg/L          | 0.000340 | 0.001015   |   |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB     |             |              |               |          |            |   |
| * Mercury, Total by CVAA     | 3/8/21 11:16  | 3/9/21 11:52 | 1           | Not Detected | mg/L          | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |              |               |          |            |   |
| Alkalinity, Total as CaCO3   | 3/3/21 10:35  | 3/3/21 11:07 | 1           | 358          | mg/L          |          | 0.1        |   |
| Analytical Method: SM 2540C  | Anal          | yst: TJW     |             |              |               |          |            |   |
| * Solids, Dissolved          | 2/25/21 10:55 | 3/2/21 09:30 | 1           | 1620         | mg/L          |          | 100        |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



**Description:** Gorgas Pooled Upgradient - MW-2

**Location Code:** 

WMWGORPU

Collected:

Customer ID:

2/22/21 11:47

2/23/21 09:37

Laboratory ID Number: BB03930

| Laboratory ID Number. BB03930         |               |              |          |    |         |       |       |     |    |
|---------------------------------------|---------------|--------------|----------|----|---------|-------|-------|-----|----|
| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results | Units | MDL   | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |          |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 10:35  | 3/3/21 11:07 | 7        | 1  | 358     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 10:35  | 3/3/21 11:07 | 7        | 1  | 0.07    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Chloride                            | 2/25/21 10:32 | 2/25/21 10:3 | 32       | 1  | 1.72    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Fluoride                            | 2/25/21 15:11 | 2/25/21 15:1 | 11 1     | 1  | 0.209   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Sulfate                             | 2/23/21 15:15 | 2/23/21 15:1 | 15 4     | 40 | 864     | mg/L  | 20.00 | 40  |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD    |          |    |         |       |       |     |    |
| Conductivity                          | 2/22/21 11:44 | 2/22/21 11:4 | 14       |    | 1939.81 | uS/cm |       |     | FA |
| рН                                    | 2/22/21 11:44 | 2/22/21 11:4 | 14       |    | 6.10    | SU    |       |     | FA |
| Temperature                           | 2/22/21 11:44 | 2/22/21 11:4 | 14       |    | 18.70   | С     |       |     | FA |
| Turbidity                             | 2/22/21 11:44 | 2/22/21 11:4 | 14       |    | 1.49    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORPU **Sample Date:** 2/22/21 11:47

**Customer ID:** 

**Delivery Date:** 2/23/21 09:37

**Description**: Gorgas Pooled Upgradient - MW-2

Laboratory ID Number: BB03930

|         |                        |       |            | MB       |       |         |         | •        | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB03933 | Iron, Dissolved        | mg/L  | -0.0000794 | 0.0176   | 0.2   | 0.197   | 0.200   | 0.205    | 0.170 to 0.230     | 98.5 | 70.0 to 130 | 1.51  | 20.0          |
| BB03934 | Arsenic, Total         | mg/L  | 0.0000056  | 0.000147 | 0.10  | 0.105   | 0.104   | 0.105    | 0.0850 to 0.115    | 105  | 70.0 to 130 | 0.957 | 20.0          |
| BB03934 | Barium, Total          | mg/L  | 0.0000266  | 0.000200 | 0.10  | 0.0985  | 0.102   | 0.0996   | 0.0850 to 0.115    | 98.5 | 70.0 to 130 | 3.49  | 20.0          |
| BB03934 | Beryllium, Total       | mg/L  | 0.0000157  | 0.000880 | 0.10  | 0.0921  | 0.0961  | 0.0977   | 0.0850 to 0.115    | 92.1 | 70.0 to 130 | 4.25  | 20.0          |
| BB03934 | Sodium, Total          | mg/L  | 0.00835    | 0.0440   | 5.00  | 5.04    | 4.98    | 5.24     | 4.25 to 5.75       | 101  | 70.0 to 130 | 1.20  | 20.0          |
| BB03934 | Mercury, Total by CVAA | mg/L  | 0.000103   | 0.000500 | 0.004 | 0.00427 | 0.00420 | 0.00414  | 0.00340 to 0.00460 | 107  | 70.0 to 130 | 1.65  | 20.0          |
| BB03934 | Magnesium, Total       | mg/L  | -0.000195  | 0.0462   | 5.00  | 5.07    | 5.04    | 5.12     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.593 | 20.0          |
| BB03934 | Lead, Total            | mg/L  | 0.0000041  | 0.000147 | 0.10  | 0.113   | 0.109   | 0.109    | 0.0850 to 0.115    | 113  | 70.0 to 130 | 3.60  | 20.0          |
| BB03934 | Selenium, Total        | mg/L  | 0.0000614  | 0.00100  | 0.10  | 0.0984  | 0.0971  | 0.101    | 0.0850 to 0.115    | 98.4 | 70.0 to 130 | 1.33  | 20.0          |
| BB03934 | Boron, Total           | mg/L  | -0.00165   | 0.0650   | 1.00  | 1.00    | 1.00    | 1.02     | 0.850 to 1.15      | 100  | 70.0 to 130 | 0.00  | 20.0          |
| BB03934 | Cadmium, Total         | mg/L  | 0.0000032  | 0.000147 | 0.10  | 0.0999  | 0.0977  | 0.101    | 0.0850 to 0.115    | 99.9 | 70.0 to 130 | 2.23  | 20.0          |
| BB03934 | Lithium, Total         | mg/L  | -0.0000744 | 0.0154   | 0.20  | 0.202   | 0.200   | 0.210    | 0.170 to 0.230     | 101  | 70.0 to 130 | 0.995 | 20.0          |
| BB03934 | Manganese, Total       | mg/L  | 0.0000409  | 0.000147 | 0.10  | 0.0998  | 0.102   | 0.101    | 0.0850 to 0.115    | 99.7 | 70.0 to 130 | 2.18  | 20.0          |
| BB03934 | Antimony, Total        | mg/L  | 0.000234   | 0.00100  | 0.10  | 0.0937  | 0.0965  | 0.0942   | 0.0850 to 0.115    | 93.7 | 70.0 to 130 | 2.94  | 20.0          |
| BB03933 | Manganese, Dissolved   | mg/L  | 0.0000275  | 0.000147 | 0.10  | 0.100   | 0.0992  | 0.102    | 0.0850 to 0.115    | 99.7 | 70.0 to 130 | 0.803 | 20.0          |
| BB03934 | Calcium, Total         | mg/L  | 0.000993   | 0.152    | 5.00  | 5.03    | 5.02    | 4.98     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.199 | 20.0          |
| BB03934 | Cobalt, Total          | mg/L  | -0.0000680 | 0.000147 | 0.10  | 0.103   | 0.103   | 0.104    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 0.00  | 20.0          |
| BB03934 | Iron, Total            | mg/L  | 0.000896   | 0.0176   | 0.2   | 0.202   | 0.202   | 0.201    | 0.170 to 0.230     | 101  | 70.0 to 130 | 0.00  | 20.0          |
| BB03934 | Potassium, Total       | mg/L  | -0.000271  | 0.367    | 10.0  | 10.1    | 9.95    | 10.1     | 8.50 to 11.5       | 101  | 70.0 to 130 | 1.50  | 20.0          |
| BB03934 | Thallium, Total        | mg/L  | -0.0000628 | 0.000147 | 0.10  | 0.108   | 0.104   | 0.104    | 0.0850 to 0.115    | 108  | 70.0 to 130 | 3.77  | 20.0          |
| BB03934 | Chromium, Total        | mg/L  | -0.000107  | 0.000440 | 0.10  | 0.102   | 0.104   | 0.104    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 1.94  | 20.0          |
| BB03934 | Molybdenum, Total      | mg/L  | -0.0000018 | 0.000147 | 0.10  | 0.0968  | 0.0945  | 0.0970   | 0.0850 to 0.115    | 96.8 | 70.0 to 130 | 2.40  | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORPU

Sample Date:

2/22/21 11:47

**Customer ID:** 

**Delivery Date:** 

2/23/21 09:37

Description: Gorgas Pooled Upgradient - MW-2

Laboratory ID Number: BB03930

|         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB03933 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 186       | 52.0     | 45.0 to 55.0 |      |             | 2.13  | 10.0          |
| BB03934 | Chloride                   | mg/L  | -0.0953 | 0.500  | 10.0  | 10.5 | -0.0804   | 10.1     | 9.00 to 11.0 | 105  | 80.0 to 120 | 0.00  | 20.0          |
| BB03933 | Solids, Dissolved          | mg/L  | -1.00   | 25.0   |       |      | 3230      | 51.0     | 40.0 to 60.0 |      |             | 0.623 | 5.00          |
| BB03934 | Fluoride                   | mg/L  | 0.0288  | 0.0500 | 2.50  | 2.50 | 0.0282    | 2.60     | 2.25 to 2.75 | 100  | 80.0 to 120 | 0.00  | 20.0          |
| BB03934 | Sulfate                    | mg/L  | -0.466  | 0.500  | 20.0  | 19.6 | -0.457    | 19.8     | 18.0 to 22.0 | 98.0 | 80.0 to 120 | 0.00  | 20.0          |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 3/23/21

Reported: 3/24/2021 Version: 3.2 COA\_CCR

## Certificate Of Analysis



Description: Gorgas Pooled Upgradient - MW-3Location Code:WMWGORPUCollected:2/22/21 12:52

Customer ID:

**Submittal Date:** 2/23/21 09:37

Laboratory ID Number: BB03931

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units         | MDL      | RL         | Q |
|------------------------------|---------------|--------------|-------------|--------------|---------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Anal          | yst: RDA     |             | Preparat     | ion Method: l | EPA 1638 |            |   |
| * Boron, Total               | 3/11/21 14:53 | 3/12/21 14:4 | 1.015       | Not Detected | mg/L          | 0.030000 | 0.1015     | U |
| * Calcium, Total             | 3/11/21 14:53 | 3/12/21 15:4 | 50.75       | 312          | mg/L          | 3.50175  | 20.3       |   |
| * Iron, Total                | 3/11/21 14:53 | 3/12/21 14:4 | 1.015       | 0.224        | mg/L          | 0.008120 | 0.0406     |   |
| * Lithium, Total             | 3/11/21 14:53 | 3/12/21 14:4 | 1.015       | 0.126        | mg/L          | 0.007105 | 0.01999956 | ò |
| * Magnesium, Total           | 3/11/21 14:53 | 3/12/21 15:4 | 50.75       | 618          | mg/L          | 1.06575  | 20.3       |   |
| * Sodium, Total              | 3/11/21 14:53 | 3/12/21 15:4 | 50.75       | 58.7         | mg/L          | 1.0150   | 20.3       |   |
| Analytical Method: EPA 200.7 | Anal          | yst: RDA     |             |              |               |          |            |   |
| * Iron, Dissolved            | 3/11/21 11:00 | 3/12/21 11:  | 1.015       | Not Detected | mg/L          | 0.008120 | 0.0406     | U |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             | Preparat     | ion Method: I | EPA 1638 |            |   |
| * Antimony, Total            | 2/23/21 13:40 | 2/25/21 11:  | 1.015       | Not Detected | mg/L          | 0.000507 | 0.001015   | U |
| * Arsenic, Total             | 2/23/21 13:40 | 2/25/21 11:  | 1.015       | 0.000789     | mg/L          | 0.000068 | 0.000203   |   |
| * Barium, Total              | 2/23/21 13:40 | 2/25/21 11:  | 1.015       | 0.00981      | mg/L          | 0.000101 | 0.000203   |   |
| * Beryllium, Total           | 2/23/21 13:40 | 2/25/21 11:  | 1.015       | Not Detected | mg/L          | 0.000406 | 0.001015   | U |
| * Cadmium, Total             | 2/23/21 13:40 | 2/25/21 11:  | 1.015       | 0.00536      | mg/L          | 0.000068 | 0.000203   |   |
| * Chromium, Total            | 2/23/21 13:40 | 2/25/21 11:  | 1.015       | 0.000350     | mg/L          | 0.000203 | 0.001015   | J |
| * Cobalt, Total              | 2/23/21 13:40 | 2/25/21 11:  | 1.015       | 0.0515       | mg/L          | 0.000068 | 0.000203   |   |
| * Lead, Total                | 2/23/21 13:40 | 2/25/21 11:  | 1.015       | 0.0000880    | mg/L          | 0.000068 | 0.000203   | J |
| * Molybdenum, Total          | 2/23/21 13:40 | 2/25/21 11:1 | 1.015       | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Potassium, Total           | 2/23/21 13:40 | 2/25/21 11:  | 1.015       | 8.01         | mg/L          | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 2/23/21 13:40 | 2/26/21 15:4 | 5.075       | 3.26         | mg/L          | 0.000340 | 0.001015   |   |
| * Selenium, Total            | 2/23/21 13:40 | 2/25/21 11:  | 1.015       | 0.0181       | mg/L          | 0.000507 | 0.001015   |   |
| * Thallium, Total            | 2/23/21 13:40 | 2/25/21 11:  | 1.015       | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             |              |               |          |            |   |
| * Manganese, Dissolved       | 2/23/21 14:25 | 2/26/21 15:2 | 29 5.075    | 3.09         | mg/L          | 0.000340 | 0.001015   |   |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB     |             |              |               |          |            |   |
| * Mercury, Total by CVAA     | 3/8/21 11:16  | 3/9/21 11:55 | 5 1         | Not Detected | mg/L          | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |              |               |          |            |   |
| Alkalinity, Total as CaCO3   | 3/3/21 10:35  |              | 7 1         | 58.7         | mg/L          |          | 0.1        |   |
| Analytical Method: SM 2540C  | Anal          | yst: TJW     |             |              |               |          |            |   |
| * Solids, Dissolved          | 2/25/21 10:55 | 3/2/21 09:30 | ) 1         | 4670         | mg/L          |          | 250        |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Pooled Upgradient - MW-3

**Location Code:** 

WMWGORPU

Collected:

Customer ID:

2/22/21 12:52

Submittal Date: 2/23/21 09:37

| Laboratory ID Number: BB03931         |               |              |             | Subn    | nittai Date: | 2/23/21 09 | :37 |    |
|---------------------------------------|---------------|--------------|-------------|---------|--------------|------------|-----|----|
| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results | Units        | MDL        | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |             |         |              |            |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 10:35  | 3/3/21 11:07 | 1           | 58.7    | mg/L         |            |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 10:35  | 3/3/21 11:07 | 1           | 0.00    | mg/L         |            |     |    |
| Analytical Method: SM4500CI E         | Ana           | lyst: JCC    |             |         |              |            |     |    |
| * Chloride                            | 2/25/21 10:34 | 2/25/21 10:3 | 4 1         | 2.22    | mg/L         | 0.50       | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |             |         |              |            |     |    |
| * Fluoride                            | 2/25/21 15:12 | 2/25/21 15:1 | 2 1         | 0.246   | mg/L         | 0.06       | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |             |         |              |            |     |    |
| * Sulfate                             | 2/23/21 15:16 | 2/23/21 15:1 | 6 80        | 3040    | mg/L         | 40.00      | 80  |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD    |             |         |              |            |     |    |
| Conductivity                          | 2/22/21 12:49 | 2/22/21 12:4 | 9           | 4417.53 | uS/cm        |            |     | FA |
| рН                                    | 2/22/21 12:49 | 2/22/21 12:4 | 9           | 5.59    | SU           |            |     | FA |
| Temperature                           | 2/22/21 12:49 | 2/22/21 12:4 | 9           | 19.81   | С            |            |     | FA |
| Turbidity                             | 2/22/21 12:49 | 2/22/21 12:4 | 9           | 2.88    | NTU          |            |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORPU **Sample Date:** 2/22/21 12:52

Customer ID:

**Delivery Date:** 2/23/21 09:37

Description: Gorgas Pooled Upgradient - MW-3

Laboratory ID Number: BB03931

|         |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB03933 | Iron, Dissolved        | mg/L  | -0.0000794 | 0.0176   | 0.2   | 0.197   | 0.200   | 0.205    | 0.170 to 0.230     | 98.5 | 70.0 to 130 | 1.51  | 20.0          |
| BB03934 | Arsenic, Total         | mg/L  | 0.0000056  | 0.000147 | 0.10  | 0.105   | 0.104   | 0.105    | 0.0850 to 0.115    | 105  | 70.0 to 130 | 0.957 | 20.0          |
| BB03934 | Mercury, Total by CVAA | mg/L  | 0.000103   | 0.000500 | 0.004 | 0.00427 | 0.00420 | 0.00414  | 0.00340 to 0.00460 | 107  | 70.0 to 130 | 1.65  | 20.0          |
| BB03934 | Magnesium, Total       | mg/L  | -0.000195  | 0.0462   | 5.00  | 5.07    | 5.04    | 5.12     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.593 | 20.0          |
| BB03934 | Lead, Total            | mg/L  | 0.0000041  | 0.000147 | 0.10  | 0.113   | 0.109   | 0.109    | 0.0850 to 0.115    | 113  | 70.0 to 130 | 3.60  | 20.0          |
| BB03934 | Selenium, Total        | mg/L  | 0.0000614  | 0.00100  | 0.10  | 0.0984  | 0.0971  | 0.101    | 0.0850 to 0.115    | 98.4 | 70.0 to 130 | 1.33  | 20.0          |
| BB03934 | Barium, Total          | mg/L  | 0.0000266  | 0.000200 | 0.10  | 0.0985  | 0.102   | 0.0996   | 0.0850 to 0.115    | 98.5 | 70.0 to 130 | 3.49  | 20.0          |
| BB03934 | Beryllium, Total       | mg/L  | 0.0000157  | 0.000880 | 0.10  | 0.0921  | 0.0961  | 0.0977   | 0.0850 to 0.115    | 92.1 | 70.0 to 130 | 4.25  | 20.0          |
| BB03934 | Sodium, Total          | mg/L  | 0.00835    | 0.0440   | 5.00  | 5.04    | 4.98    | 5.24     | 4.25 to 5.75       | 101  | 70.0 to 130 | 1.20  | 20.0          |
| BB03934 | Boron, Total           | mg/L  | -0.00165   | 0.0650   | 1.00  | 1.00    | 1.00    | 1.02     | 0.850 to 1.15      | 100  | 70.0 to 130 | 0.00  | 20.0          |
| BB03934 | Cadmium, Total         | mg/L  | 0.0000032  | 0.000147 | 0.10  | 0.0999  | 0.0977  | 0.101    | 0.0850 to 0.115    | 99.9 | 70.0 to 130 | 2.23  | 20.0          |
| BB03934 | Lithium, Total         | mg/L  | -0.0000744 | 0.0154   | 0.20  | 0.202   | 0.200   | 0.210    | 0.170 to 0.230     | 101  | 70.0 to 130 | 0.995 | 20.0          |
| BB03934 | Manganese, Total       | mg/L  | 0.0000409  | 0.000147 | 0.10  | 0.0998  | 0.102   | 0.101    | 0.0850 to 0.115    | 99.7 | 70.0 to 130 | 2.18  | 20.0          |
| BB03934 | Antimony, Total        | mg/L  | 0.000234   | 0.00100  | 0.10  | 0.0937  | 0.0965  | 0.0942   | 0.0850 to 0.115    | 93.7 | 70.0 to 130 | 2.94  | 20.0          |
| BB03933 | Manganese, Dissolved   | mg/L  | 0.0000275  | 0.000147 | 0.10  | 0.100   | 0.0992  | 0.102    | 0.0850 to 0.115    | 99.7 | 70.0 to 130 | 0.803 | 20.0          |
| BB03934 | Calcium, Total         | mg/L  | 0.000993   | 0.152    | 5.00  | 5.03    | 5.02    | 4.98     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.199 | 20.0          |
| BB03934 | Cobalt, Total          | mg/L  | -0.0000680 | 0.000147 | 0.10  | 0.103   | 0.103   | 0.104    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 0.00  | 20.0          |
| BB03934 | Iron, Total            | mg/L  | 0.000896   | 0.0176   | 0.2   | 0.202   | 0.202   | 0.201    | 0.170 to 0.230     | 101  | 70.0 to 130 | 0.00  | 20.0          |
| BB03934 | Potassium, Total       | mg/L  | -0.000271  | 0.367    | 10.0  | 10.1    | 9.95    | 10.1     | 8.50 to 11.5       | 101  | 70.0 to 130 | 1.50  | 20.0          |
| BB03934 | Thallium, Total        | mg/L  | -0.0000628 | 0.000147 | 0.10  | 0.108   | 0.104   | 0.104    | 0.0850 to 0.115    | 108  | 70.0 to 130 | 3.77  | 20.0          |
| BB03934 | Chromium, Total        | mg/L  | -0.000107  | 0.000440 | 0.10  | 0.102   | 0.104   | 0.104    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 1.94  | 20.0          |
| BB03934 | Molybdenum, Total      | mg/L  | -0.0000018 | 0.000147 | 0.10  | 0.0968  | 0.0945  | 0.0970   | 0.0850 to 0.115    | 96.8 | 70.0 to 130 | 2.40  | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORPU

Sample Date:

2/22/21 12:52

**Customer ID:** 

**Delivery Date:** 

2/23/21 09:37

Description: Gorgas Pooled Upgradient - MW-3

Laboratory ID Number: BB03931

|         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | l Limit      | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB03933 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 186       | 52.0     | 45.0 to 55.0 |      |             | 2.13  | 10.0          |
| BB03934 | Chloride                   | mg/L  | -0.0953 | 0.500  | 10.0  | 10.5 | -0.0804   | 10.1     | 9.00 to 11.0 | 105  | 80.0 to 120 | 0.00  | 20.0          |
| BB03933 | Solids, Dissolved          | mg/L  | -1.00   | 25.0   |       |      | 3230      | 51.0     | 40.0 to 60.0 |      |             | 0.623 | 5.00          |
| BB03934 | Fluoride                   | mg/L  | 0.0288  | 0.0500 | 2.50  | 2.50 | 0.0282    | 2.60     | 2.25 to 2.75 | 100  | 80.0 to 120 | 0.00  | 20.0          |
| BB03934 | Sulfate                    | mg/L  | -0.466  | 0.500  | 20.0  | 19.6 | -0.457    | 19.8     | 18.0 to 22.0 | 98.0 | 80.0 to 120 | 0.00  | 20.0          |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 3/23/21

Reported: 3/24/2021 Version: 3.2 COA\_CCR

## **Certificate Of Analysis**



Description: Gorgas Pooled Upgradient Field Blank-1Location Code:WMWGORPUFBCollected:2/22/21 13:20

**Customer ID:** 

**Submittal Date:** 2/23/21 09:37

Laboratory ID Number: BB03932

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF    | Results      | Units         | MDL      | RL         | Q |
|---------------------------------------|---------------|--------------|----------|-------|--------------|---------------|----------|------------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |          |       | Preparati    | on Method: EP | A 1638   |            |   |
| * Boron, Total                        | 3/11/21 14:53 | 3/12/21 14:4 | 14       | 1.015 | Not Detected | mg/L          | 0.030000 | 0.1015     | U |
| * Calcium, Total                      | 3/11/21 14:53 | 3/12/21 14:4 | 14       | 1.015 | Not Detected | mg/L          | 0.070035 | 0.406      | U |
| * Iron, Total                         | 3/11/21 14:53 | 3/12/21 14:4 | 14 ·     | 1.015 | Not Detected | mg/L          | 0.008120 | 0.0406     | U |
| * Lithium, Total                      | 3/11/21 14:53 | 3/12/21 14:4 | 14       | 1.015 | Not Detected | mg/L          | 0.007105 | 0.01999956 | U |
| * Magnesium, Total                    | 3/11/21 14:53 | 3/12/21 14:4 | 14 ·     | 1.015 | Not Detected | mg/L          | 0.021315 | 0.406      | U |
| * Sodium, Total                       | 3/11/21 14:53 | 3/12/21 14:4 | 14 ·     | 1.015 | Not Detected | mg/L          | 0.02030  | 0.406      | U |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |          |       | Preparati    | on Method: EP | A 1638   |            |   |
| * Antimony, Total                     | 2/23/21 13:40 | 2/25/21 11:1 | 15       | 1.015 | Not Detected | mg/L          | 0.000507 | 0.001015   | U |
| * Arsenic, Total                      | 2/23/21 13:40 | 2/25/21 11:1 | 15       | 1.015 | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Barium, Total                       | 2/23/21 13:40 | 2/25/21 11:1 | 15       | 1.015 | Not Detected | mg/L          | 0.000101 | 0.000203   | U |
| * Beryllium, Total                    | 2/23/21 13:40 | 2/25/21 11:1 | 15       | 1.015 | Not Detected | mg/L          | 0.000406 | 0.001015   | U |
| * Cadmium, Total                      | 2/23/21 13:40 | 2/25/21 11:1 | 15       | 1.015 | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Chromium, Total                     | 2/23/21 13:40 | 2/25/21 11:1 | 15       | 1.015 | Not Detected | mg/L          | 0.000203 | 0.001015   | U |
| * Cobalt, Total                       | 2/23/21 13:40 | 2/25/21 11:1 | 15       | 1.015 | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Lead, Total                         | 2/23/21 13:40 | 2/25/21 11:1 | 15       | 1.015 | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 2/23/21 13:40 | 2/25/21 11:1 | 15       | 1.015 | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Manganese, Total                    | 2/23/21 13:40 | 2/25/21 11:1 | 15       | 1.015 | 0.0000796    | mg/L          | 0.000068 | 0.000203   | J |
| * Potassium, Total                    | 2/23/21 13:40 | 2/25/21 11:1 | 15       | 1.015 | Not Detected | mg/L          | 0.169505 | 0.5075     | U |
| * Selenium, Total                     | 2/23/21 13:40 | 2/25/21 11:1 | 15       | 1.015 | Not Detected | mg/L          | 0.000507 | 0.001015   | U |
| * Thallium, Total                     | 2/23/21 13:40 | 2/25/21 11:1 | 15       | 1.015 | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 245.1          | Anal          | yst: ABB     |          |       |              |               |          |            |   |
| * Mercury, Total by CVAA              | 3/8/21 11:16  | 3/9/21 11:57 | 7        | 1     | Not Detected | mg/L          | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2540C           | Anal          | yst: TJW     |          |       |              |               |          |            |   |
| * Solids, Dissolved                   | 2/25/21 10:55 | 3/2/21 09:30 | ) .      | 1     | Not Detected | mg/L          |          | 25         | U |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |          |       |              |               |          |            |   |
| * Chloride                            | 2/25/21 10:35 | 2/25/21 10:3 | 35       | 1     | Not Detected | mg/L          | 0.50     | 1          | U |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |          |       |              |               |          |            |   |
| * Fluoride                            | 2/25/21 15:13 | 2/25/21 15:1 | 13       | 1     | Not Detected | mg/L          | 0.06     | 0.1        | U |
| Analytical Method: SM4500SO4 E 2011   | Anai          | lyst: JCC    |          |       |              |               |          |            |   |
| * Sulfate                             | 2/23/21 15:17 | •            | 17       | 1     | Not Detected | ma/L          | 0.50     | 1          | U |

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

# **Batch QC Summary**



Customer Account: WMWGORPUFB

**Sample Date:** 2/22/21 13:20

**Customer ID:** 

**Delivery Date:** 2/23/21 09:37

**Description**: Gorgas Pooled Upgradient Field Blank-1

Laboratory ID Number: BB03932

|         |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB03934 | Arsenic, Total         | mg/L  | 0.0000056  | 0.000147 | 0.10  | 0.105   | 0.104   | 0.105    | 0.0850 to 0.115    | 105  | 70.0 to 130 | 0.957 | 20.0          |
| BB03934 | Barium, Total          | mg/L  | 0.0000266  | 0.000200 | 0.10  | 0.0985  | 0.102   | 0.0996   | 0.0850 to 0.115    | 98.5 | 70.0 to 130 | 3.49  | 20.0          |
| BB03934 | Beryllium, Total       | mg/L  | 0.0000157  | 0.000880 | 0.10  | 0.0921  | 0.0961  | 0.0977   | 0.0850 to 0.115    | 92.1 | 70.0 to 130 | 4.25  | 20.0          |
| BB03934 | Sodium, Total          | mg/L  | 0.00835    | 0.0440   | 5.00  | 5.04    | 4.98    | 5.24     | 4.25 to 5.75       | 101  | 70.0 to 130 | 1.20  | 20.0          |
| BB03934 | Mercury, Total by CVAA | mg/L  | 0.000103   | 0.000500 | 0.004 | 0.00427 | 0.00420 | 0.00414  | 0.00340 to 0.00460 | 107  | 70.0 to 130 | 1.65  | 20.0          |
| BB03934 | Magnesium, Total       | mg/L  | -0.000195  | 0.0462   | 5.00  | 5.07    | 5.04    | 5.12     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.593 | 20.0          |
| BB03934 | Lead, Total            | mg/L  | 0.0000041  | 0.000147 | 0.10  | 0.113   | 0.109   | 0.109    | 0.0850 to 0.115    | 113  | 70.0 to 130 | 3.60  | 20.0          |
| BB03934 | Selenium, Total        | mg/L  | 0.0000614  | 0.00100  | 0.10  | 0.0984  | 0.0971  | 0.101    | 0.0850 to 0.115    | 98.4 | 70.0 to 130 | 1.33  | 20.0          |
| BB03934 | Calcium, Total         | mg/L  | 0.000993   | 0.152    | 5.00  | 5.03    | 5.02    | 4.98     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.199 | 20.0          |
| BB03934 | Cobalt, Total          | mg/L  | -0.0000680 | 0.000147 | 0.10  | 0.103   | 0.103   | 0.104    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 0.00  | 20.0          |
| BB03934 | Iron, Total            | mg/L  | 0.000896   | 0.0176   | 0.2   | 0.202   | 0.202   | 0.201    | 0.170 to 0.230     | 101  | 70.0 to 130 | 0.00  | 20.0          |
| BB03934 | Potassium, Total       | mg/L  | -0.000271  | 0.367    | 10.0  | 10.1    | 9.95    | 10.1     | 8.50 to 11.5       | 101  | 70.0 to 130 | 1.50  | 20.0          |
| BB03934 | Thallium, Total        | mg/L  | -0.0000628 | 0.000147 | 0.10  | 0.108   | 0.104   | 0.104    | 0.0850 to 0.115    | 108  | 70.0 to 130 | 3.77  | 20.0          |
| BB03934 | Boron, Total           | mg/L  | -0.00165   | 0.0650   | 1.00  | 1.00    | 1.00    | 1.02     | 0.850 to 1.15      | 100  | 70.0 to 130 | 0.00  | 20.0          |
| BB03934 | Cadmium, Total         | mg/L  | 0.0000032  | 0.000147 | 0.10  | 0.0999  | 0.0977  | 0.101    | 0.0850 to 0.115    | 99.9 | 70.0 to 130 | 2.23  | 20.0          |
| BB03934 | Lithium, Total         | mg/L  | -0.0000744 | 0.0154   | 0.20  | 0.202   | 0.200   | 0.210    | 0.170 to 0.230     | 101  | 70.0 to 130 | 0.995 | 20.0          |
| BB03934 | Manganese, Total       | mg/L  | 0.0000409  | 0.000147 | 0.10  | 0.0998  | 0.102   | 0.101    | 0.0850 to 0.115    | 99.7 | 70.0 to 130 | 2.18  | 20.0          |
| BB03934 | Antimony, Total        | mg/L  | 0.000234   | 0.00100  | 0.10  | 0.0937  | 0.0965  | 0.0942   | 0.0850 to 0.115    | 93.7 | 70.0 to 130 | 2.94  | 20.0          |
| BB03934 | Chromium, Total        | mg/L  | -0.000107  | 0.000440 | 0.10  | 0.102   | 0.104   | 0.104    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 1.94  | 20.0          |
| BB03934 | Molybdenum, Total      | mg/L  | -0.0000018 | 0.000147 | 0.10  | 0.0968  | 0.0945  | 0.0970   | 0.0850 to 0.115    | 96.8 | 70.0 to 130 | 2.40  | 20.0          |

Comments:

## **Batch QC Summary**



Customer Account: WMWGORPUFB

Sample Date:

2/22/21 13:20

**Customer ID:** 

**Delivery Date:** 

2/23/21 09:37

Description: Gorgas Pooled Upgradient Field Blank-1

Laboratory ID Number: BB03932

|         |                   |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|-------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis          | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB03934 | Chloride          | mg/L  | -0.0953 | 0.500  | 10.0  | 10.5 | -0.0804   | 10.1     | 9.00 to 11.0 | 105  | 80.0 to 120 | 0.00  | 20.0          |
| BB03933 | Solids, Dissolved | mg/L  | -1.00   | 25.0   |       |      | 3230      | 51.0     | 40.0 to 60.0 |      |             | 0.623 | 5.00          |
| BB03934 | Fluoride          | mg/L  | 0.0288  | 0.0500 | 2.50  | 2.50 | 0.0282    | 2.60     | 2.25 to 2.75 | 100  | 80.0 to 120 | 0.00  | 20.0          |
| BB03934 | Sulfate           | mg/L  | -0.466  | 0.500  | 20.0  | 19.6 | -0.457    | 19.8     | 18.0 to 22.0 | 98.0 | 80.0 to 120 | 0.00  | 20.0          |

Comments:

# Certificate Of Analysis



Description: Gorgas Pooled Upgradient - MW-4Location Code:WMWGORPUCollected:2/22/21 14:07

Customer ID:

Submittal Date: 2/23/21 09:37

Laboratory ID Number: BB03933

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units                        | MDL      | RL         | Q |  |  |  |
|------------------------------|---------------|--------------|-------------|--------------|------------------------------|----------|------------|---|--|--|--|
| Analytical Method: EPA 200.7 | Analy         | /st: RDA     |             | Prepara      | Preparation Method: EPA 1638 |          |            |   |  |  |  |
| * Boron, Total               | 3/11/21 14:53 | 3/12/21 14:4 | 7 1.015     | 0.0397       | mg/L                         | 0.030000 | 0.1015     | J |  |  |  |
| * Calcium, Total             | 3/11/21 14:53 | 3/12/21 15:5 | 0 20.3      | 271          | mg/L                         | 1.4007   | 8.12       |   |  |  |  |
| * Iron, Total                | 3/11/21 14:53 | 3/12/21 14:4 | 7 1.015     | 0.0362       | mg/L                         | 0.008120 | 0.0406     | J |  |  |  |
| * Lithium, Total             | 3/11/21 14:53 | 3/12/21 14:4 | 7 1.015     | 0.0558       | mg/L                         | 0.007105 | 0.01999956 | 6 |  |  |  |
| * Magnesium, Total           | 3/11/21 14:53 | 3/12/21 15:5 | 0 20.3      | 436          | mg/L                         | 0.4263   | 8.12       |   |  |  |  |
| * Sodium, Total              | 3/11/21 14:53 | 3/12/21 14:4 | 7 1.015     | 39.8         | mg/L                         | 0.02030  | 0.406      |   |  |  |  |
| Analytical Method: EPA 200.7 | Analy         | /st: RDA     |             |              |                              |          |            |   |  |  |  |
| * Iron, Dissolved            | 3/11/21 11:00 | 3/12/21 11:1 | 7 1.015     | Not Detected | d mg/L                       | 0.008120 | 0.0406     | U |  |  |  |
| Analytical Method: EPA 200.8 | Analy         | /st: DLJ     |             | Prepara      | tion Method:                 | EPA 1638 |            |   |  |  |  |
| * Antimony, Total            | 2/23/21 13:40 | 2/25/21 11:1 | 8 1.015     | Not Detected | d mg/L                       | 0.000507 | 0.001015   | U |  |  |  |
| * Arsenic, Total             | 2/23/21 13:40 | 2/25/21 11:1 | 8 1.015     | 0.000125     | mg/L                         | 0.000068 | 0.000203   | J |  |  |  |
| * Barium, Total              | 2/23/21 13:40 | 2/25/21 11:1 | 8 1.015     | 0.0111       | mg/L                         | 0.000101 | 0.000203   |   |  |  |  |
| * Beryllium, Total           | 2/23/21 13:40 | 2/25/21 11:1 | 8 1.015     | Not Detected | g mg/L                       | 0.000406 | 0.001015   | U |  |  |  |
| * Cadmium, Total             | 2/23/21 13:40 | 2/25/21 11:1 | 8 1.015     | 0.0000896    | mg/L                         | 0.000068 | 0.000203   | J |  |  |  |
| * Chromium, Total            | 2/23/21 13:40 | 2/25/21 11:1 | 8 1.015     | Not Detected | g mg/L                       | 0.000203 | 0.001015   | U |  |  |  |
| * Cobalt, Total              | 2/23/21 13:40 | 2/25/21 11:1 | 8 1.015     | Not Detected | g mg/L                       | 0.000068 | 0.000203   | U |  |  |  |
| * Lead, Total                | 2/23/21 13:40 | 2/25/21 11:1 | 8 1.015     | Not Detected | g mg/L                       | 0.000068 | 0.000203   | U |  |  |  |
| * Molybdenum, Total          | 2/23/21 13:40 | 2/25/21 11:1 | 8 1.015     | 0.000131     | mg/L                         | 0.000068 | 0.000203   | J |  |  |  |
| * Potassium, Total           | 2/23/21 13:40 | 2/25/21 11:1 | 8 1.015     | 7.90         | mg/L                         | 0.169505 | 0.5075     |   |  |  |  |
| * Manganese, Total           | 2/23/21 13:40 | 2/25/21 11:1 | 8 1.015     | 0.000987     | mg/L                         | 0.000068 | 0.000203   |   |  |  |  |
| * Selenium, Total            | 2/23/21 13:40 | 2/25/21 11:1 | 8 1.015     | 0.00222      | mg/L                         | 0.000507 | 0.001015   |   |  |  |  |
| * Thallium, Total            | 2/23/21 13:40 | 2/25/21 11:1 | 8 1.015     | Not Detected | d mg/L                       | 0.000068 | 0.000203   | U |  |  |  |
| Analytical Method: EPA 200.8 | Analy         | /st: DLJ     |             |              |                              |          |            |   |  |  |  |
| * Manganese, Dissolved       | 2/23/21 14:25 | 2/25/21 10:4 | 4 1.015     | 0.000282     | mg/L                         | 0.000068 | 0.000203   |   |  |  |  |
| Analytical Method: EPA 245.1 | Analy         | /st: ABB     |             |              |                              |          |            |   |  |  |  |
| * Mercury, Total by CVAA     | 3/8/21 11:16  | 3/9/21 11:59 | 1           | Not Detected | d mg/L                       | 0.0003   | 0.0005     | U |  |  |  |
| Analytical Method: SM 2320 B | Anal          | /st: JAG     |             |              |                              |          |            |   |  |  |  |
| Alkalinity, Total as CaCO3   | 3/3/21 10:35  | 3/3/21 11:07 | 1           | 190          | mg/L                         |          | 0.1        |   |  |  |  |
| Analytical Method: SM 2540C  | Anal          | yst: TJW     |             |              |                              |          |            |   |  |  |  |
| * Solids, Dissolved          | 2/25/21 10:55 | 3/2/21 09:30 | 1           | 3190         | mg/L                         |          | 166.7      |   |  |  |  |

MDL's and RL's are adjusted for sample dilution, as applicable

Laboratory ID Number: BB03933

### Certificate Of Analysis



Description: Gorgas Pooled Upgradient - MW-4

**Location Code:** 

WMWGORPU

Collected:

Customer ID:

2/22/21 14:07

Sustomer ID:

Submittal Date:

ate: 2/23/21 09:37

| Name                                  | Prepared      | Analyzed     | Vio Spec   | DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|------------|----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anai          | lyst: JAG    |            |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 10:35  | 3/3/21 11:07 | 7 1        | I  | 190     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 10:35  | 3/3/21 11:07 | <b>'</b> 1 | 1  | 0.05    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Anai          | lyst: JCC    |            |    |         |       |       |     |    |
| * Chloride                            | 2/25/21 10:36 | 2/25/21 10:3 | 36 1       | 1  | 1.52    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Anai          | lyst: JCC    |            |    |         |       |       |     |    |
| * Fluoride                            | 2/25/21 15:14 | 2/25/21 15:1 | 4 1        | 1  | 0.357   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Anai          | yst: JCC     |            |    |         |       |       |     |    |
| * Sulfate                             | 2/23/21 15:18 | 2/23/21 15:1 | 8 8        | 30 | 2040    | mg/L  | 40.00 | 80  |    |
| Analytical Method: Field Measurements | Anai          | lyst: TJD    |            |    |         |       |       |     |    |
| Conductivity                          | 2/22/21 14:04 | 2/22/21 14:0 | )4         |    | 3340.97 | uS/cm |       |     | FA |
| рН                                    | 2/22/21 14:04 | 2/22/21 14:0 | )4         |    | 6.19    | SU    |       |     | FA |
| Temperature                           | 2/22/21 14:04 | 2/22/21 14:0 | )4         |    | 19.93   | С     |       |     | FA |
| Turbidity                             | 2/22/21 14:04 | 2/22/21 14:0 | )4         |    | 0.75    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 3/23/21

### **Batch QC Summary**



**Customer Account:** WMWGORPU **Sample Date:** 2/22/21 14:07

**Customer ID:** 

**Delivery Date:** 2/23/21 09:37

Description: Gorgas Pooled Upgradient - MW-4

Laboratory ID Number: BB03933

|         |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB03934 | Arsenic, Total         | mg/L  | 0.0000056  | 0.000147 | 0.10  | 0.105   | 0.104   | 0.105    | 0.0850 to 0.115    | 105  | 70.0 to 130 | 0.957 | 20.0          |
| 3B03933 | Iron, Dissolved        | mg/L  | -0.0000794 | 0.0176   | 0.2   | 0.197   | 0.200   | 0.205    | 0.170 to 0.230     | 98.5 | 70.0 to 130 | 1.51  | 20.0          |
| 3B03934 | Barium, Total          | mg/L  | 0.0000266  | 0.000200 | 0.10  | 0.0985  | 0.102   | 0.0996   | 0.0850 to 0.115    | 98.5 | 70.0 to 130 | 3.49  | 20.0          |
| 3B03934 | Beryllium, Total       | mg/L  | 0.0000157  | 0.000880 | 0.10  | 0.0921  | 0.0961  | 0.0977   | 0.0850 to 0.115    | 92.1 | 70.0 to 130 | 4.25  | 20.0          |
| 3B03934 | Sodium, Total          | mg/L  | 0.00835    | 0.0440   | 5.00  | 5.04    | 4.98    | 5.24     | 4.25 to 5.75       | 101  | 70.0 to 130 | 1.20  | 20.0          |
| 3B03934 | Mercury, Total by CVAA | mg/L  | 0.000103   | 0.000500 | 0.004 | 0.00427 | 0.00420 | 0.00414  | 0.00340 to 0.00460 | 107  | 70.0 to 130 | 1.65  | 20.0          |
| 3B03934 | Magnesium, Total       | mg/L  | -0.000195  | 0.0462   | 5.00  | 5.07    | 5.04    | 5.12     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.593 | 20.0          |
| 3B03934 | Lead, Total            | mg/L  | 0.0000041  | 0.000147 | 0.10  | 0.113   | 0.109   | 0.109    | 0.0850 to 0.115    | 113  | 70.0 to 130 | 3.60  | 20.0          |
| 3B03934 | Selenium, Total        | mg/L  | 0.0000614  | 0.00100  | 0.10  | 0.0984  | 0.0971  | 0.101    | 0.0850 to 0.115    | 98.4 | 70.0 to 130 | 1.33  | 20.0          |
| BB03933 | Manganese, Dissolved   | mg/L  | 0.0000275  | 0.000147 | 0.10  | 0.100   | 0.0992  | 0.102    | 0.0850 to 0.115    | 99.7 | 70.0 to 130 | 0.803 | 20.0          |
| BB03934 | Calcium, Total         | mg/L  | 0.000993   | 0.152    | 5.00  | 5.03    | 5.02    | 4.98     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.199 | 20.0          |
| BB03934 | Cobalt, Total          | mg/L  | -0.0000680 | 0.000147 | 0.10  | 0.103   | 0.103   | 0.104    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 0.00  | 20.0          |
| BB03934 | Iron, Total            | mg/L  | 0.000896   | 0.0176   | 0.2   | 0.202   | 0.202   | 0.201    | 0.170 to 0.230     | 101  | 70.0 to 130 | 0.00  | 20.0          |
| BB03934 | Potassium, Total       | mg/L  | -0.000271  | 0.367    | 10.0  | 10.1    | 9.95    | 10.1     | 8.50 to 11.5       | 101  | 70.0 to 130 | 1.50  | 20.0          |
| BB03934 | Thallium, Total        | mg/L  | -0.0000628 | 0.000147 | 0.10  | 0.108   | 0.104   | 0.104    | 0.0850 to 0.115    | 108  | 70.0 to 130 | 3.77  | 20.0          |
| BB03934 | Boron, Total           | mg/L  | -0.00165   | 0.0650   | 1.00  | 1.00    | 1.00    | 1.02     | 0.850 to 1.15      | 100  | 70.0 to 130 | 0.00  | 20.0          |
| BB03934 | Cadmium, Total         | mg/L  | 0.0000032  | 0.000147 | 0.10  | 0.0999  | 0.0977  | 0.101    | 0.0850 to 0.115    | 99.9 | 70.0 to 130 | 2.23  | 20.0          |
| 3B03934 | Lithium, Total         | mg/L  | -0.0000744 | 0.0154   | 0.20  | 0.202   | 0.200   | 0.210    | 0.170 to 0.230     | 101  | 70.0 to 130 | 0.995 | 20.0          |
| BB03934 | Manganese, Total       | mg/L  | 0.0000409  | 0.000147 | 0.10  | 0.0998  | 0.102   | 0.101    | 0.0850 to 0.115    | 99.7 | 70.0 to 130 | 2.18  | 20.0          |
| 3B03934 | Antimony, Total        | mg/L  | 0.000234   | 0.00100  | 0.10  | 0.0937  | 0.0965  | 0.0942   | 0.0850 to 0.115    | 93.7 | 70.0 to 130 | 2.94  | 20.0          |
| 3B03934 | Chromium, Total        | mg/L  | -0.000107  | 0.000440 | 0.10  | 0.102   | 0.104   | 0.104    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 1.94  | 20.0          |
| 3B03934 | Molybdenum, Total      | mg/L  | -0.0000018 | 0.000147 | 0.10  | 0.0968  | 0.0945  | 0.0970   | 0.0850 to 0.115    | 96.8 | 70.0 to 130 | 2.40  | 20.0          |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 3/23/21

### **Batch QC Summary**



Customer Account: WMWGORPU

Sample Date:

2/22/21 14:07

Customer ID:

Delivery Date:

2/23/21 09:37

Description: Gorgas Pooled Upgradient - MW-4

Laboratory ID Number: BB03933

|         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB03934 | Chloride                   | mg/L  | -0.0953 | 0.500  | 10.0  | 10.5 | -0.0804   | 10.1     | 9.00 to 11.0 | 105  | 80.0 to 120 | 0.00  | 20.0          |
| BB03933 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 186       | 52.0     | 45.0 to 55.0 |      |             | 2.13  | 10.0          |
| BB03933 | Solids, Dissolved          | mg/L  | -1.00   | 25.0   |       |      | 3230      | 51.0     | 40.0 to 60.0 |      |             | 0.623 | 5.00          |
| BB03934 | Fluoride                   | mg/L  | 0.0288  | 0.0500 | 2.50  | 2.50 | 0.0282    | 2.60     | 2.25 to 2.75 | 100  | 80.0 to 120 | 0.00  | 20.0          |
| BB03934 | Sulfate                    | mg/L  | -0.466  | 0.500  | 20.0  | 19.6 | -0.457    | 19.8     | 18.0 to 22.0 | 98.0 | 80.0 to 120 | 0.00  | 20.0          |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 3/23/21

Reported: 3/24/2021 Version: 3.2 COA\_CCR

### **Certificate Of Analysis**



Description: Gorgas Pooled Upgradient Equipment Blank-1Location Code:WMWGORPUEBCollected:2/22/21 14:30

Customer ID:

**Submittal Date:** 2/23/21 09:37

Laboratory ID Number: BB03934

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF   | Results      | Units          | MDL      | RL         | Q |
|---------------------------------------|---------------|--------------|----------|------|--------------|----------------|----------|------------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |          |      | Preparati    | on Method: EPA | 1638     |            |   |
| * Boron, Total                        | 3/11/21 14:53 | 3/12/21 14:5 | 51 1.    | .015 | Not Detected | mg/L           | 0.030000 | 0.1015     | U |
| * Calcium, Total                      | 3/11/21 14:53 | 3/12/21 14:5 | 51 1.    | .015 | Not Detected | mg/L           | 0.070035 | 0.406      | U |
| * Iron, Total                         | 3/11/21 14:53 | 3/12/21 14:5 | 51 1     | .015 | Not Detected | mg/L           | 0.008120 | 0.0406     | U |
| * Lithium, Total                      | 3/11/21 14:53 | 3/12/21 14:5 | 51 1.    | .015 | Not Detected | mg/L           | 0.007105 | 0.01999956 | U |
| * Magnesium, Total                    | 3/11/21 14:53 | 3/12/21 14:5 | 51 1     | .015 | 0.0263       | mg/L           | 0.021315 | 0.406      | J |
| * Sodium, Total                       | 3/11/21 14:53 | 3/12/21 14:5 | 51 1     | .015 | Not Detected | mg/L           | 0.02030  | 0.406      | U |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |          |      | Preparati    | on Method: EPA | 1638     |            |   |
| * Antimony, Total                     | 2/23/21 13:40 | 2/25/21 11:2 | 21 1     | .015 | Not Detected | mg/L           | 0.000507 | 0.001015   | U |
| * Arsenic, Total                      | 2/23/21 13:40 | 2/25/21 11:2 | 21 1     | .015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Barium, Total                       | 2/23/21 13:40 | 2/25/21 11:2 | 21 1     | .015 | Not Detected | mg/L           | 0.000101 | 0.000203   | U |
| * Beryllium, Total                    | 2/23/21 13:40 | 2/25/21 11:2 | 21 1     | .015 | Not Detected | mg/L           | 0.000406 | 0.001015   | U |
| * Cadmium, Total                      | 2/23/21 13:40 | 2/25/21 11:2 | 21 1     | .015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Chromium, Total                     | 2/23/21 13:40 | 2/25/21 11:2 | 21 1     | .015 | Not Detected | mg/L           | 0.000203 | 0.001015   | U |
| * Cobalt, Total                       | 2/23/21 13:40 | 2/25/21 11:2 | 21 1     | .015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Lead, Total                         | 2/23/21 13:40 | 2/25/21 11:2 | 21 1     | .015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 2/23/21 13:40 | 2/25/21 11:2 | 21 1     | .015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Manganese, Total                    | 2/23/21 13:40 | 2/25/21 11:2 | 21 1     | .015 | 0.0000749    | mg/L           | 0.000068 | 0.000203   | J |
| * Potassium, Total                    | 2/23/21 13:40 | 2/25/21 11:2 | 21 1     | .015 | Not Detected | mg/L           | 0.169505 | 0.5075     | U |
| * Selenium, Total                     | 2/23/21 13:40 | 2/25/21 11:2 | 21 1     | .015 | Not Detected | mg/L           | 0.000507 | 0.001015   | U |
| * Thallium, Total                     | 2/23/21 13:40 | 2/25/21 11:2 | 21 1     | .015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 245.1          | Anal          | yst: ABB     |          |      |              |                |          |            |   |
| * Mercury, Total by CVAA              | 3/8/21 11:16  | 3/9/21 12:02 | 2 1      |      | Not Detected | mg/L           | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2540C           | Anal          | yst: TJW     |          |      |              |                |          |            |   |
| * Solids, Dissolved                   | 2/25/21 10:55 | 3/2/21 09:30 | ) 1      |      | Not Detected | mg/L           |          | 25         | U |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |          |      |              |                |          |            |   |
| * Chloride                            | 2/25/21 10:37 | 2/25/21 10:3 | 37 1     |      | Not Detected | mg/L           | 0.50     | 1          | U |
| Analytical Method: SM4500F G 2017     | Anai          | yst: JCC     |          |      |              |                |          |            |   |
| * Fluoride                            | 2/25/21 15:15 | 2/25/21 15:1 | 5 1      |      | Not Detected | mg/L           | 0.06     | 0.1        | U |
| Analytical Method: SM4500SO4 E 2011   | Anai          | vst: JCC     |          |      |              |                |          |            |   |
| * Sulfate                             | 2/23/21 15:20 | •            | 20 1     |      | Not Detected | ma/L           | 0.50     | 1          | U |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



Customer Account: WMWGORPUEB

**Sample Date:** 2/22/21 14:30

**Customer ID:** 

**Delivery Date:** 2/23/21 09:37

Description: Gorgas Pooled Upgradient Equipment Blank-1

Laboratory ID Number: BB03934

|         |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB03934 | Chromium, Total        | mg/L  | -0.000107  | 0.000440 | 0.10  | 0.102   | 0.104   | 0.104    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 1.94  | 20.0          |
| BB03934 | Molybdenum, Total      | mg/L  | -0.0000018 | 0.000147 | 0.10  | 0.0968  | 0.0945  | 0.0970   | 0.0850 to 0.115    | 96.8 | 70.0 to 130 | 2.40  | 20.0          |
| BB03934 | Calcium, Total         | mg/L  | 0.000993   | 0.152    | 5.00  | 5.03    | 5.02    | 4.98     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.199 | 20.0          |
| BB03934 | Cobalt, Total          | mg/L  | -0.0000680 | 0.000147 | 0.10  | 0.103   | 0.103   | 0.104    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 0.00  | 20.0          |
| BB03934 | Iron, Total            | mg/L  | 0.000896   | 0.0176   | 0.2   | 0.202   | 0.202   | 0.201    | 0.170 to 0.230     | 101  | 70.0 to 130 | 0.00  | 20.0          |
| BB03934 | Potassium, Total       | mg/L  | -0.000271  | 0.367    | 10.0  | 10.1    | 9.95    | 10.1     | 8.50 to 11.5       | 101  | 70.0 to 130 | 1.50  | 20.0          |
| BB03934 | Thallium, Total        | mg/L  | -0.0000628 | 0.000147 | 0.10  | 0.108   | 0.104   | 0.104    | 0.0850 to 0.115    | 108  | 70.0 to 130 | 3.77  | 20.0          |
| BB03934 | Boron, Total           | mg/L  | -0.00165   | 0.0650   | 1.00  | 1.00    | 1.00    | 1.02     | 0.850 to 1.15      | 100  | 70.0 to 130 | 0.00  | 20.0          |
| BB03934 | Cadmium, Total         | mg/L  | 0.0000032  | 0.000147 | 0.10  | 0.0999  | 0.0977  | 0.101    | 0.0850 to 0.115    | 99.9 | 70.0 to 130 | 2.23  | 20.0          |
| BB03934 | Lithium, Total         | mg/L  | -0.0000744 | 0.0154   | 0.20  | 0.202   | 0.200   | 0.210    | 0.170 to 0.230     | 101  | 70.0 to 130 | 0.995 | 20.0          |
| BB03934 | Manganese, Total       | mg/L  | 0.0000409  | 0.000147 | 0.10  | 0.0998  | 0.102   | 0.101    | 0.0850 to 0.115    | 99.7 | 70.0 to 130 | 2.18  | 20.0          |
| BB03934 | Antimony, Total        | mg/L  | 0.000234   | 0.00100  | 0.10  | 0.0937  | 0.0965  | 0.0942   | 0.0850 to 0.115    | 93.7 | 70.0 to 130 | 2.94  | 20.0          |
| BB03934 | Mercury, Total by CVAA | mg/L  | 0.000103   | 0.000500 | 0.004 | 0.00427 | 0.00420 | 0.00414  | 0.00340 to 0.00460 | 107  | 70.0 to 130 | 1.65  | 20.0          |
| BB03934 | Magnesium, Total       | mg/L  | -0.000195  | 0.0462   | 5.00  | 5.07    | 5.04    | 5.12     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.593 | 20.0          |
| BB03934 | Lead, Total            | mg/L  | 0.0000041  | 0.000147 | 0.10  | 0.113   | 0.109   | 0.109    | 0.0850 to 0.115    | 113  | 70.0 to 130 | 3.60  | 20.0          |
| BB03934 | Selenium, Total        | mg/L  | 0.0000614  | 0.00100  | 0.10  | 0.0984  | 0.0971  | 0.101    | 0.0850 to 0.115    | 98.4 | 70.0 to 130 | 1.33  | 20.0          |
| BB03934 | Barium, Total          | mg/L  | 0.0000266  | 0.000200 | 0.10  | 0.0985  | 0.102   | 0.0996   | 0.0850 to 0.115    | 98.5 | 70.0 to 130 | 3.49  | 20.0          |
| BB03934 | Beryllium, Total       | mg/L  | 0.0000157  | 0.000880 | 0.10  | 0.0921  | 0.0961  | 0.0977   | 0.0850 to 0.115    | 92.1 | 70.0 to 130 | 4.25  | 20.0          |
| BB03934 | Sodium, Total          | mg/L  | 0.00835    | 0.0440   | 5.00  | 5.04    | 4.98    | 5.24     | 4.25 to 5.75       | 101  | 70.0 to 130 | 1.20  | 20.0          |
| BB03934 | Arsenic, Total         | mg/L  | 0.0000056  | 0.000147 | 0.10  | 0.105   | 0.104   | 0.105    | 0.0850 to 0.115    | 105  | 70.0 to 130 | 0.957 | 20.0          |

### **Batch QC Summary**



Customer Account: WMWGORPUEB

Sample Date: 2/22

2/22/21 14:30

**Customer ID:** 

Delivery Date:

2/23/21 09:37

Description: Gorgas Pooled Upgradient Equipment Blank-1

Laboratory ID Number: BB03934

|         |                   |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|-------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis          | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB03934 | Chloride          | mg/L  | -0.0953 | 0.500  | 10.0  | 10.5 | -0.0804   | 10.1     | 9.00 to 11.0 | 105  | 80.0 to 120 | 0.00  | 20.0          |
| BB03933 | Solids, Dissolved | mg/L  | -1.00   | 25.0   |       |      | 3230      | 51.0     | 40.0 to 60.0 |      |             | 0.623 | 5.00          |
| BB03934 | Fluoride          | mg/L  | 0.0288  | 0.0500 | 2.50  | 2.50 | 0.0282    | 2.60     | 2.25 to 2.75 | 100  | 80.0 to 120 | 0.00  | 20.0          |
| BB03934 | Sulfate           | mg/L  | -0.466  | 0.500  | 20.0  | 19.6 | -0.457    | 19.8     | 18.0 to 22.0 | 98.0 | 80.0 to 120 | 0.00  | 20.0          |



| Abbreviation | Description                                                                                                                                         |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| DF           | Dilution Factor                                                                                                                                     |
| LCS          | Lab Control Sample                                                                                                                                  |
| LFM          | Lab Fortified Matrix                                                                                                                                |
| MB           | Method Blank                                                                                                                                        |
| MDL          | Method Detection Limit; minimum concentration of an analyte that can be determined with 99% confidence that the concentration is greater than zero. |
| MS           | Matrix Spike                                                                                                                                        |
| MSD          | Matrix Spike Duplicate                                                                                                                              |
| Prec         | Precision (% RPD)                                                                                                                                   |
| Q            | Qualifier; comment used to note deviations or additional information associated with analytical results.                                            |
| QC           | Quality Control                                                                                                                                     |
| Rec          | Recovery of Matrix Spike                                                                                                                            |
| RL           | Reporting Limit; lowest concentration at which an analyte can be quantitatively measured.                                                           |
| Vio Spec     | Violation Specification; regulatory limit which has been exceeded by the sample analyzed.                                                           |
|              |                                                                                                                                                     |
| Qualifier    | Description                                                                                                                                         |
| FA           | Field results were reviewed by the Water Field Group.                                                                                               |
| J            | Reported value is an estimate because concentration is less than reporting limit.                                                                   |
| U            | Compound was analyzed, but not detected.                                                                                                            |
|              |                                                                                                                                                     |

| Alabama Pow  Lab  Field  SERVICES                                                     | Chain Groun   | of Custodwater  eral Testing L |          | La              | eld Com                 | _                                                | Outsid                                          |                             | ab ETA           |             |              |
|---------------------------------------------------------------------------------------|---------------|--------------------------------|----------|-----------------|-------------------------|--------------------------------------------------|-------------------------------------------------|-----------------------------|------------------|-------------|--------------|
| Reques                                                                                | sted Comple   | te Date Rout                   | —<br>ine |                 |                         |                                                  | Results To                                      | Dustin Br                   | ooks. Gred       | Dver        |              |
| _                                                                                     | _             | entative John                  |          | te              |                         |                                                  | Requested By                                    |                             |                  | , - ,       |              |
|                                                                                       | _             | ollector TJ Da                 |          |                 |                         |                                                  | Location                                        |                             |                  | pgradient   |              |
| 1                                                                                     |               |                                | · -      | 7               | 1                       | . 1                                              |                                                 |                             |                  |             |              |
| Bottles                                                                               | 1 Metals      | 500 mL                         | ┥┝       | Hg              | 250 m                   |                                                  |                                                 | 250 mL                      | 7 N/A            | N/A         |              |
|                                                                                       | 2 Diss Metals | 300 IIIL                       |          | 1103            | 30011                   |                                                  | 6 Alkallility 2                                 | 250 IIIL                    | O N/A            | IN//        | <del>\</del> |
|                                                                                       | Comments      | Resigned COC du                | ie to    | upload error. I | _BM 2/23/2 <sup>-</sup> | 1                                                |                                                 |                             |                  |             |              |
|                                                                                       |               |                                |          |                 | D1                      |                                                  |                                                 |                             | т 1              |             |              |
|                                                                                       | Camanla #     | Data                           |          | Time            |                         |                                                  | Description                                     |                             |                  | Tabild      |              |
| N                                                                                     |               |                                | 21       |                 |                         | Groun                                            |                                                 |                             | Filler           |             |              |
| -                                                                                     |               |                                |          |                 |                         | <u> </u>                                         |                                                 |                             |                  |             |              |
| <b>⊢</b>                                                                              |               |                                |          |                 |                         | <u> </u>                                         | -                                               |                             |                  |             |              |
| F                                                                                     |               |                                |          |                 |                         | <del>                                     </del> |                                                 |                             |                  |             |              |
| -                                                                                     |               |                                |          |                 |                         |                                                  |                                                 |                             |                  |             |              |
| -                                                                                     |               | _                              |          |                 |                         |                                                  |                                                 |                             |                  |             |              |
| $\vdash$                                                                              |               |                                |          |                 |                         | +                                                |                                                 |                             |                  |             |              |
| -                                                                                     |               | 02/22/20                       | - 1      | 14.50           | 4                       | Lquipi                                           | Herre Blarik                                    |                             |                  |             |              |
|                                                                                       |               |                                |          |                 |                         |                                                  |                                                 |                             |                  |             |              |
|                                                                                       |               |                                |          |                 |                         |                                                  |                                                 |                             |                  |             |              |
|                                                                                       |               |                                |          |                 |                         |                                                  |                                                 |                             |                  |             |              |
|                                                                                       |               |                                |          |                 |                         |                                                  |                                                 |                             |                  |             |              |
|                                                                                       |               |                                |          |                 |                         |                                                  |                                                 |                             |                  |             |              |
|                                                                                       |               |                                |          |                 |                         |                                                  |                                                 |                             |                  |             |              |
|                                                                                       |               |                                |          |                 |                         | <del>                                     </del> |                                                 |                             |                  |             |              |
|                                                                                       |               |                                |          |                 |                         |                                                  |                                                 |                             |                  |             |              |
|                                                                                       |               |                                |          |                 |                         |                                                  |                                                 |                             |                  |             |              |
|                                                                                       |               |                                |          |                 |                         |                                                  |                                                 |                             |                  |             |              |
|                                                                                       |               |                                |          |                 |                         |                                                  |                                                 | _                           |                  |             |              |
|                                                                                       |               |                                |          |                 |                         |                                                  |                                                 |                             |                  |             |              |
|                                                                                       |               |                                |          |                 |                         |                                                  |                                                 |                             |                  |             |              |
|                                                                                       | D al:         | anished D                      |          |                 |                         | •                                                | Dagairra J D                                    |                             |                  | Data/T      | mc           |
| 2   Diss Metals   S00 mt   4   TDS   S00 mt   6   Alkalinity   250 mt   8   N/A   N/A |               |                                |          |                 |                         |                                                  |                                                 |                             |                  |             |              |
|                                                                                       |               | TPV                            |          |                 | Laur                    | a IVII                                           | JKIII JUSE Environmental A Date: 2021.02.23 12: | Affairs, email=lbmidkif@sou | themco.com, c=US | 02/23/2021  | 08:33        |
|                                                                                       |               |                                |          |                 |                         |                                                  |                                                 |                             |                  |             |              |
|                                                                                       |               |                                |          |                 |                         |                                                  |                                                 |                             |                  |             |              |
|                                                                                       |               |                                | _        |                 |                         |                                                  |                                                 |                             |                  |             |              |
| Sn                                                                                    | narTroll ID   | 7586-41443-5-                  |          |                 | 7                       | All                                              | metals and radio                                | ological ł                  | ottles h         | nave pH < 2 | <b>V</b>     |
|                                                                                       |               | 3901-20009-2-                  |          |                 | 1                       |                                                  | Cooler Temp                                     |                             |                  | 1           |              |
|                                                                                       | · · · · · ·   | 1308                           |          |                 | 7                       | Th                                               | ermometer ID                                    | 5408-275                    |                  |             |              |

Bottles/Pre-Preserved Bottles are provided by the GTL

Page 44 of 45

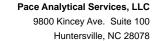
pH Strip ID 8206-45803-10-7

7.1

| Field                                                                                                                                                                                                                           | Chain of                                                                                                                                                                                                                                                                                                                          | •                     |       |             | •       | ~           | Outside                                | e Lab                                  |                  |            |                     |              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|-------------|---------|-------------|----------------------------------------|----------------------------------------|------------------|------------|---------------------|--------------|
|                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                 |                       |       | 1           |         |             |                                        | L                                      | ab ETA           |            |                     |              |
| Reques                                                                                                                                                                                                                          | sted Complete                                                                                                                                                                                                                                                                                                                     | Date Routine          |       |             |         | Res         | ults To                                | Dustin Bro                             | ooks, Gre        | g Dyer     |                     |              |
|                                                                                                                                                                                                                                 | Site Represent                                                                                                                                                                                                                                                                                                                    | ative John Pat        | te    |             |         | Reques      | sted By                                | Greg Dye                               | er               |            |                     |              |
|                                                                                                                                                                                                                                 | Colle                                                                                                                                                                                                                                                                                                                             | ector TJ Daug         | herty |             |         | Lo          | ocation                                | Gorgas F                               | ooled U          | pgradient  |                     |              |
| Bottles                                                                                                                                                                                                                         | 1 Radium                                                                                                                                                                                                                                                                                                                          | 1 L 3                 | N/A   | N/A         |         | 5 N/A       | l l                                    | I/A                                    | 7 N/A            | <b>.</b>   | N/A                 |              |
|                                                                                                                                                                                                                                 | 2 N/A                                                                                                                                                                                                                                                                                                                             | N/A 4                 | N/A   | N/A         |         | 6 N/A       | N                                      | I/A                                    | 8 N/A            |            | N/A                 |              |
|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                       |       | LBM 2/23/21 |         |             |                                        |                                        |                  |            |                     |              |
|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                       |       | Bottle      |         |             |                                        |                                        | Lab              |            |                     |              |
|                                                                                                                                                                                                                                 | Sample #                                                                                                                                                                                                                                                                                                                          | Date                  | Time  | Count       |         |             | ription                                |                                        | Filter           |            |                     |              |
| <u> </u>                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                   | -                     | 10:47 | 1           |         |             |                                        |                                        | _                |            |                     |              |
| <b>⊢</b>                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                   |                       |       |             |         |             | <u>e</u>                               |                                        |                  |            |                     |              |
| <b>⊢</b>                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                   | 1                     | i e   |             |         |             |                                        |                                        |                  |            |                     |              |
| <b>⊢</b>                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                   |                       |       |             |         |             |                                        |                                        |                  |            |                     |              |
| <b>⊢</b>                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                   | <del> </del>          |       |             |         |             |                                        |                                        |                  |            |                     |              |
| <u> </u>                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                   | <u> </u>              | i     |             |         |             | ······································ |                                        |                  |            |                     |              |
|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   | 02/22/2021            | 14.50 | '           | quipi.  | Terre Blank | •                                      |                                        |                  |            |                     |              |
| Requested Complete Date   Site Representative   John Pate   Collector   TJ Daugherty   Location   Requested By   Location   Grago Poper   Gorgas Pooled Upgradient                                                              |                                                                                                                                                                                                                                                                                                                                   |                       |       |             |         |             |                                        |                                        |                  |            |                     |              |
| Requested Complete Date Site Representative Collectory  Site Representative Collectory  Bottles I Redium 1L 3 N/A N/A 6 N/A 6 N/A N/A 8 N/A N/A 8 N/A N/A 8 N/A N/A N/A 8 N/A N/A N/A 8 N/A |                                                                                                                                                                                                                                                                                                                                   |                       |       |             |         |             |                                        |                                        |                  |            |                     |              |
| Lab ETA                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                   |                       |       |             |         |             |                                        |                                        |                  |            |                     |              |
|                                                                                                                                                                                                                                 | Requested Complete Date   Stite Representative   John Pate   Collector   Ti Daugherty   Comments   Rad Ms/MSD collected @ MW-2   N/A |                       |       |             |         |             |                                        |                                        |                  |            |                     |              |
| Commette                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                   |                       |       |             |         |             |                                        |                                        |                  |            |                     |              |
|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                       |       |             |         |             |                                        |                                        |                  |            |                     |              |
|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                       |       |             |         |             |                                        |                                        |                  |            |                     |              |
|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                       |       |             |         |             |                                        |                                        |                  |            |                     |              |
|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                       |       |             |         |             |                                        |                                        |                  |            |                     |              |
| <u> </u>                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                   |                       |       |             |         |             |                                        |                                        |                  |            |                     |              |
| _                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                   |                       |       |             |         |             |                                        |                                        |                  |            |                     |              |
| -                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                   |                       |       |             |         |             |                                        |                                        |                  |            |                     |              |
|                                                                                                                                                                                                                                 | Dalina                                                                                                                                                                                                                                                                                                                            | uiched Ry             |       |             |         | Docois      | and Day                                |                                        |                  | Data       | /Time               |              |
|                                                                                                                                                                                                                                 | Kennqu                                                                                                                                                                                                                                                                                                                            | LAL                   |       | Laur        | - Mic   |             | Digitally signed by La                 | ura Midkiff<br>. o=Alabama Power Compa | any.             |            | -                   | $\neg$       |
|                                                                                                                                                                                                                                 | <u> 7</u>                                                                                                                                                                                                                                                                                                                         | PUT                   |       | Laui        | a iviic | JKIII /     | ou=Environmental A                     | ffairs, email=lbmidkif@sout            | themco.com, c=US | 02/23/20   | )21 08:3            | 33           |
|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                       |       |             |         |             |                                        |                                        |                  |            |                     |              |
|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                       |       |             |         |             |                                        |                                        |                  |            |                     |              |
| Sn                                                                                                                                                                                                                              | narTroll ID 75                                                                                                                                                                                                                                                                                                                    | 96 <i>/</i> 11//2 E 2 |       | <br>7       | Δ11 -   | metale ar   | nd radio                               | ological k                             | ottles 1         | nave nH    | · 2 🔽               | <u>'</u><br> |
|                                                                                                                                                                                                                                 | <del></del>                                                                                                                                                                                                                                                                                                                       |                       |       | -           | 7111    |             |                                        |                                        | ouics I          | iave pii s | ` <u>~</u> <u>`</u> |              |

Bottles/Pre-Preserved Bottles are provided by the GTL

Sample Event | 1308


Page 45 of 45

Thermometer ID

N/A

pH Strip ID 8206-45803-10-7

7.1



(704)875-9092



April 09, 2021

Laura Midkiff Alabama Power 744 Highway 87 GSC #8 Calera, AL 35040

RE: Project: GORGAS POOLED UPGRADIENT 1308

Pace Project No.: 92527335

### Dear Laura Midkiff:

Enclosed are the analytical results for sample(s) received by the laboratory on March 11, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Greensburg

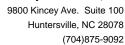
If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

kevin.herring@pacelabs.com

Kein Slury


1(704)875-9092

HORIZON Database Administrator

Enclosures

cc: Brooke Caton, Alabama Power Renee Jernigan, Alabama Power







### **CERTIFICATIONS**

Project: GORGAS POOLED UPGRADIENT 1308

Pace Project No.: 92527335

### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

**Arkansas Certification** 

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Missouri Certification #: 235

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



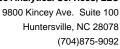
### **SAMPLE SUMMARY**

Project: GORGAS POOLED UPGRADIENT 1308

Pace Project No.: 92527335

| Lab ID      | Sample ID        | Matrix | Date Collected | Date Received  |
|-------------|------------------|--------|----------------|----------------|
| 92527335001 | BB03935 MW-1     | Water  | 02/22/21 10:47 | 03/11/21 10:00 |
| 92527335002 | BB03936 MW-1 DUP | Water  | 02/22/21 10:47 | 03/11/21 10:00 |
| 92527335003 | BB03937 MW-2     | Water  | 02/22/21 11:47 | 03/11/21 10:00 |
| 92527335004 | BB03937 MW-2 MS  | Water  | 02/22/21 11:47 | 03/11/21 10:00 |
| 92527335005 | BB03937 MW-2 MSD | Water  | 02/22/21 11:47 | 03/11/21 10:00 |
| 92527335006 | BB03938 MW-3     | Water  | 02/22/21 12:52 | 03/11/21 10:00 |
| 92527335007 | BB03939 FB-1     | Water  | 02/22/21 13:20 | 03/11/21 10:00 |
| 92527335008 | BB03940 MW-4     | Water  | 02/22/21 14:07 | 03/11/21 10:00 |
| 92527335009 | BB03941 EB-1     | Water  | 02/22/21 14:30 | 03/11/21 10:00 |




### **SAMPLE ANALYTE COUNT**

Project: GORGAS POOLED UPGRADIENT 1308

Pace Project No.: 92527335

| Lab ID      | Sample ID        | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------------|--------------------------|----------|----------------------|------------|
| 92527335001 | BB03935 MW-1     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92527335002 | BB03936 MW-1 DUP | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92527335003 | BB03937 MW-2     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92527335004 | BB03937 MW-2 MS  | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
| 92527335005 | BB03937 MW-2 MSD | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
| 92527335006 | BB03938 MW-3     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92527335007 | BB03939 FB-1     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92527335008 | BB03940 MW-4     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92527335009 | BB03941 EB-1     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg





### **PROJECT NARRATIVE**

Project: GORGAS POOLED UPGRADIENT 1308

Pace Project No.: 92527335

Method: EPA 9315

Description:9315 Total RadiumClient:Alabama PowerDate:April 09, 2021

### **General Information:**

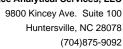
9 samples were analyzed for EPA 9315 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


### **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

### **Additional Comments:**





### **PROJECT NARRATIVE**

Project: GORGAS POOLED UPGRADIENT 1308

Pace Project No.: 92527335

Method: EPA 9320

**Description:** 9320 Radium 228 **Client:** Alabama Power **Date:** April 09, 2021

### **General Information:**

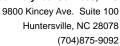
9 samples were analyzed for EPA 9320 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


### **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

### Additional Comments:





### **PROJECT NARRATIVE**

Project: GORGAS POOLED UPGRADIENT 1308

Pace Project No.: 92527335

Method:Total Radium CalculationDescription:Total Radium 228+226Client:Alabama PowerDate:April 09, 2021

### **General Information:**

7 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

### **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

### **Additional Comments:**

This data package has been reviewed for quality and completeness and is approved for release.



Project: GORGAS POOLED UPGRADIENT 1308

Pace Project No.: 92527335

| Sample: BB03935 MW-1<br>PWS: | <b>Lab ID:</b> 9252733:<br>Site ID: | 5001 Collected: 02/22/21 10:47<br>Sample Type: | Received: | 03/11/21 10:00 | Matrix: Water |      |
|------------------------------|-------------------------------------|------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                              | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Ser                 | vices - Greensburg                             |           |                |               |      |
| Radium-226                   | EPA 9315                            | 0.0302U ± 0.206 (0.521)<br>C:98% T:NA          | pCi/L     | 04/09/21 08:02 | 2 13982-63-3  |      |
|                              | Pace Analytical Ser                 | vices - Greensburg                             |           |                |               |      |
| Radium-228                   | EPA 9320                            | 0.647U ± 0.418 (0.790)<br>C:67% T:90%          | pCi/L     | 04/06/21 14:35 | 5 15262-20-1  |      |
|                              | Pace Analytical Serv                | vices - Greensburg                             |           |                |               |      |
| Total Radium                 | Total Radium Calculation            | 0.677U ± 0.624 (1.31)                          | pCi/L     | 04/09/21 12:17 | 7 7440-14-4   |      |



Project: GORGAS POOLED UPGRADIENT 1308

Pace Project No.: 92527335

| Sample: BB03936 MW-1 DUP PWS: | <b>Lab ID: 925273</b><br>Site ID: | 335002 Collected: 02/22/21 10:47<br>Sample Type: | Received: | 03/11/21 10:00 | Matrix: Water |      |
|-------------------------------|-----------------------------------|--------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                    | Method                            | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed       | CAS No.       | Qual |
|                               | Pace Analytical So                | ervices - Greensburg                             |           |                |               |      |
| Radium-226                    | EPA 9315                          | 0.164U ± 0.185 (0.367)<br>C:99% T:NA             | pCi/L     | 04/09/21 08:02 | 2 13982-63-3  |      |
|                               | Pace Analytical So                | ervices - Greensburg                             |           |                |               |      |
| Radium-228                    | EPA 9320                          | 0.644U ± 0.430 (0.825)<br>C:68% T:91%            | pCi/L     | 04/06/21 14:35 | 5 15262-20-1  |      |
|                               | Pace Analytical So                | ervices - Greensburg                             |           |                |               |      |
| Total Radium                  | Total Radium Calculation          | 0.808U ± 0.615 (1.19)                            | pCi/L     | 04/09/21 12:17 | 7 7440-14-4   |      |




Project: GORGAS POOLED UPGRADIENT 1308

Pace Project No.: 92527335

| Sample: BB03937 MW-2<br>PWS: | <b>Lab ID: 925273</b><br>Site ID: | <b>35003</b> Collected: 02/22/21 11:47 Sample Type: | Received: | 03/11/21 10:00 | Matrix: Water |      |
|------------------------------|-----------------------------------|-----------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                            | Act ± Unc (MDC) Carr Trac                           | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Se                | ervices - Greensburg                                |           |                |               |      |
| Radium-226                   | EPA 9315                          | 0.112U ± 0.169 (0.366)<br>C:96% T:NA                | pCi/L     | 04/09/21 08:02 | 2 13982-63-3  |      |
|                              | Pace Analytical Se                | ervices - Greensburg                                |           |                |               |      |
| Radium-228                   | EPA 9320                          | 0.322U ± 0.424 (0.906)<br>C:68% T:87%               | pCi/L     | 04/06/21 14:35 | 5 15262-20-1  |      |
|                              | Pace Analytical Se                | ervices - Greensburg                                |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation       | 0.434U ± 0.593 (1.27)                               | pCi/L     | 04/09/21 12:17 | 7 7440-14-4   |      |

04/06/21 14:35 15262-20-1

pCi/L





### **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: GORGAS POOLED UPGRADIENT 1308

EPA 9320

Pace Project No.: 92527335

Radium-228

Sample: BB03937 MW-2 MS Lab ID: 92527335004 Collected: 02/22/21 11:47 Received: 03/11/21 10:00 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Method Analyzed Qual Pace Analytical Services - Greensburg 105.53 %REC ± NA (NA) EPA 9315 Radium-226 pCi/L 04/09/21 08:02 13982-63-3 C:NA T:NA Pace Analytical Services - Greensburg

84.24 %REC ± NA (NA)

C:NA T:NA



Project: GORGAS POOLED UPGRADIENT 1308

Pace Project No.: 92527335

Sample: BB03937 MW-2 MSD Lab ID: 92527335005 Collected: 02/22/21 11:47 Received: 03/11/21 10:00 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Method Analyzed Qual Pace Analytical Services - Greensburg EPA 9315 97.28 %REC 8.14RPD ± NA Radium-226 pCi/L 04/09/21 08:22 13982-63-3 (NA) C:NA T:NA Pace Analytical Services - Greensburg EPA 9320 68.87 %REC 20.08 RPD ± Radium-228 pCi/L 04/06/21 14:35 15262-20-1

NA (NA) C:NA T:NA



Project: GORGAS POOLED UPGRADIENT 1308

Pace Project No.: 92527335

| Sample: BB03938 MW-3<br>PWS: | <b>Lab ID: 9252733</b><br>Site ID: | Sample Type: 02/22/21 12:52           | Received: | 03/11/21 10:00 | Matrix: Water |      |
|------------------------------|------------------------------------|---------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                             | Act ± Unc (MDC) Carr Trac             | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Ser                | rvices - Greensburg                   |           |                |               |      |
| Radium-226                   | EPA 9315                           | 0.265U ± 0.268 (0.542)<br>C:97% T:NA  | pCi/L     | 04/09/21 09:32 | 2 13982-63-3  |      |
|                              | Pace Analytical Ser                | rvices - Greensburg                   |           |                |               |      |
| Radium-228                   | EPA 9320                           | 0.207U ± 0.313 (0.675)<br>C:67% T:96% | pCi/L     | 04/06/21 14:35 | 5 15262-20-1  |      |
|                              | Pace Analytical Ser                | rvices - Greensburg                   |           |                |               |      |
| Total Radium                 | Total Radium Calculation           | 0.472U ± 0.581 (1.22)                 | pCi/L     | 04/09/21 12:17 | 7 7440-14-4   |      |



Project: GORGAS POOLED UPGRADIENT 1308

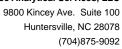
Pace Project No.: 92527335

| Sample: BB03939 FB-1<br>PWS: | Lab ID: 92527<br>Site ID:   | 7335007 Collected: 02/22/21 13:20<br>Sample Type: | Received: | 03/11/21 10:00 | Matrix: Water |      |
|------------------------------|-----------------------------|---------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-226                   | EPA 9315                    | 0.237U ± 0.227 (0.439)<br>C:95% T:NA              | pCi/L     | 04/09/21 09:00 | 13982-63-3    |      |
|                              | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-228                   | EPA 9320                    | 0.463U ± 0.348 (0.674)<br>C:72% T:85%             | pCi/L     | 04/06/21 14:35 | 5 15262-20-1  |      |
|                              | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation | 0.700U ± 0.575 (1.11)                             | pCi/L     | 04/09/21 12:17 | 7 7440-14-4   |      |



Project: GORGAS POOLED UPGRADIENT 1308

Pace Project No.: 92527335


| Sample: BB03940 MW-4<br>PWS: | <b>Lab ID:</b> 92527335<br>Site ID: | 5008 Collected: 02/22/21 14:07<br>Sample Type: | Received: | 03/11/21 10:00 | Matrix: Water |      |
|------------------------------|-------------------------------------|------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                              | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Serv                | vices - Greensburg                             |           |                |               |      |
| Radium-226                   | EPA 9315                            | -0.0669U ± 0.194 (0.548)<br>C:100% T:NA        | pCi/L     | 04/09/21 09:49 | 13982-63-3    |      |
|                              | Pace Analytical Serv                | rices - Greensburg                             |           |                |               |      |
| Radium-228                   | EPA 9320                            | -0.133U ± 0.283 (0.693)<br>C:68% T:100%        | pCi/L     | 04/06/21 14:35 | 5 15262-20-1  |      |
|                              | Pace Analytical Serv                | rices - Greensburg                             |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation         | 0.000U ± 0.477 (1.24)                          | pCi/L     | 04/09/21 12:17 | 7 7440-14-4   |      |



Project: GORGAS POOLED UPGRADIENT 1308

Pace Project No.: 92527335

| Sample: BB03941 EB-1<br>PWS: | <b>Lab ID: 925273</b> 3<br>Site ID: | 35009 Collected: 02/22/21 14:30 Sample Type: | Received: | 03/11/21 10:00 | Matrix: Water |      |
|------------------------------|-------------------------------------|----------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                              | Act ± Unc (MDC) Carr Trac                    | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Se                  | rvices - Greensburg                          |           |                |               |      |
| Radium-226                   | EPA 9315                            | -0.157U ± 0.204 (0.629)<br>C:95% T:NA        | pCi/L     | 04/09/21 09:14 | 13982-63-3    |      |
|                              | Pace Analytical Se                  | rvices - Greensburg                          |           |                |               |      |
| Radium-228                   | EPA 9320                            | -0.00426U ± 0.328 (0.765)<br>C:68% T:95%     | pCi/L     | 04/06/21 14:35 | 5 15262-20-1  |      |
|                              | Pace Analytical Se                  | rvices - Greensburg                          |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation         | 0.000U ± 0.532 (1.39)                        | pCi/L     | 04/09/21 12:17 | 7440-14-4     |      |





### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: GORGAS POOLED UPGRADIENT 1308

Pace Project No.: 92527335

QC Batch: 439280 Analysis Method: EPA 9315

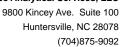
QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92527335001, 92527335002, 92527335003, 92527335004, 92527335005, 92527335006, 92527335007,

92527335008, 92527335009

METHOD BLANK: 2120834 Matrix: Water


Associated Lab Samples: 92527335001, 92527335002, 92527335003, 92527335004, 92527335005, 92527335006, 92527335007,

92527335008, 92527335009

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.00882 ± 0.213 (0.547) C:95% T:NA
 pCi/L
 04/09/21 07:43

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: GORGAS POOLED UPGRADIENT 1308

EPA 9320

Pace Project No.: 92527335

QC Batch Method:

QC Batch: 439308 Analysis Method: EPA 9320

Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg
Associated Lab Samples: 92527335001, 92527335002, 92527335003, 92527335004, 92527335005, 92527335006, 92527335007,

92527335008, 92527335009

METHOD BLANK: 2120884 Matrix: Water

Associated Lab Samples: 92527335001, 92527335002, 92527335003, 92527335004, 92527335005, 92527335006, 92527335007,

92527335008, 92527335009

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.606 ± 0.355 (0.651) C:71% T:99%
 pCi/L
 04/06/21 14:41
 04/06/21 14:41

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

### **QUALIFIERS**

Project: GORGAS POOLED UPGRADIENT 1308

Pace Project No.: 92527335

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 04/09/2021 09:28 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: GORGAS POOLED UPGRADIENT 1308

Pace Project No.: 92527335

Date: 04/09/2021 09:28 PM

| Lab ID      | Sample ID        | QC Batch Method          | QC Batch | Analytical Method | Analytica<br>Batch |
|-------------|------------------|--------------------------|----------|-------------------|--------------------|
| 92527335001 | BB03935 MW-1     | EPA 9315                 | 439280   |                   |                    |
| 92527335002 | BB03936 MW-1 DUP | EPA 9315                 | 439280   |                   |                    |
| 92527335003 | BB03937 MW-2     | EPA 9315                 | 439280   |                   |                    |
| 92527335004 | BB03937 MW-2 MS  | EPA 9315                 | 439280   |                   |                    |
| 92527335005 | BB03937 MW-2 MSD | EPA 9315                 | 439280   |                   |                    |
| 92527335006 | BB03938 MW-3     | EPA 9315                 | 439280   |                   |                    |
| 92527335007 | BB03939 FB-1     | EPA 9315                 | 439280   |                   |                    |
| 92527335008 | BB03940 MW-4     | EPA 9315                 | 439280   |                   |                    |
| 92527335009 | BB03941 EB-1     | EPA 9315                 | 439280   |                   |                    |
| 92527335001 | BB03935 MW-1     | EPA 9320                 | 439308   |                   |                    |
| 92527335002 | BB03936 MW-1 DUP | EPA 9320                 | 439308   |                   |                    |
| 92527335003 | BB03937 MW-2     | EPA 9320                 | 439308   |                   |                    |
| 92527335004 | BB03937 MW-2 MS  | EPA 9320                 | 439308   |                   |                    |
| 92527335005 | BB03937 MW-2 MSD | EPA 9320                 | 439308   |                   |                    |
| 92527335006 | BB03938 MW-3     | EPA 9320                 | 439308   |                   |                    |
| 92527335007 | BB03939 FB-1     | EPA 9320                 | 439308   |                   |                    |
| 92527335008 | BB03940 MW-4     | EPA 9320                 | 439308   |                   |                    |
| 92527335009 | BB03941 EB-1     | EPA 9320                 | 439308   |                   |                    |
| 92527335001 | BB03935 MW-1     | Total Radium Calculation | 442656   |                   |                    |
| 92527335002 | BB03936 MW-1 DUP | Total Radium Calculation | 442656   |                   |                    |
| 92527335003 | BB03937 MW-2     | Total Radium Calculation | 442656   |                   |                    |
| 92527335006 | BB03938 MW-3     | Total Radium Calculation | 442656   |                   |                    |
| 92527335007 | BB03939 FB-1     | Total Radium Calculation | 442656   |                   |                    |
| 92527335008 | BB03940 MW-4     | Total Radium Calculation | 442656   |                   |                    |
| 92527335009 | BB03941 EB-1     | Total Radium Calculation | 442656   |                   |                    |

### WO#:92527335

|                                  |                                                    |          |          |           |                        |                              | 12 | 3         | ð        | 9        | 8        |           | 6                                            | 65        |           | W         | 2         | 2         | ITEM#                                                                      |               |                                   | Requested Due Date: | Phone:                       | Email To:               |                   | Address:                     | Company:              | Section A<br>Required C                 |
|----------------------------------|----------------------------------------------------|----------|----------|-----------|------------------------|------------------------------|----|-----------|----------|----------|----------|-----------|----------------------------------------------|-----------|-----------|-----------|-----------|-----------|----------------------------------------------------------------------------|---------------|-----------------------------------|---------------------|------------------------------|-------------------------|-------------------|------------------------------|-----------------------|-----------------------------------------|
|                                  |                                                    |          |          |           |                        | ADDITIONAL COMMENTS          |    |           |          |          |          | BB03941   | BB03940                                      | BB03939   | BB03938   | BB03937   | BB03936   | 8803935   | SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample its must be unique |               |                                   | Due Date: 28 days   | 64-6                         | lbmidkif@southernco.com | Calera, AL 35040  | 744 Highway 87 GSC Bldg #8   | Alabama Power Company | Section A Required Client Information:  |
|                                  |                                                    |          |          | rocia     | Enner                  |                              |    |           |          |          |          | EB-1      | MW-4                                         | FB-1      | MW-3      | MW-2      | MW-1 DUP  | MVV-1     | Water water WP Product SI OIL OIL Other Ave Ave Coner OT Tassue TS         |               |                                   | Project Number,     | Project Name:                | Purchase Order #:       |                   | Copy To:                     | Report To:            | Section B Required Project Information: |
|                                  |                                                    |          |          | THE COURT | Laura Midkiff/ APC GTI | RELIN                        |    |           |          |          |          | GWG       | GWG                                          | GW/G      | GW/G      | GWG       | GWG       | GWG       | MATRIX CODE (see valid cod                                                 | les (o left)  |                                   |                     |                              | rder #.                 |                   | Brog                         | Lau                   | roject I                                |
|                                  |                                                    |          |          | 2         | APCG                   | HSIU                         | L  |           |          | _        | _        | G         | <u>.                                    </u> | 0         | <u>ெ</u>  | ြ         | G         | െ         | SAMPLE TYPE (G=GRAB C                                                      | =COMP)        |                                   |                     | Gorga                        | P                       |                   | oke C                        | Laura Midkiff         | т                                       |
| П                                | SAM                                                |          |          |           | 1                      | RELINQUISHED BY LAFFILIATION |    |           |          |          |          |           |                                              |           |           |           |           |           | START DATE TIME                                                            | Q             |                                   | MW                  | s Pooled                     | APC57570-0001           |                   | aton & Re                    | 大井                    | ation:                                  |
| SIGNATURE of SAMPLER:            | SAMPLER: NAME AND SIGNATURE PRINT Name of SAMPLER: |          |          |           |                        | LIATION                      |    |           |          |          |          | 2/22/2021 | 2/22/2021                                    | 2/22/2021 | 2/22/2021 | 2/22/2021 | 2/22/2021 | 2/22/2021 | DATE                                                                       | COLLECTED     |                                   | WMWGORPU 1308       | Gorgas Pooled Upgradient     | 0001                    |                   | Brooke Caton & Renee Jemigan |                       |                                         |
| of SAMPLE                        | AND SIGNA<br>e of SAMPLE                           |          | $\top$   | 120212    | cocrecte               | DATE                         |    |           |          |          |          | 1 14:30   | 1 14:07                                      | 1 13:20   | 1 12:52   | 1 11:47   | 1 10:47   | 1 10:47   | END                                                                        |               |                                   | 1308                |                              |                         |                   | an                           |                       |                                         |
| 7,7                              | 7: T.R.E.                                          | $\vdash$ | $\dashv$ |           |                        |                              | L  | L         |          | 4        | _        | -         | -                                            | -1        | -1        | 3         | <br>      |           | # OF CONTAINERS                                                            | ON            |                                   | Pa                  | Pa                           | P                       | }                 | S                            | Ą                     | in Se                                   |
|                                  |                                                    |          |          | 8         | ģ                      | TIME                         |    |           |          |          |          |           |                                              |           |           |           |           |           | Unpreserved '                                                              |               |                                   | Pace Profile #:     | Pace Project Manager.        | Pace Quote:             | Address:          | Company Name: Alabama Power  | Attention:            | Section C<br>Invoice Information:       |
|                                  |                                                    | <b></b>  | _        | $\dashv$  | _                      |                              |    |           |          | _        | -        | ×         | ×                                            | ×         | ×         | ×         | ×         | ×         | H2SO4<br>HNO3                                                              | 70            |                                   | file#:              | ect Ma                       |                         | 7                 | Name                         |                       | nforma                                  |
|                                  |                                                    |          |          |           | 7                      |                              |    | Н         | 7        |          | $\dashv$ |           |                                              |           |           |           | -         |           | HCI                                                                        | Preservatives |                                   |                     | nager.                       |                         | 744 Highway 87 GS | Ala                          | Laura Midkiff         | tion:                                   |
|                                  |                                                    |          |          | 6         | 5                      | දි                           |    |           | $\Box$   |          | $\Box$   |           |                                              |           |           |           |           |           | NaOH                                                                       | vative        |                                   |                     |                              |                         | awd:              | bama                         | Sid Ki                |                                         |
|                                  |                                                    |          |          | 6         | 7                      | CEPT                         | _  | H         | -        | $\dashv$ | $\dashv$ | $\dashv$  | _                                            | Н         |           | $\dashv$  | -         | Н         | Ne2S2O3<br>Methanol                                                        | 8             |                                   | П                   | Kevin He                     | S                       | V 87              | Pow                          | *                     |                                         |
|                                  |                                                    |          | ı        | 1         | ۸.                     | ACCEPTED BY / AFFILIATION    |    |           |          |          |          |           |                                              |           |           |           |           |           | Olher .                                                                    |               | L                                 |                     |                              |                         | <b>つ1</b> .       | _                            | ١                     |                                         |
|                                  |                                                    |          |          | Ŀ         | Z                      | PAN I                        |    |           |          |          | T        | ×         | ×                                            | ×         | ×         | ×         | ×         | ×         | Analyses Test EPA 9315                                                     | Y/N           |                                   |                     | Ting                         |                         | Blda              |                              | ı                     |                                         |
| DA                               |                                                    |          |          | 3         | 1                      | LIATK                        |    | Н         | $\dashv$ | $\dashv$ |          | ×         | ×                                            | ×         | ×         | ×         | ×         | ×         | EPA 9320                                                                   |               | 3324                              |                     |                              | 1                       | #                 |                              | ١                     |                                         |
| DATE Signed:                     |                                                    |          | ı        | (         | 7                      | ) <sup>¥</sup>               |    |           |          |          |          | ×         | ×                                            | ×         | ×         | ×         | ×         | ×         | Total Radium Sum                                                           |               | Requested Analysis Filtered (Y/N) | П                   |                              |                         |                   |                              | 1                     |                                         |
| ied:                             |                                                    |          | 1        | ľ         | 4                      |                              |    | Н         | $\dashv$ | $\dashv$ | $\dashv$ | $\dashv$  | _                                            | -         |           |           | $\dashv$  | _         | Matrix Spike/Matrix Spike D                                                | l             | ted Ar                            | Н                   |                              | 1                       |                   |                              | L                     |                                         |
|                                  |                                                    | H        | 1        | 1         | (3                     | •                            |    |           |          |          |          |           |                                              |           |           |           |           |           |                                                                            |               | alysis                            | l                   | STATE OF THE PERSON NAMED IN | 10000                   | 14000             |                              |                       |                                         |
|                                  |                                                    |          |          |           | 111                    | DATE                         |    | Н         | _        | _        | -        | $\dashv$  | _                                            | Н         | -         |           | $\dashv$  | _         |                                                                            |               | Filter                            |                     |                              |                         | Sec.              |                              |                       |                                         |
|                                  |                                                    | $\vdash$ | +        | -         | 2                      |                              | _  | Н         | $\dashv$ | $\dashv$ | $\dashv$ | $\dashv$  | $\dashv$                                     | Н         |           | $\dashv$  | $\dashv$  | _         |                                                                            |               | (Y) Da                            | П                   |                              |                         |                   |                              |                       |                                         |
|                                  |                                                    | ···  ·   |          | .         | 88                     | TIME                         |    |           |          |          |          |           |                                              |           |           |           |           |           |                                                                            |               | (N)                               | П                   |                              |                         | 20                |                              |                       |                                         |
|                                  |                                                    |          | 4        | 1         | Ö                      |                              | _  | $\square$ | _        | $\dashv$ | _        |           |                                              | _         |           | $\dashv$  | _         | _         |                                                                            |               |                                   | П                   | State                        |                         | equia             |                              |                       | D                                       |
| TEM                              | P in C                                             |          |          | 4         | Z<br>Z                 |                              |    | لـــا     |          |          |          | _         |                                              |           |           |           |           | $\dashv$  | Residual Chlorine (Y/N)                                                    |               |                                   | ĄĻ                  | State / Location             |                         | 3                 |                              | 1                     | Page:                                   |
| ice<br>(Y/N)                     |                                                    |          |          | Z         | Ζ.                     | SAMPLEC                      |    |           |          |          |          |           |                                              |           |           |           |           |           |                                                                            |               |                                   |                     | tion                         |                         | Regulatory Agency |                              |                       | -                                       |
| Custo<br>Seale<br>Coole<br>(Y/N) | d<br>d                                             |          |          |           | 1                      | SAMPLE CONDITIONS            |    |           |          |          | •        |           |                                              |           |           |           |           |           |                                                                            |               |                                   |                     | <b>新新港市</b>                  |                         |                   |                              |                       | <u>Q</u>                                |
| Samp<br>Intact<br>(Y/N)          |                                                    |          |          | _         | L                      | •                            |    |           |          |          |          |           |                                              |           |           |           |           |           |                                                                            |               |                                   |                     | <b>建装装装</b>                  |                         |                   |                              |                       |                                         |

### Face Analytical"

Method Blank Assessment

# **Quality Control Sample Performance Assessment**

Analyst Must Manually Enter All Fields Highlighted in Yellow.

| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                |           | Analyst Must maildally Enter All Fields Frightighted In Tellow.   | rellow.     |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|-----------|-------------------------------------------------------------------|-------------|-------------|
| Sample Matrix Spike Control Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Test:                                   | Ra-226         |           |                                                                   |             |             |
| Sample Collection Date   Sample Collection Date   Sample ID   Sample MSD ID   Spike ID   19-033   Sample MSD ID   19-033   Spike Volume Used in MS (mL)   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20 | Analyst:                                | Ϋ́             |           | Sample Matrix Spike Control Assessment                            | MS/MSD 1    | MS/MSD 2    |
| Sample LD   Se227335003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date:                                   | 3/19/2021      |           | Sample Collection Date:                                           | 2/22/2021   | 3/8/2021    |
| Sample MSD I.D.   92527335004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Worklist:                               | 29390          |           | Sample I.D.                                                       | 92527335003 | 92527915001 |
| Sample MSD I.D.   92527335005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Matrix:                                 | <u>≥</u>       |           | Sample MS I.D.                                                    | 92527335004 | 92527915002 |
| 19-033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                |           | Sample MSD I.D.                                                   | 92527335005 | 92527915003 |
| 2120834   MS/MSD Decay Corrected Spike Concentration (pCi/mL); 24.040   0.009   0.009   0.2013   0.2013   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2014   0.2 |                                         |                |           | Spike I.D.:                                                       | 19-033      | 19-033      |
| 0.009   Spike Volume Used in MS (mL); 0.20   0.213   0.213   0.214   0.214   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   0.215   | MB Sample ID                            | 2120834        |           | MS/MSD Decay Corrected Spike Concentration (pCl/mL):              | 24.040      | 24.040      |
| 0.213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MB concentration:                       | 0.009          |           | Spike Volume Used in MS (mL):                                     | 0.20        | 0.20        |
| 0.547   0.206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M/B Counting Uncertainty:               | 0.213          |           | Spike Volume Used in MSD (mL):                                    | 0.20        | 0.20        |
| NiA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MB MDC:                                 | 0.547          |           | MS Aliquot (L., g, F):                                            | 0.206       | 0.210       |
| Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MB Numerical Performance Indicator:     | 0.08           |           | MS Target Conc.(pCi/L, g, F):                                     | 23.367      | 22.844      |
| MSD Target Conc. (pCitl., g, F): 22.686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MB Status vs Numerical Indicator:       | N/A            |           | MSD Aliquot (L, g, F):                                            | 0.212       | 0.213       |
| CSD (Y or N)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MB Status vs. MDC:                      | Pass           |           | MSD Target Conc. (pCi/l., g, F):                                  | 22.686      | 22.568      |
| LCSB (Y or N)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                |           | MS Spike Uncertainty (calculated):                                | 0.280       | 0.274       |
| LCS63390         LCS63390         Sample Result Counting Uncertainty (pClL, g, F): 0.168         0.112           4/9/2021         Agangle Result Counting Uncertainty (pClL, g, F): 0.168         24.039         0.10           24.039         Matrix Spike Result Counting Uncertainty (pClL, g, F): 1.663         24.772           0.10         Sample Matrix Spike Duplicate Result: 22.181         22.181           0.13         Matrix Spike Duplicate Result: Counting Uncertainty (pClL, g, F): 1.513         1.513           0.13         MS Numerical Performance Indicator: 0.782         1.513           10.275         MSD Numerical Performance Indicator: 0.782         1.495           NA         MSD Percent Recovery: 0.782           1.37         MSD Status vs Numerical Indicator: NA           NA         MSD Status vs Recovery: 0.58%           NA         MSD Status vs Recovery: Pass           Pass         MSD Status vs Recovery: Pass           MSD Status vs Recovery: Pass         125%           MSMSD Lower % Recovery Limits: 75%           75%         155%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e Assessment                            | FCSD (X or N)? | z         | MSD Spike Uncertainty (calculated):                               | 0.272       | 0.271       |
| 49/2021         Sample Result Counting Uncertainty (pCil., g, F): 0.168           19-033         Matrix Spike Result: Sample Matrix Spike Result: 24.772           24.039         Matrix Spike Duplicate Result: Counting Uncertainty (pCil., g, F): 1.653           0.10         Sample Matrix Spike Duplicate Result: 22.181           10.217         Matrix Spike Duplicate Result: Counting Uncertainty (pCil., g, F): 1.513           MSD Numerical Performance Indicator: 0.782         MSD Numerical Performance Indicator: 0.782           1.121         MSD Numerical Performance Indicator: 0.782           MSD Numerical Performance Indicator: NIA         NIA Status vs Numerical Indicator: NIA           92.86%         MSD Status vs Numerical Indicator: NIA           NA         MSD Status vs Recovery: Passs           125%         MSD Status vs Recovery: 125%           75%         MSIMSD Lower % Recovery Limits: 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | LCS59390       | LCSD59390 | Sample Result:                                                    | 0.112       | 0.120       |
| 19-033 Sample Matrix Spike Result: 24.772 24.039 Matrix Spike Result Counting Uncertainty (DCIL, g. F): 1.663 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Count Date:                             | 4/9/2021       |           | Sample Result Counting Uncertainty (pCi/L, g, F):                 | 0.168       | 0.189       |
| 24.039         Matrix Spike Result Counting Uncertainty (PCil'L. g. F):         1.663           0.10         Amatrix Spike Duplicate Result:         22.181           0.217         Matrix Spike Duplicate Result:         15.13           1.0275         MSD Numerical Performance Indicator:         -0.782           1.0275         MSD Numerical Performance Indicator:         -0.782           1.121         MS Percent Recovery:         97.28%           1.137         MSD Status vs Numerical Indicator:         NIA           NA         MSD Status vs Numerical Indicator:         NIA           NA         MSD Status vs Recovery:         Pass           Pass         MSD Status vs Recovery:         Pass           125%         MSIMSD Upper % Recovery:         Pass           75%         MSIMSD Lower % Recovery:         75%           75%         75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Spike I.D.:                             | 19-033         |           | Sample Matrix Spike Result:                                       | 24.772      | 21.941      |
| 0.10   Matrix Spike Duplicate Result.   22.181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | orrected Spike Concentration (pCi/mL):  | 24.039         | •         | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):           | 1.663       | 1.563       |
| 0.217         Matrix Spike Duplicate Result Countring Uncertainty (pCit., 9, F): 1513           11.065         MSD Numerical Performance Indicator: 0.782           10.275         MSD Numerical Performance Indicator: 0.782           10.275         MSD Percent Recovery: 97.28%           -1.37         MSD Percent Recovery: 97.28%           -0.289/k         MSD Status vs Numerical Indicator: NI/A           NI/A         MSD Status vs Recovery: Passs Numerical Indicator: NI/A           NS         MSD Status vs Recovery: Passs MSI/MSD Upper x Recovery: Passs MSI/MSD Upper x Recovery: Tasks           75%         MSMSD Lower % Recovery Limits: 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Volume Used (mL):                       | 0.10           |           | Sample Matrix Spike Duplicate Result:                             | 22.181      | 24.134      |
| 1.065         MS Numerical Performance Indicator.         1.495           0.133         MSD Numerical Performance Indicator.         0.782           10.275         MSD Percent Recovery.         105.53%           1.121         MSD Percent Recovery.         105.53%           -1.37         MSD Percent Recovery.         105.53%           NIA         MSD Percent Recovery.         NIA           NIA         MSD Status vs Numerical Indicator.         NIA           NIA         MSD Status vs Recovery.         Pass           Pass         MSAS D Status vs Recovery.         Pass           125%         MSIMSD Upper % Recovery. Limits:         75%           75%         MSIMSD Lower % Recovery Limits:         75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aliquot Volume (L, g, F):               | 0.217          |           | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | 1.513       | 1.655       |
| 0.133         MSD Numerical Performance Indicator: -0.782           10.275         MSD Percent Recovery: 105.53%           1.121         MSD Percent Recovery: 97.28%           -1.37         MSD Status vs Numerical Indicator: NIA           NA         MSD Status vs Numerical Indicator: NIA           NIA         MSD Status vs Recovery: Pass           Pass         MSD Status vs Recovery: Pass           T25%         MSIMSD Upper % Recovery: Imits: 125%           75%         MSIMSD Lower % Recovery Limits: 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Target Conc. (pCi/L, g, F);             | 11.065         |           | MS Numerical Performance Indicator:                               | 1.495       | -1.255      |
| 10,275 MSP Percent Recovery: 105,53% 1,121 MSD Percent Recovery: 105,53% 1,137 MSD Percent Recovery: 97,28% 1,137 MS Status vs Numerical Indicator: NIA NIA MSD Status vs Numerical Indicator: NIA NIA MSD Status vs Recovery: Pass 1,25% MSIMSD Upper % Recovery: Pass MSIMSD Upper % Recovery: 1,25% 1,25% MSIMSD Lower % Recovery Limits: 7,5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Uncertainty (Calculated):               | 0.133          |           | MSD Numerical Performance Indicator:                              | -0.782      | 1.679       |
| 1.121         MSD Percent Recovery:         97.28%           -1.37         MS Status vs Numerical Indicator:         NIA           92.86%         MSD Status vs Numerical Indicator:         NIA           N/A         MS Status vs Recovery:         Pass           Pass         MSD Status vs Recovery:         Pass           125%         MS/MSD Upper % Recovery Limits:         75%           75%         MS/MSD Lower % Recovery Limits:         75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Result (pCi/L, g, F);                   | 10.275         |           | MS Percent Recovery:                                              | 105.53%     | 95.52%      |
| -1.37 MS Status vs Numerical Indicator: NIA 92.86% MSD Status vs Numerical Indicator: NIA NIA MSD Status vs Recovery: Passs Pass MSIMISD Upper vs Recovery: Pass MSIMISD Upper vs Recovery: 125% 75% MSIMISD Lower vs Recovery Limits: 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CSD Counting Uncertainty (pCi/L, g, F): | 1.121          |           | MSD Percent Recovery:                                             | 97.28%      | 106.41%     |
| 92.86%         MSD Status vs Numerical Indicator         N/A           N/A         MSD Status vs Recovery         Pass           Pass         MSD Status vs Recovery         Pass           125%         MSIMSD Upper % Recovery Limits:         125%           75%         MSIMSD Lower % Recovery Limits:         75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Numerical Performance Indicator:        | -1,37          |           | MS Status vs Numerical Indicator:                                 | N/A         | A/N         |
| N/A         MS Status vs Recovery:         Pass           Pass         MSD Status vs Recovery:         Pass           125%         MSIMSD Upper % Recovery Limits:         125%           75%         MSIMSD Lower % Recovery Limits:         75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Percent Recovery:                       | 92.86%         |           | MSD Status vs Numerical Indicator:                                | N/A         | √/N         |
| Pass MSD Status vs Recovery: Pass 125% 125% 125% 125% 15% MSMSD Lower % Recovery Limits: 75% 15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Status vs Numerical Indicator:          | K/N            |           | MS Status vs Recovery:                                            | Pass        | Pass        |
| 125% MS/MSD Upper % Recovery Limits: 125% 75% MS/MSD Lower % Recovery Limits: 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Status vs Recovery:                     | Pass           |           | MSD Status vs Recovery:                                           | Pass        | Pass        |
| 75% MS/MSD Lower % Recovery Limits: 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Upper % Recovery Limits:                | 125%           |           | MS/MSD Upper % Recovery Limits:                                   | 125%        | 125%        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lower % Recovery Limits:                | 75%            |           | MS/MSD Lower % Recovery Limits:                                   | 75%         | 75%         |

| Laboratory Control Sample Assessment          | LCSD (Y or N)? | Z         |
|-----------------------------------------------|----------------|-----------|
|                                               | LCS59390       | LCSD59390 |
| Count Date:                                   | 4/9/2021       |           |
| Spike I.D.:                                   | 19-033         |           |
| Decay Corrected Spike Concentration (pCi/mL): | 24.039         |           |
| Volume Used (mL):                             | 0.10           |           |
| Aliquot Volume (L, g, F):                     | 0.217          |           |
| Target Conc. (pCi/L, g, F):                   | 11,065         |           |
| Uncertainty (Calculated):                     | 0.133          |           |
| Result (pCi/L, g, F):                         | 10.275         |           |
| LCS/LCSD Counting Uncertainty (pCi/L, g, F):  | 1.121          |           |
| Numerical Performance Indicator:              | -1.37          |           |
| Percent Recovery:                             | 92.86%         |           |
| Status vs Numerical Indicator:                | V/N            |           |
| Status vs Recovery:                           | Pass           |           |
| Upper % Recovery Limits:                      | 125%           |           |
| Lower % Recovery Limits:                      | 75%            |           |

| Duplicate Sample Assessment                                 |              |                  | Matrix Spike/Matrix Spike Duplicate Sample Assessment        |
|-------------------------------------------------------------|--------------|------------------|--------------------------------------------------------------|
| Sample I.D.:                                                |              | Enter Duplicate  | Sample                                                       |
| Duplicate Sample I.D.                                       |              | sample IDs if    | Sample MS                                                    |
| Sample Result (pCi/L, g, F):                                |              | other than       | Sample MSD                                                   |
| Sample Result Counting Uncertainty (pCi/L, g, F):           |              | LCS/LCSD in      | Sample Matrix Spike Re                                       |
| Sample Duplicate Result (pCi/L, g, F):                      |              | the space below. | Matrix Spike Result Counting Uncertainty (pCi/L, g           |
| Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): |              |                  | Sample Matrix Spike Duplicate Re                             |
| Are sample and/or duplicate results below RL?               | See Below ## |                  | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g |
| Duplicate Numerical Performance Indicator:                  |              |                  | Duplicate Numerical Performance Indic                        |
| Duplicate RPD:                                              |              | William Charles  | (Based on the Percent Recoveries) MS/ MSD Duplicate F        |
| Duplicate Status vs Numerical Indicator:                    |              |                  | MS/ MSD Duplicate Status vs Numerical Indic                  |
| Duplicate Status vs RPD:                                    |              |                  | MS/ MSD Duplicate Status vs F                                |
| % RPD Limit:                                                |              |                  | % RPD L                                                      |
|                                                             |              |                  |                                                              |

| Safe      | Sample I.D.                                                       | 92527335003 | 92527915001 |
|-----------|-------------------------------------------------------------------|-------------|-------------|
| ;⊨<br>S   | Sample MS I.D.                                                    | 92527335004 | 92527915002 |
| _         | Sample MSD I.D.                                                   | 92527335005 | 92527915003 |
| <u>.⊆</u> | Sample Matrix Spike Result:                                       | 24.772      | 21.941      |
| Jow.      | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):           | 1.663       | 1.563       |
|           | Sample Matrix Spike Duplicate Result:                             | 22.181      | 24.134      |
|           | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | 1.513       | 1.655       |
| 1 1       | Duplicate Numerical Performance Indicator:                        | 2.259       | -1.888      |
| 77.1      | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:          | 8.14%       | 10.78%      |
|           | MS/ MSD Duplicate Status vs Numerical Indicator:                  | N/A         | N/A         |
|           | MS/ MSD Duplicate Status vs RPD:                                  | Pass        | Pass        |
|           | % RPD Limit.                                                      | 25%         | 25%         |
|           |                                                                   |             |             |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

## Quality Control Sample Performance Assessment

3/31/2021 59403 WT Ra-228 Test Analyst Date: Worklist: Matrix:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

| Ī |                                                          | The second secon |             |
|---|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|   | Sample Matrix Spike Control Assessment                   | MS/MSD 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MS/MSD 2    |
|   | Sample Collection Date:                                  | 2/22/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3/8/2021    |
|   | Sample I.D.                                              | 92527335002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 92527915001 |
|   | Sample MSD ID                                            | 92327332004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9232/913002 |
|   | Sample INICO LICE                                        | 21-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.003      |
|   | MSMSD Decay Corrected Spike Concentration (oCi/mL):      | 38.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38.726      |
|   | Spike Volume Used in MS (mL):                            | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.20        |
|   | Spike Volume Used in MSD (mL):                           | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.20        |
|   | MS Aliquot (L, g, F):                                    | 0.818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.802       |
|   | MS Target Conc.(pCi/L, g, F):                            | 9.473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.653       |
|   | MSD Aliquot (L, g, F):                                   | 0.815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.811       |
|   | MSD Target Conc. (pCi/L, g, F):                          | 9.503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.546       |
|   | MS Spike Uncertainty (calculated):                       | 0.464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.473       |
| _ | MSD Spike Uncertainty (calculated):                      | 0.466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.468       |
| _ | Sample Result:                                           | 0.644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.448       |
| 1 | Sample Result 2 Sigma CSU (pCi/L, g, F):                 | 0.430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.386       |
|   | Sample Matrix Spike Result:                              | 8.624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.096       |
|   | Matrix Spike Result 2 Sigma CSU (pCi/l., g, F):          | 1.758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.655       |
|   | Sample Matrix Spike Duplicate Result:                    | 7.188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.441       |
|   | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): | 1.484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.697       |
|   | MS Numerical Performance Indicator:                      | -1.567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2.228      |
|   | MSD Numerical Performance Indicator:                     | -3.593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.689      |
|   | MS Percent Recovery:                                     | 84.24%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79.23%      |
|   | MSD Percent Recovery:                                    | 68.87%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83.73%      |
|   | MS Status vs Numerical Indicator:                        | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Waming      |
|   | MSD Status vs Numerical Indicator:                       | Failers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pass        |
|   | MS Status vs Recovery:                                   | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pass        |
|   | MSD Status vs Recovery:                                  | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pass        |
|   | MS/MSD Upper % Recovery Limits:                          | 135%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 135%        |
|   | MS/MSD Lower % Recovery Limits:                          | %09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %09         |

LCSD59403

(You N)

Laboratory Control Sample Assessment

2120884 0.606 0.355 0.651 3.34 Fail\* Pass

MB Sample ID

Method Blank Assessment

MB concentration:
M/B 2 Sigma CSU:
MB MDC:
MB Numerical Performance Indicator:
MB Status vs Numerical Indicator:
MB Status vs. MDC:

LCS59403 4/6/2021 21-003 38.178 0.10 0.809 4.716

Volume Used (mL): Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F):

Uncertainty (Calculated):

Result (pC/L, g, F): LCS/LCSD 2 Sigma CSU (pC/L, g, F): Numerical Performance Indicator:

Percent Recovery: Status vs Numerical Indicator:

Status vs Recovery: Upper % Recovery Limits: Lower % Recovery Limits:

Duplicate Sample Assessment

Count Date: Spike I.D.:

Decay Corrected Spike Concentration (pCi/mL):

| ample Assessment                                   |              |                  | Matrix Spike/Matrix Spike Duplicate Sample Assessment    |             |             |   |
|----------------------------------------------------|--------------|------------------|----------------------------------------------------------|-------------|-------------|---|
| Sample I.D.:                                       |              | Enter Duplicate  | Sample I.D.                                              | 92527335002 | 92527915001 | _ |
| Duplicate Sample I.D.                              |              | sample IDs if    | Sample MS I.D.                                           | 92527335004 | 92527915002 | _ |
| Sample Result (pCi/l, g, F):                       |              | other than       | Sample MSD I.D.                                          | 92527335005 | 92527915003 | _ |
| Sample Result 2 Sigma CSU (pCi/L, g, F):           |              | LCS/LCSD in      | Sample Matrix Spike Result:                              | 8.624       | 8.096       | _ |
| Sample Duplicate Result (pCi/L, g, F):             |              | the space below. | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):           | 1.758       | 1.655       |   |
| Sample Duplicate Result 2 Sigma CSU (pCl/L, g, F): |              |                  | Sample Matrix Spike Duplicate Result:                    | 7.188       | 8.441       |   |
|                                                    | See Below ## |                  | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): | 1.484       | 1.697       |   |
| Duplicate Numerical Performance Indicator:         |              |                  | Duplicate Numerical Performance Indicator:               | 1.223       | -0.285      |   |
| Duplicate RPD:                                     |              |                  | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: | 20.08%      | 5.52%       |   |
| Duplicate Status vs Numerical Indicator:           |              |                  | MS/ MSD Duplicate Status vs Numerical Indicator.         | Pass        | Pass        |   |
| Duplicate Status vs RPD:                           |              |                  | MS/ MSD Duplicate Status vs RPD:                         | Pass        | Pass        | - |
| % RPD Limit                                        |              |                  | % RPD Limit:                                             | 36%         | 36%         | _ |

14 the lowest activity cample in this batch is greater than 16n times the blank value, the blank is ecceptable; otherwise this batch must be re-propped. ## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC

77

Ra-228\_59403\_W Ra-228 (R086-8 04Sep2019).xls

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

### Field Case Narrative



### **Plant Gorgas Landfill**

### 2021 Compliance Event 1

All samples were collected using methods defined in Alabama Power's Water Field Group Low-Flow Groundwater Sampling Procedure and the associated site-specific Sampling and Analysis Plan (SAP).

Suspected iron bacteria appeared to be present during initial pumping of wells MW-12 and MW-19.

Heavy truck traffic was present when pumping and sampling wells MW-12V, MW-10 and MW-13.

Field quality control procedures were performed as follows:

- Blanks and Sample Duplicates were collected as described in the SAP.
- Calibration verifications for all required field parameters were performed daily, before and after sample collection.

### Analytical Report



Sample Group: WMWGORLF\_1309

Project/Site: Gorgas Landfill

Parrish, AL 35580

For: Southern Company Services

3535 Colonnade Parkway Birmingham, AL 35243

Attention: Dustin Brooks & Greg Dyer

Released By: Laura Midkiff

lbmidkif@southernco.com

(205) 664-6197



Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040 (205) 664-6001

March 31, 2021

Dear Dustin Brooks,

Enclosed are the analytical results for sample(s) received by the laboratory between February 24, 2021 and February 25, 2021. All results reported herein conform to the laboratory's most current Quality Assurance Manual. Results marked with an asterisk conform to the most current applicable TNI/NELAC requirements. Exceptions will be noted in the body of the report.

Laboratory certification ID: E571114

Issued By: State of Florida, Department of Health

Expiration: June 30, 2021

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Quality Control: Laura Midkiff

Digitally signed by Laura Midkiff

Dictally signed by Laura Midkiff

Dictall

T. Durant Supervision:

Maske

Digitally signed by T. Durant Maske DN: cn=T. Durant Maske, o=Alabama Power Company, ou=Environmental Affairs, email=tdmaske@southernco.com,







This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.



### Case Narrative

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



### **Total Metals ICP**

### Gorgas Landfill

### WMWGORLF\_1309

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB04032   | 693930   | WMWGORLF_1309 |
| BB04033   | 693930   | WMWGORLF_1309 |
| BB04034   | 693930   | WMWGORLF_1309 |
| BB04064   | 693930   | WMWGORLF_1309 |
| BB04065   | 693930   | WMWGORLF_1309 |
| BB04066   | 693930   | WMWGORLF_1309 |
| BB04067   | 693930   | WMWGORLF_1309 |
| BB04068   | 693930   | WMWGORLF_1309 |
| BB04069   | 693930   | WMWGORLF_1309 |
| BB04070   | 693930   | WMWGORLF_1309 |
| BB04071   | 693931   | WMWGORLF_1309 |
| BB04072   | 693931   | WMWGORLF_1309 |
| BB04073   | 693931   | WMWGORLF_1309 |
| BB04150   | 693931   | WMWGORLF_1309 |
| BB04151   | 693931   | WMWGORLF_1309 |
| BB04152   | 693931   | WMWGORLF_1309 |
| BB04153   | 693931   | WMWGORLF_1309 |
| BB04154   | 693931   | WMWGORLF_1309 |
| BB04155   | 693931   | WMWGORLF_1309 |
| BB04156   | 693931   | WMWGORLF_1309 |
| BB04157   | 693932   | WMWGORLF_1309 |

- 4. All of the above samples were analyzed by EPA 200.7 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **General Quality Control Procedures:**

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- All calibration curve requirements were within acceptance criteria.
- All sample internal standard criteria were met.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical
  sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range,
  any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any
  qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of
  review.

#### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria
  for accuracy were met except for the following:
  - BB04070 Calcium and Magnesium MS/MSD spike levels are less than 30% of sample nominal concentrations.
  - o BB04156 Magnesium MS/MSD spike level was less than 30% of the sample nominal concentration.
  - BB04070 and BB04156 Lithium MS/MSD recoveries failed. Post digestion spikes and serial dilutions were performed. Matrix issues are suspected.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for precision were met.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u>                   | <b>Dilution factor</b> |
|-----------|----------------------------------|------------------------|
| BB04032   | Calcium, Iron, Magnesium, Sodium | 50.75                  |
| BB04033   | Calcium, Magnesium, Sodium       | 20.3                   |
| BB04034   | Calcium, Magnesium, Sodium       | 20.3                   |
| BB04064   | Calcium, Magnesium               | 20.3                   |
| BB04065   | Calcium, Magnesium               | 20.3                   |
| BB04066   | Calcium, Iron, Magnesium         | 20.3                   |
| BB04067   | Calcium, Magnesium               | 20.3                   |
| BB04068   | Calcium, Magnesium               | 20.3                   |
| BB04069   | Calcium, Iron, Magnesium, Sodium | 20.3                   |
| BB04070   | Calcium, Magnesium               | 20.3                   |
| BB04071   | Calcium, Magnesium, Sodium       | 20.3                   |
| BB04072   | Calcium, Iron, Magnesium, Sodium | 50.75                  |
| BB04150   | Calcium, Magnesium, Sodium       | 20.3                   |
| BB04151   | Calcium, Iron, Magnesium, Sodium | 20.3                   |
| BB04152   | Calcium, Iron, Magnesium, Sodium | 20.3                   |
| BB04154   | Calcium, Iron, Magnesium, Sodium | 20.3                   |
| BB04155   | Calcium, Magnesium               | 20.3                   |
| BB04156   | Calcium, Magnesium, Sodium       | 20.3                   |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **Dissolved Metals ICP**

#### Gorgas Landfill

### WMWGORLF\_1309

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB04032   | 693643   | WMWGORLF_1309 |
| BB04033   | 693643   | WMWGORLF_1309 |
| BB04034   | 693643   | WMWGORLF_1309 |
| BB04064   | 693643   | WMWGORLF_1309 |
| BB04065   | 693643   | WMWGORLF_1309 |
| BB04066   | 693643   | WMWGORLF_1309 |
| BB04067   | 693643   | WMWGORLF_1309 |
| BB04068   | 693643   | WMWGORLF_1309 |
| BB04069   | 693643   | WMWGORLF_1309 |
| BB04070   | 693643   | WMWGORLF_1309 |
| BB04071   | 693644   | WMWGORLF_1309 |
| BB04072   | 693644   | WMWGORLF_1309 |
| BB04150   | 693644   | WMWGORLF_1309 |
| BB04151   | 693644   | WMWGORLF_1309 |
| BB04152   | 693644   | WMWGORLF_1309 |
| BB04154   | 693644   | WMWGORLF_1309 |
| BB04155   | 693644   | WMWGORLF_1309 |
| BB04156   | 693644   | WMWGORLF_1309 |

- 4. All of the above samples were analyzed and prepared by EPA 200.7 for dissolved analysis.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **General Quality Control Procedures:**

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- Due to no filtered method blank (MB) or laboratory control sample (LCS) submitted with the sample set, an unfiltered MB and LCS were analyzed with the samples in each batch.
- All laboratory control sample criteria were met.
- The method blank associated with each batch passed all acceptance criteria for all requested analytes.
- All calibration curve requirements were within acceptance criteria.
- All sample internal standard criteria were met.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical
  sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range,
  any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any
  qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of
  review.

#### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were analyzed with each ICP batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were analyzed with each ICP batch. All acceptance criteria for precision were met.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u> | <b>Dilution factor</b> |
|-----------|----------------|------------------------|
| BB04032   | Iron           | 101.5                  |
| BB04066   | Iron           | 10.15                  |
| BB04069   | Iron           | 10.15                  |
| BB04072   | Iron           | 101.5                  |
| BB04151   | Iron           | 10.15                  |
| BB04152   | Iron           | 10.15                  |
| BB04154   | Iron           | 10.15                  |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **Total Metals ICPMS**

#### Gorgas Landfill

#### WMWGORLF 1309

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB04032   | 693122   | WMWGORLF_1309 |
| BB04033   | 693122   | WMWGORLF_1309 |
| BB04034   | 693122   | WMWGORLF_1309 |
| BB04064   | 693122   | WMWGORLF_1309 |
| BB04065   | 693122   | WMWGORLF_1309 |
| BB04066   | 693122   | WMWGORLF_1309 |
| BB04067   | 693122   | WMWGORLF_1309 |
| BB04068   | 693122   | WMWGORLF_1309 |
| BB04069   | 693122   | WMWGORLF_1309 |
| BB04070   | 693122   | WMWGORLF_1309 |
| BB04071   | 693123   | WMWGORLF_1309 |
| BB04072   | 693123   | WMWGORLF_1309 |
| BB04073   | 693123   | WMWGORLF_1309 |
| BB04150   | 693123   | WMWGORLF_1309 |
| BB04151   | 693123   | WMWGORLF_1309 |
| BB04152   | 693123   | WMWGORLF_1309 |
| BB04153   | 693123   | WMWGORLF_1309 |
| BB04154   | 693123   | WMWGORLF_1309 |
| BB04155   | 693123   | WMWGORLF_1309 |
| BB04156   | 693123   | WMWGORLF_1309 |
| BB04157   | 693124   | WMWGORLF_1309 |

- 4. All of the above samples were analyzed by EPA 200.8 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.

#### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for accuracy were met, except for the following:
  - o BB04156 Manganese MS/MSD spike level was less than 30% of the sample nominal concentration.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for precision were met
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u> | <b>Dilution factor</b> |
|-----------|----------------|------------------------|
| BB04032   | Mn             | 10.15                  |
| BB04033   | Mn             | 5.075                  |
| BB04064   | Mn             | 5.075                  |
| BB04065   | Mn             | 5.075                  |
| BB04066   | Mn             | 92.365                 |
| BB04067   | Mn             | 5.075                  |
| BB04068   | Mn             | 5.075                  |
| BB04069   | Mn             | 92.365                 |
| BB04072   | Mn             | 92.365                 |
| BB04151   | Mn             | 5.075                  |
| BB04155   | Mn             | 5.075                  |
| BB04156   | Mn             | 5.075                  |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **Dissolved Metals ICPMS**

#### Gorgas Landfill

#### WMWGORLF 1309

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB04032   | 693077   | WMWGORLF_1309 |
| BB04033   | 693077   | WMWGORLF_1309 |
| BB04034   | 693077   | WMWGORLF_1309 |
| BB04064   | 693077   | WMWGORLF_1309 |
| BB04065   | 693077   | WMWGORLF_1309 |
| BB04066   | 693077   | WMWGORLF_1309 |
| BB04067   | 693077   | WMWGORLF_1309 |
| BB04068   | 693077   | WMWGORLF_1309 |
| BB04069   | 693077   | WMWGORLF_1309 |
| BB04070   | 693077   | WMWGORLF_1309 |
| BB04071   | 693078   | WMWGORLF_1309 |
| BB04072   | 693078   | WMWGORLF_1309 |
| BB04150   | 693078   | WMWGORLF_1309 |
| BB04151   | 693078   | WMWGORLF_1309 |
| BB04152   | 693078   | WMWGORLF_1309 |
| BB04154   | 693078   | WMWGORLF_1309 |
| BB04155   | 693078   | WMWGORLF_1309 |
| BB04156   | 693078   | WMWGORLF_1309 |

- 4. All of the above samples were analyzed and prepared by EPA 200.8 for dissolved analysis.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- Due to no filtered method blank (MB) or laboratory control sample (LCS) submitted with the sample set, an unfiltered MB and LCS were analyzed with the samples in each batch.
- All laboratory control sample criteria were met.
- The method blank associated with each preparation batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.

#### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were analyzed with each ICPMS batch. All acceptance criteria for accuracy were met, except for the following:
  - o BB04156 Manganese MS/MSD spike level was less than 30% of the sample nominal concentration.
- A matrix spike and matrix spike duplicate were analyzed with each ICPMS batch. All acceptance criteria for precision were met
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u> | <b>Dilution factor</b> |
|-----------|----------------|------------------------|
| BB04032   | Mn             | 10.15                  |
| BB04033   | Mn             | 5.075                  |
| BB04064   | Mn             | 5.075                  |
| BB04065   | Mn             | 5.075                  |
| BB04066   | Mn             | 92.365                 |
| BB04067   | Mn             | 5.075                  |
| BB04068   | Mn             | 5.075                  |
| BB04069   | Mn             | 92.365                 |
| BB04072   | Mn             | 92.365                 |
| BB04151   | Mn             | 5.075                  |
| BB04155   | Mn             | 5.075                  |
| BB04156   | Mn             | 5.075                  |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### Mercury

#### Gorgas Landfill

#### WMWGORLF\_1309

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB04032   | 693428   | WMWGORLF_1309 |
| BB04033   | 693428   | WMWGORLF_1309 |
| BB04034   | 693428   | WMWGORLF_1309 |
| BB04064   | 693428   | WMWGORLF_1309 |
| BB04065   | 693428   | WMWGORLF_1309 |
| BB04066   | 693428   | WMWGORLF_1309 |
| BB04067   | 693428   | WMWGORLF_1309 |
| BB04068   | 693428   | WMWGORLF_1309 |
| BB04069   | 693428   | WMWGORLF_1309 |
| BB04070   | 693428   | WMWGORLF_1309 |
| BB04071   | 693429   | WMWGORLF_1309 |
| BB04072   | 693429   | WMWGORLF_1309 |
| BB04073   | 693429   | WMWGORLF_1309 |
| BB04150   | 693429   | WMWGORLF_1309 |
| BB04151   | 693429   | WMWGORLF_1309 |
| BB04152   | 693429   | WMWGORLF_1309 |
| BB04153   | 693429   | WMWGORLF_1309 |
| BB04154   | 693429   | WMWGORLF_1309 |
| BB04155   | 693429   | WMWGORLF_1309 |
| BB04156   | 693429   | WMWGORLF_1309 |
| BB04157   | 693430   | WMWGORLF_1309 |

- 4. All of the above samples were analyzed and prepared by EPA 245.1.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **General Quality Control Procedures:**

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the method detection limit for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch was below the limit of quantitation for the requested analyte.
- All calibration met criteria for the requested analyte.
- All response signals were satisfactory.

#### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### TDS

#### Gorgas Landfill

#### WMWGORLF\_1309

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB04032   | 692992   | WMWGORLF_1309 |
| BB04033   | 692992   | WMWGORLF_1309 |
| BB04034   | 692992   | WMWGORLF_1309 |
| BB04064   | 692992   | WMWGORLF_1309 |
| BB04065   | 692992   | WMWGORLF_1309 |
| BB04066   | 692992   | WMWGORLF_1309 |
| BB04067   | 692992   | WMWGORLF_1309 |
| BB04068   | 692992   | WMWGORLF_1309 |
| BB04069   | 692992   | WMWGORLF_1309 |
| BB04070   | 692992   | WMWGORLF_1309 |
| BB04071   | 693257   | WMWGORLF_1309 |
| BB04072   | 693257   | WMWGORLF_1309 |
| BB04073   | 693257   | WMWGORLF_1309 |
| BB04150   | 693257   | WMWGORLF_1309 |
| BB04151   | 693257   | WMWGORLF_1309 |
| BB04152   | 693257   | WMWGORLF_1309 |
| BB04153   | 693257   | WMWGORLF_1309 |
| BB04154   | 693257   | WMWGORLF_1309 |
| BB04155   | 693257   | WMWGORLF_1309 |
| BB04156   | 693258   | WMWGORLF_1309 |
| BB04157   | 693257   | WMWGORLF_1309 |

- 4. All of the above samples were analyzed by Standard Methods 2540C.
- 5. All samples were analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **General Quality Control Procedures:**

- A Method Blank was analyzed with each batch. All criteria were met.
- All final weights of samples, standards, and blanks agreed within 0.5mg of the previous weight.
- A sample duplicate was analyzed with each batch. RPD/2 was less than 5%.
- A laboratory control sample was analyzed with each batch. All criteria were met.
- Samples were between 2.5mg and 200mg residue.
- All samples with residue <2.5mg had the maximum volume of 150mL filtered. Affected samples are as follows:
  - o BB04073
  - o BB04153
  - o BB04157

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **Anions**

#### Gorgas Landfill

### WMWGORLF\_1309

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | <u>Batch ID</u>        | Project ID    |
|-----------|------------------------|---------------|
| BB04032   | 693008, 693046, 693049 | WMWGORLF_1309 |
| BB04033   | 693008, 693046, 693049 | WMWGORLF_1309 |
| BB04034   | 693008, 693046, 693049 | WMWGORLF_1309 |
| BB04064   | 693009, 693047, 693050 | WMWGORLF_1309 |
| BB04065   | 693009, 693047, 693050 | WMWGORLF_1309 |
| BB04066   | 693009, 693047, 693050 | WMWGORLF_1309 |
| BB04067   | 693009, 693047, 693050 | WMWGORLF_1309 |
| BB04068   | 693009, 693047, 693050 | WMWGORLF_1309 |
| BB04069   | 693009, 693047, 693050 | WMWGORLF_1309 |
| BB04070   | 693009, 693047, 693050 | WMWGORLF_1309 |
| BB04071   | 693009, 693047, 693050 | WMWGORLF_1309 |
| BB04072   | 693009, 693047, 693050 | WMWGORLF_1309 |
| BB04073   | 693009, 693047, 693050 | WMWGORLF_1309 |
| BB04150   | 693010, 693048, 693051 | WMWGORLF_1309 |
| BB04151   | 693010, 693048, 693051 | WMWGORLF_1309 |
| BB04152   | 693010, 693048, 693051 | WMWGORLF_1309 |
| BB04153   | 693010, 693048, 693051 | WMWGORLF_1309 |
| BB04154   | 693010, 693048, 693051 | WMWGORLF_1309 |
| BB04155   | 693010, 693048, 693051 | WMWGORLF_1309 |
| BB04156   | 693010, 693048, 693051 | WMWGORLF_1309 |
| BB04157   | 693010, 693048, 693051 | WMWGORLF_1309 |

- 4. All of the above samples were analyzed and prepared by SM4500 Cl E, SM4500 F G, and SM4500 SO4 E.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **General Quality Control Procedures:**

- All calibration met criteria for the requested analyte.
- Prior to sample analysis, an initial calibration verification (ICV), and all criteria were met.
- Prior to sample analysis, an initial calibration blank (ICB) was analyzed and was below half the limit of quantitation for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below half the limit of quantitation for the requested analyte.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical
  sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range,
  any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any
  qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of
  review.

#### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike was analyzed with each batch. Acceptance criteria for accuracy were met, except for the following:
  - o BB04073 MS Chloride recovery was outside of the specification limit.
- A sample duplicate was analyzed with each batch. Acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u>     | <b>Dilution factor</b> |
|-----------|--------------------|------------------------|
| BB04032   | Sulfate            | 80                     |
| BB04033   | Sulfate            | 50                     |
| BB04034   | Sulfate            | 100                    |
| BB04064   | Sulfate            | 50                     |
| BB04065   | Sulfate            | 80                     |
| BB04066   | Sulfate            | 80                     |
| BB04067   | Sulfate            | 50                     |
| BB04068   | Sulfate            | 50                     |
| BB04069   | Sulfate            | 100                    |
| BB04070   | Sulfate            | 50                     |
| BB04071   | Chloride & Sulfate | 8 & 50                 |

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



| BB04072 Sulfate            | 100     |
|----------------------------|---------|
| BB04150 Sulfate            | 100     |
| BB04151 Sulfate            | 40      |
| BB04152 Chloride & Sulfate | 10 & 50 |
| BB04154 Chloride & Sulfate | 10 & 50 |
| BB04155 Sulfate            | 100     |
| BB04156 Sulfate            | 100     |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### Alkalinity

#### Gorgas Landfill

#### WMWGORLF 1309

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID        | Project ID    |
|-----------|-----------------|---------------|
| BB04032   | 693351 & 693352 | WMWGORLF_1309 |
| BB04033   | 693351 & 693352 | WMWGORLF_1309 |
| BB04034   | 693351 & 693352 | WMWGORLF_1309 |
| BB04064   | 693351 & 693352 | WMWGORLF_1309 |
| BB04065   | 693351 & 693352 | WMWGORLF_1309 |
| BB04066   | 693351 & 693352 | WMWGORLF_1309 |
| BB04067   | 693351 & 693352 | WMWGORLF_1309 |
| BB04068   | 693351 & 693352 | WMWGORLF_1309 |
| BB04069   | 693351 & 693352 | WMWGORLF_1309 |
| BB04070   | 693351 & 693352 | WMWGORLF_1309 |
| BB04071   | 693351 & 693352 | WMWGORLF_1309 |
| BB04072   | 693351 & 693352 | WMWGORLF_1309 |
| BB04150   | 693351 & 693352 | WMWGORLF_1309 |
| BB04151   | 693351 & 693352 | WMWGORLF_1309 |
| BB04152   | 693351 & 693352 | WMWGORLF_1309 |
| BB04154   | 693351 & 693352 | WMWGORLF_1309 |
| BB04155   | 693351 & 693352 | WMWGORLF_1309 |
| BB04156   | 693351 & 693352 | WMWGORLF_1309 |

- 4. All of the above samples were analyzed by Standard Method 2320B.
- 5. All samples were analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- An initial pH check was analyzed with each batch. The acceptance criteria were met.
- A final pH check was analyzed with each batch. The acceptance criteria were met.
- An alkalinity laboratory control sample was analyzed with each batch. Range criteria of within 10% of true value was met.
- An alkalinity sample duplicate was analyzed with each batch. Precision criteria less than 10 RPD was met.

# Certificate Of Analysis



Description: Gorgas Landfill - MW-6Location Code:WMWGORLFCollected:2/23/21 10:45

Customer ID:

Laboratory ID Number: BB04032 Submittal Date: 2/24/21 09:29

| Name                         | Prepared      | Analyzed      | Vio Spec DF | Results      | Units      | MDL      | RL         | Q |
|------------------------------|---------------|---------------|-------------|--------------|------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Analy         | st: RDA       |             | Preparati    | on Method: | EPA 1638 |            |   |
| * Boron, Total               | 3/16/21 09:07 | 3/17/21 09:42 | 1.015       | 0.0866       | mg/L       | 0.030000 | 0.1015     | J |
| * Calcium, Total             | 3/16/21 09:07 | 3/19/21 10:20 | 50.75       | 428          | mg/L       | 3.50175  | 20.3       |   |
| * Iron, Total                | 3/16/21 09:07 | 3/19/21 10:20 | 50.75       | 35.0         | mg/L       | 0.40600  | 2.03       |   |
| * Lithium, Total             | 3/16/21 09:07 | 3/17/21 09:42 | 2 1.015     | 0.253        | mg/L       | 0.007105 | 0.01999956 | 6 |
| * Magnesium, Total           | 3/16/21 09:07 | 3/19/21 10:20 | 50.75       | 299          | mg/L       | 1.06575  | 20.3       |   |
| * Sodium, Total              | 3/16/21 09:07 | 3/19/21 10:20 | 50.75       | 63.1         | mg/L       | 1.0150   | 20.3       |   |
| Analytical Method: EPA 200.7 | Analy         | st: RDA       |             |              |            |          |            |   |
| * Iron, Dissolved            | 3/11/21 11:00 | 3/12/21 13:12 | 101.5       | 32.5         | mg/L       | 0.8120   | 4.06       |   |
| Analytical Method: EPA 200.8 | Analy         | st: DLJ       |             | Preparati    | on Method: | EPA 1638 |            |   |
| * Antimony, Total            | 2/26/21 06:45 | 2/26/21 11:57 | 7 1.015     | Not Detected | mg/L       | 0.000507 | 0.001015   | U |
| * Arsenic, Total             | 2/26/21 06:45 | 2/26/21 11:57 | 7 1.015     | 0.00494      | mg/L       | 0.000068 | 0.000203   |   |
| * Barium, Total              | 2/26/21 06:45 | 2/26/21 11:57 | 7 1.015     | 0.0143       | mg/L       | 0.000101 | 0.000203   |   |
| * Beryllium, Total           | 2/26/21 06:45 | 2/26/21 11:57 | 7 1.015     | Not Detected | mg/L       | 0.000406 | 0.001015   | U |
| * Cadmium, Total             | 2/26/21 06:45 | 2/26/21 11:57 | 7 1.015     | Not Detected | mg/L       | 0.000068 | 0.000203   | U |
| * Chromium, Total            | 2/26/21 06:45 | 2/26/21 11:57 | 7 1.015     | Not Detected | mg/L       | 0.000203 | 0.001015   | U |
| * Cobalt, Total              | 2/26/21 06:45 | 2/26/21 11:57 | 7 1.015     | 0.0771       | mg/L       | 0.000068 | 0.000203   |   |
| * Lead, Total                | 2/26/21 06:45 | 2/26/21 11:57 | 7 1.015     | Not Detected | mg/L       | 0.000068 | 0.000203   | U |
| * Molybdenum, Total          | 2/26/21 06:45 | 2/26/21 11:57 | 7 1.015     | 0.000285     | mg/L       | 0.000068 | 0.000203   |   |
| * Potassium, Total           | 2/26/21 06:45 | 2/26/21 11:57 | 7 1.015     | 6.37         | mg/L       | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 2/26/21 06:45 | 2/26/21 17:38 | 3 10.15     | 10.4         | mg/L       | 0.000680 | 0.00203    |   |
| * Selenium, Total            | 2/26/21 06:45 | 2/26/21 11:57 | 7 1.015     | Not Detected | mg/L       | 0.000507 | 0.001015   | U |
| * Thallium, Total            | 2/26/21 06:45 | 2/26/21 11:57 | 7 1.015     | Not Detected | mg/L       | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Analy         | st: DLJ       |             |              |            |          |            |   |
| * Manganese, Dissolved       | 2/26/21 08:46 | 2/26/21 16:38 | 3 10.15     | 12.3         | mg/L       | 0.000680 | 0.00203    |   |
| Analytical Method: EPA 245.1 | Analy         | st: ABB       |             |              |            |          |            |   |
| * Mercury, Total by CVAA     | 3/8/21 11:16  | 3/9/21 12:24  | 1           | Not Detected | mg/L       | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B |               | st: JAG       |             |              |            |          |            |   |
| Alkalinity, Total as CaCO3   | 3/3/21 11:10  | 3/3/21 12:09  | 1           | 180          | mg/L       |          | 0.1        |   |
| Analytical Method: SM 2540C  |               | st: TJW       |             |              | -          |          |            |   |
| * Solids, Dissolved          | 2/25/21 10:55 |               | 1           | 3230         | mg/L       |          | 166.7      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Landfill - MW-6

**Location Code:** 

WMWGORLF

Collected:

Customer ID: Submittal Date:

2/23/21 10:45 2/24/21 09:29

Laboratory ID Number: BB04032

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anai          | yst: JAG     |          |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 11:10  | 3/3/21 12:09 | ) 1      |    | 180     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 11:10  | 3/3/21 12:09 | ) 1      | l  | 0.02    | mg/L  |       |     |    |
| Analytical Method: SM4500CI E         | Anai          | yst: JCC     |          |    |         |       |       |     |    |
| * Chloride                            | 2/25/21 10:55 | 2/25/21 10:5 | 5 1      |    | 3.47    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Anai          | yst: JCC     |          |    |         |       |       |     |    |
| * Fluoride                            | 2/25/21 15:29 | 2/25/21 15:2 | .9 1     | l  | 0.139   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Anal          | yst: JCC     |          |    |         |       |       |     |    |
| * Sulfate                             | 2/26/21 11:02 | 2/26/21 11:0 | 2 8      | 30 | 2010    | mg/L  | 40.00 | 80  |    |
| Analytical Method: Field Measurements | Anal          | yst: AWG     |          |    |         |       |       |     |    |
| Conductivity                          | 2/23/21 10:42 | 2/23/21 10:4 | 2        |    | 3176.73 | uS/cm |       |     | FA |
| рН                                    | 2/23/21 10:42 | 2/23/21 10:4 | 2        |    | 6.13    | SU    |       |     | FA |
| Temperature                           | 2/23/21 10:42 | 2/23/21 10:4 | 2        |    | 19.94   | С     |       |     | FA |
| Turbidity                             | 2/23/21 10:42 | 2/23/21 10:4 | 2        |    | 2.5     | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



Customer Account: WMWGORLF Sample Date: 2/23/21 10:45

**Customer ID:** 

2/24/21 09:29 **Delivery Date:** 

Description: Gorgas Landfill - MW-6

Laboratory ID Number: BB04032

| <u></u> |                        |       |            | MB       |       |         |         | ·        | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| 3B04070 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 278     | 288     | 5.12     | 4.25 to 5.75       | -120  | 70.0 to 130 | 3.53  | 20.0          |
| 3B04070 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.334   | 0.333   | 0.207    | 0.170 to 0.230     | 136   | 70.0 to 130 | 0.300 | 20.0          |
| 3B04070 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.101   | 0.0993  | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 1.70  | 20.0          |
| 3B04070 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0911  | 0.0912  | 0.0942   | 0.0850 to 0.115    | 91.1  | 70.0 to 130 | 0.110 | 20.0          |
| 3B04070 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0998  | 0.0985  | 0.0985   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 1.31  | 20.0          |
| 3B04070 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0955  | 0.0960  | 0.0981   | 0.0850 to 0.115    | 95.5  | 70.0 to 130 | 0.522 | 20.0          |
| 3B04070 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0936  | 0.0950  | 0.0951   | 0.0850 to 0.115    | 93.6  | 70.0 to 130 | 1.48  | 20.0          |
| 3B04070 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.06    | 1.06    | 1.03     | 0.850 to 1.15      | 103   | 70.0 to 130 | 0.00  | 20.0          |
| 3B04070 | Iron, Dissolved        | mg/L  | -0.0000794 | 0.0176   | 0.2   | 0.199   | 0.197   | 0.205    | 0.170 to 0.230     | 99.5  | 70.0 to 130 | 1.01  | 20.0          |
| 3B04070 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 0.205   | 0.203   | 0.209    | 0.170 to 0.230     | 98.4  | 70.0 to 130 | 0.980 | 20.0          |
| 3B04070 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0948  | 0.0973  | 0.0942   | 0.0850 to 0.115    | 94.8  | 70.0 to 130 | 2.60  | 20.0          |
| 3B04070 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.104   | 0.105   | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.957 | 20.0          |
| 3B04070 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 17.3    | 16.7    | 10.3     | 8.50 to 11.5       | 106   | 70.0 to 130 | 3.53  | 20.0          |
| 3B04070 | Manganese, Dissolved   | mg/L  | 0.0000065  | 0.000147 | 0.10  | 0.0987  | 0.0975  | 0.0997   | 0.0850 to 0.115    | 98.5  | 70.0 to 130 | 1.22  | 20.0          |
| 3B04070 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0975  | 0.0974  | 0.0984   | 0.0850 to 0.115    | 97.5  | 70.0 to 130 | 0.103 | 20.0          |
| 3B04070 | Mercury, Total by CVAA | mg/L  | 0.0000921  | 0.000500 | 0.004 | 0.00419 | 0.00426 | 0.00412  | 0.00340 to 0.00460 | 105   | 70.0 to 130 | 1.66  | 20.0          |
| 3B04070 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.101   | 0.0990  | 0.0987   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.00  | 20.0          |
| 3B04070 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 39.8    | 39.8    | 5.15     | 4.25 to 5.75       | 82.0  | 70.0 to 130 | 0.00  | 20.0          |
| 3B04070 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.105   | 0.103   | 0.104    | 0.0850 to 0.115    | 105   | 70.0 to 130 | 1.92  | 20.0          |
| 3B04070 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.111   | 0.112   | 0.0999   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.897 | 20.0          |
| 3B04070 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 283     | 294     | 5.15     | 4.25 to 5.75       | -80.0 | 70.0 to 130 | 3.81  | 20.0          |
| 3B04070 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 0.100   | 0.0976  | 0.0992   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 2.43  | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

2/23/21 10:45

Customer ID:

**Delivery Date:** 2/24/21 09:29

Description: Gorgas Landfill - MW-6

Laboratory ID Number: BB04032

|         |                            |       |        | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|----------------------------|-------|--------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB     | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB04034 | Fluoride                   | mg/L  | 0.0232 | 0.0500 | 2.50  | 2.82 | 0.214     | 2.63     | 2.25 to 2.75 | 104  | 80.0 to 120 | 2.84  | 20.0          |
| BB04156 | Alkalinity, Total as CaCO3 | mg/L  |        |        |       |      | 224       | 52.0     | 45.0 to 55.0 |      |             | 2.21  | 10.0          |
| BB04034 | Sulfate                    | mg/L  | -0.295 | 0.500  | 2000  | 3620 | 1420      | 19.2     | 18.0 to 22.0 | 110  | 80.0 to 120 | 0.00  | 20.0          |
| BB04070 | Solids, Dissolved          | mg/L  | -1.00  | 25.0   |       |      | 2580      | 51.0     | 40.0 to 60.0 |      |             | 0.194 | 5.00          |
| BB04034 | Chloride                   | mg/L  | -0.073 | 0.500  | 10.0  | 27.3 | 17.9      | 10.2     | 9.00 to 11.0 | 94.0 | 80.0 to 120 | 0.00  | 20.0          |

## Certificate Of Analysis



Description: Gorgas Landfill - MW-7Location Code:WMWGORLFCollected:2/23/21 11:35

Customer ID:

Laboratory ID Number: BB04033 Submittal Date: 2/24/21 09:29

| Name                                  | Prepared      | Analyzed     | Vio Spec D | )F  | Results      | Units        | MDL      | RL         | Q |
|---------------------------------------|---------------|--------------|------------|-----|--------------|--------------|----------|------------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |            |     | Preparati    | on Method: E | PA 1638  |            |   |
| * Boron, Total                        | 3/16/21 09:07 | 3/17/21 09:4 | 6 1.0      | 015 | 0.0803       | mg/L         | 0.030000 | 0.1015     | J |
| * Calcium, Total                      | 3/16/21 09:07 | 3/19/21 10:2 | 3 20       | .3  | 292          | mg/L         | 1.4007   | 8.12       |   |
| * Iron, Total                         | 3/16/21 09:07 | 3/17/21 09:4 | 6 1.0      | 015 | 2.26         | mg/L         | 0.008120 | 0.0406     |   |
| * Lithium, Total                      | 3/16/21 09:07 | 3/17/21 09:4 | 6 1.0      | 015 | 0.131        | mg/L         | 0.007105 | 0.01999956 |   |
| * Magnesium, Total                    | 3/16/21 09:07 | 3/19/21 10:2 | 3 20       | .3  | 253          | mg/L         | 0.4263   | 8.12       |   |
| * Sodium, Total                       | 3/16/21 09:07 | 3/19/21 10:2 | 3 20       | .3  | 40.5         | mg/L         | 0.406    | 8.12       |   |
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |            |     |              |              |          |            |   |
| * Iron, Dissolved                     | 3/11/21 11:00 | 3/12/21 11:3 | 7 1.0      | 015 | 2.15         | mg/L         | 0.008120 | 0.0406     |   |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |            |     | Preparati    | on Method: E | PA 1638  |            |   |
| * Antimony, Total                     | 2/26/21 06:45 | 2/26/21 12:0 | 1 1.0      | 015 | Not Detected | mg/L         | 0.000507 | 0.001015   | U |
| * Arsenic, Total                      | 2/26/21 06:45 | 2/26/21 12:0 | 1 1.0      | 015 | 0.00141      | mg/L         | 0.000068 | 0.000203   |   |
| * Barium, Total                       | 2/26/21 06:45 | 2/26/21 12:0 | 1 1.0      | 015 | 0.0140       | mg/L         | 0.000101 | 0.000203   |   |
| * Beryllium, Total                    | 2/26/21 06:45 | 2/26/21 12:0 | 1 1.0      | 015 | Not Detected | mg/L         | 0.000406 | 0.001015   | U |
| * Cadmium, Total                      | 2/26/21 06:45 | 2/26/21 12:0 | 1 1.0      | 015 | Not Detected | mg/L         | 0.000068 | 0.000203   | U |
| * Chromium, Total                     | 2/26/21 06:45 | 2/26/21 12:0 | 1 1.0      | 015 | Not Detected | mg/L         | 0.000203 | 0.001015   | U |
| * Cobalt, Total                       | 2/26/21 06:45 | 2/26/21 12:0 | 1 1.0      | 015 | 0.00294      | mg/L         | 0.000068 | 0.000203   |   |
| * Lead, Total                         | 2/26/21 06:45 | 2/26/21 12:0 | 1 1.0      | 015 | Not Detected | mg/L         | 0.000068 | 0.000203   | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 2/26/21 06:45 | 2/26/21 12:0 | 1 1.0      | 015 | 0.00107      | mg/L         | 0.000068 | 0.000203   |   |
| * Potassium, Total                    | 2/26/21 06:45 | 2/26/21 12:0 | 1 1.0      | 015 | 6.40         | mg/L         | 0.169505 | 0.5075     |   |
| * Manganese, Total                    | 2/26/21 06:45 | 2/26/21 17:4 | 2 5.0      | 075 | 1.58         | mg/L         | 0.000340 | 0.001015   |   |
| * Selenium, Total                     | 2/26/21 06:45 | 2/26/21 12:0 | 1 1.0      | 015 | Not Detected | mg/L         | 0.000507 | 0.001015   | U |
| * Thallium, Total                     | 2/26/21 06:45 | 2/26/21 12:0 | 1 1.0      | 015 | Not Detected | mg/L         | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |            |     |              |              |          |            |   |
| * Manganese, Dissolved                | 2/26/21 08:46 | 2/26/21 16:4 | 1 5.0      | 075 | 1.91         | mg/L         | 0.000340 | 0.001015   |   |
| Analytical Method: EPA 245.1          | Anal          | yst: ABB     |            |     |              |              |          |            |   |
| * Mercury, Total by CVAA              | 3/8/21 11:16  | 3/9/21 12:26 | 1          |     | Not Detected | mg/L         | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B          | Anal          | yst: JAG     |            |     |              |              |          |            |   |
| Alkalinity, Total as CaCO3            | 3/3/21 11:10  | 3/3/21 12:09 | 1          |     | 334          | mg/L         |          | 0.1        |   |
| Analytical Method: SM 2540C           |               | yst: TJW     |            |     |              | -            |          |            |   |
| * Solids, Dissolved                   | 2/25/21 10:55 | •            | 1          |     | 2320         | mg/L         |          | 125        |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Landfill - MW-7

**Location Code:** 

WMWGORLF

Collected:

Customer ID: Submittal Date:

2/23/21 11:35

2/24/21 09:29

Laboratory ID Number: BB04033

| Laboratory ID Number: BB04033         |               |                |          |    |         |       |       |     |    |
|---------------------------------------|---------------|----------------|----------|----|---------|-------|-------|-----|----|
| Name                                  | Prepared      | Analyzed       | Vio Spec | DF | Results | Units | MDL   | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG      |          |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 11:10  | 3/3/21 12:09   | )        | 1  | 334     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 11:10  | 3/3/21 12:09   | )        | 1  | 0.18    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC      |          |    |         |       |       |     |    |
| * Chloride                            | 2/25/21 10:56 | 3 2/25/21 10:5 | 56       | 1  | 7.85    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC      |          |    |         |       |       |     |    |
| * Fluoride                            | 2/25/21 15:30 | 2/25/21 15:3   | 30       | 1  | 0.200   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC      |          |    |         |       |       |     |    |
| * Sulfate                             | 2/26/21 11:03 | 3 2/26/21 11:0 | )3       | 50 | 1320    | mg/L  | 25.00 | 50  |    |
| Analytical Method: Field Measurements | Ana           | lyst: AWG      |          |    |         |       |       |     |    |
| Conductivity                          | 2/23/21 11:32 | 2/23/21 11:3   | 32       |    | 2508.19 | uS/cm |       |     | FA |
| рН                                    | 2/23/21 11:32 | 2 2/23/21 11:3 | 32       |    | 6.70    | SU    |       |     | FA |
| Temperature                           | 2/23/21 11:32 | 2 2/23/21 11:3 | 32       |    | 18.98   | С     |       |     | FA |
| Turbidity                             | 2/23/21 11:32 | 2 2/23/21 11:3 | 32       |    | 0.46    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 2/23/21 11:35

Customer ID:

**Delivery Date:** 2/24/21 09:29

Description: Gorgas Landfill - MW-7

Laboratory ID Number: BB04033

|         |                        |       |            | MB       | ·     |         | ·       | ·        | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| BB04070 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 278     | 288     | 5.12     | 4.25 to 5.75       | -120  | 70.0 to 130 | 3.53  | 20.0          |
| 3B04070 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.334   | 0.333   | 0.207    | 0.170 to 0.230     | 136   | 70.0 to 130 | 0.300 | 20.0          |
| 3B04070 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.101   | 0.0993  | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 1.70  | 20.0          |
| 3B04070 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.105   | 0.103   | 0.104    | 0.0850 to 0.115    | 105   | 70.0 to 130 | 1.92  | 20.0          |
| 3B04070 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.111   | 0.112   | 0.0999   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.897 | 20.0          |
| BB04070 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 283     | 294     | 5.15     | 4.25 to 5.75       | -80.0 | 70.0 to 130 | 3.81  | 20.0          |
| BB04070 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 0.100   | 0.0976  | 0.0992   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 2.43  | 20.0          |
| BB04070 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 17.3    | 16.7    | 10.3     | 8.50 to 11.5       | 106   | 70.0 to 130 | 3.53  | 20.0          |
| BB04070 | Manganese, Dissolved   | mg/L  | 0.0000065  | 0.000147 | 0.10  | 0.0987  | 0.0975  | 0.0997   | 0.0850 to 0.115    | 98.5  | 70.0 to 130 | 1.22  | 20.0          |
| 3B04070 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0911  | 0.0912  | 0.0942   | 0.0850 to 0.115    | 91.1  | 70.0 to 130 | 0.110 | 20.0          |
| 3B04070 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0998  | 0.0985  | 0.0985   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 1.31  | 20.0          |
| 3B04070 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0955  | 0.0960  | 0.0981   | 0.0850 to 0.115    | 95.5  | 70.0 to 130 | 0.522 | 20.0          |
| 3B04070 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0936  | 0.0950  | 0.0951   | 0.0850 to 0.115    | 93.6  | 70.0 to 130 | 1.48  | 20.0          |
| 3B04070 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.06    | 1.06    | 1.03     | 0.850 to 1.15      | 103   | 70.0 to 130 | 0.00  | 20.0          |
| 3B04070 | Iron, Dissolved        | mg/L  | -0.0000794 | 0.0176   | 0.2   | 0.199   | 0.197   | 0.205    | 0.170 to 0.230     | 99.5  | 70.0 to 130 | 1.01  | 20.0          |
| 3B04070 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 0.205   | 0.203   | 0.209    | 0.170 to 0.230     | 98.4  | 70.0 to 130 | 0.980 | 20.0          |
| 3B04070 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0948  | 0.0973  | 0.0942   | 0.0850 to 0.115    | 94.8  | 70.0 to 130 | 2.60  | 20.0          |
| 3B04070 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.104   | 0.105   | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.957 | 20.0          |
| 3B04070 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0975  | 0.0974  | 0.0984   | 0.0850 to 0.115    | 97.5  | 70.0 to 130 | 0.103 | 20.0          |
| BB04070 | Mercury, Total by CVAA | mg/L  | 0.0000921  | 0.000500 | 0.004 | 0.00419 | 0.00426 | 0.00412  | 0.00340 to 0.00460 | 105   | 70.0 to 130 | 1.66  | 20.0          |
| BB04070 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.101   | 0.0990  | 0.0987   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.00  | 20.0          |
| 3B04070 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 39.8    | 39.8    | 5.15     | 4.25 to 5.75       | 82.0  | 70.0 to 130 | 0.00  | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date: 2

2/23/21 11:35

**Customer ID:** 

**Delivery Date:** 

2/24/21 09:29

Description: Gorgas Landfill - MW-7

Laboratory ID Number: BB04033

|         |                            |       |        | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|----------------------------|-------|--------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB     | Limit  | Spike | MS   | Duplicate | Standard | l Limit      | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB04034 | Fluoride                   | mg/L  | 0.0232 | 0.0500 | 2.50  | 2.82 | 0.214     | 2.63     | 2.25 to 2.75 | 104  | 80.0 to 120 | 2.84  | 20.0          |
| BB04034 | Chloride                   | mg/L  | -0.073 | 0.500  | 10.0  | 27.3 | 17.9      | 10.2     | 9.00 to 11.0 | 94.0 | 80.0 to 120 | 0.00  | 20.0          |
| BB04156 | Alkalinity, Total as CaCO3 | mg/L  |        |        |       |      | 224       | 52.0     | 45.0 to 55.0 |      |             | 2.21  | 10.0          |
| BB04070 | Solids, Dissolved          | mg/L  | -1.00  | 25.0   |       |      | 2580      | 51.0     | 40.0 to 60.0 |      |             | 0.194 | 5.00          |
| BB04034 | Sulfate                    | mg/L  | -0.295 | 0.500  | 2000  | 3620 | 1420      | 19.2     | 18.0 to 22.0 | 110  | 80.0 to 120 | 0.00  | 20.0          |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 3/30/21

Reported: 3/31/2021 Version: 3.2 COA\_CCR

## Certificate Of Analysis



Description: Gorgas Landfill - MW-8Location Code:WMWGORLFCollected:2/23/21 12:35

Customer ID:

Laboratory ID Number: BB04034 Submittal Date: 2/24/21 09:29

| Name                                  | Prepared      | Analyzed     | Vio Spec DF        | Result    | s Units             | MDL      | RL         | Q |
|---------------------------------------|---------------|--------------|--------------------|-----------|---------------------|----------|------------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |                    | ı         | Preparation Method: | EPA 1638 |            |   |
| * Boron, Total                        | 3/16/21 09:07 | 3/17/21 09:4 | 9 1.0              | 15 0.0731 | mg/L                | 0.030000 | 0.1015     | J |
| * Calcium, Total                      | 3/16/21 09:07 | 3/19/21 10:2 | 7 20.3             | 3 306     | mg/L                | 1.4007   | 8.12       |   |
| * Iron, Total                         | 3/16/21 09:07 | 3/17/21 09:4 | 9 1.0 <sup>4</sup> | 15 2.31   | mg/L                | 0.008120 | 0.0406     |   |
| * Lithium, Total                      | 3/16/21 09:07 | 3/17/21 09:4 | 9 1.0              | 15 0.166  | mg/L                | 0.007105 | 0.01999956 | 3 |
| * Magnesium, Total                    | 3/16/21 09:07 | 3/19/21 10:2 | 7 20.3             | 3 296     | mg/L                | 0.4263   | 8.12       |   |
| * Sodium, Total                       | 3/16/21 09:07 | 3/19/21 10:2 | 7 20.3             | 3 40.2    | mg/L                | 0.406    | 8.12       |   |
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |                    |           |                     |          |            |   |
| * Iron, Dissolved                     | 3/11/21 11:00 | 3/12/21 11:4 | 1 1.0              | 15 1.72   | mg/L                | 0.008120 | 0.0406     |   |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |                    | ı         | Preparation Method: | EPA 1638 |            |   |
| * Antimony, Total                     | 2/26/21 06:45 | 2/26/21 12:0 | 4 1.0              | 15 Not De | etected mg/L        | 0.000507 | 0.001015   | U |
| * Arsenic, Total                      | 2/26/21 06:45 | 2/26/21 12:0 | 4 1.0°             | 15 0.0011 | 7 mg/L              | 0.000068 | 0.000203   |   |
| * Barium, Total                       | 2/26/21 06:45 | 2/26/21 12:0 | 4 1.0°             | 15 0.0140 | ) mg/L              | 0.000101 | 0.000203   |   |
| * Beryllium, Total                    | 2/26/21 06:45 | 2/26/21 12:0 | 4 1.0°             | 15 Not De | etected mg/L        | 0.000406 | 0.001015   | U |
| * Cadmium, Total                      | 2/26/21 06:45 | 2/26/21 12:0 | 4 1.0°             | 15 Not De | etected mg/L        | 0.000068 | 0.000203   | U |
| * Chromium, Total                     | 2/26/21 06:45 | 2/26/21 12:0 | 4 1.0°             | 15 Not De | etected mg/L        | 0.000203 | 0.001015   | U |
| * Cobalt, Total                       | 2/26/21 06:45 | 2/26/21 12:0 | 4 1.0°             | 15 0.0079 | 96 mg/L             | 0.000068 | 0.000203   |   |
| * Lead, Total                         | 2/26/21 06:45 | 2/26/21 12:0 | 4 1.0°             | 15 Not De | etected mg/L        | 0.000068 | 0.000203   | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 2/26/21 06:45 | 2/26/21 12:0 | 4 1.0              | 15 0.0129 | mg/L                | 0.000068 | 0.000203   |   |
| * Potassium, Total                    | 2/26/21 06:45 | 2/26/21 12:0 | 4 1.0°             | 15 8.24   | mg/L                | 0.169505 | 0.5075     |   |
| * Manganese, Total                    | 2/26/21 06:45 | 2/26/21 12:0 | 4 1.0              | 1.02      | mg/L                | 0.000068 | 0.000203   |   |
| * Selenium, Total                     | 2/26/21 06:45 | 2/26/21 12:0 | 4 1.0              | 15 Not De | etected mg/L        | 0.000507 | 0.001015   | U |
| * Thallium, Total                     | 2/26/21 06:45 | 2/26/21 12:0 | 4 1.0°             | 15 Not De | etected mg/L        | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |                    |           |                     |          |            |   |
| * Manganese, Dissolved                | 2/26/21 08:46 | 2/26/21 10:1 | 6 1.0 <sup>4</sup> | 15 1.04   | mg/L                | 0.000068 | 0.000203   |   |
| Analytical Method: EPA 245.1          | Anal          | yst: ABB     |                    |           |                     |          |            |   |
| * Mercury, Total by CVAA              | 3/8/21 11:16  | 3/9/21 12:28 | 1                  | Not De    | etected mg/L        | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B          | Anal          | yst: JAG     |                    |           |                     |          |            |   |
| Alkalinity, Total as CaCO3            | 3/3/21 11:10  | 3/3/21 12:09 | 1                  | 403       | mg/L                |          | 0.1        |   |
| Analytical Method: SM 2540C           |               | yst: TJW     |                    |           | -                   |          |            |   |
| * Solids, Dissolved                   | 2/25/21 10:55 | •            | 1                  | 2550      | mg/L                |          | 166.7      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

# Certificate Of Analysis



Description: Gorgas Landfill - MW-8

Location Code:

WMWGORLF

Collected:

Customer ID: Submittal Date:

2/23/21 12:35 2/24/21 09:29

Laboratory ID Number: BB04034

| Name                                  | Prepared      | Analyzed     | Vio Spec  | DF  | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|-----------|-----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |           |     |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 11:10  | 3/3/21 12:09 | )         | 1   | 403     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 11:10  | 3/3/21 12:09 | )         | 1   | 0.25    | mg/L  |       |     |    |
| Analytical Method: SM4500CI E         | Ana           | lyst: JCC    |           |     |         |       |       |     |    |
| * Chloride                            | 2/25/21 10:57 | 2/25/21 10:5 | 7         | 1   | 17.9    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |           |     |         |       |       |     |    |
| * Fluoride                            | 2/25/21 15:32 | 2/25/21 15:3 | 2         | 1   | 0.208   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |           |     |         |       |       |     |    |
| * Sulfate                             | 2/26/21 11:04 | 2/26/21 11:0 | 14        | 100 | 1420    | mg/L  | 50.00 | 100 |    |
| Analytical Method: Field Measurements | Ana           | lyst: AWG    |           |     |         |       |       |     |    |
| Conductivity                          | 2/23/21 12:31 | 2/23/21 12:3 | 1         |     | 2732.18 | uS/cm |       |     | FA |
| рН                                    | 2/23/21 12:31 | 2/23/21 12:3 | 1         |     | 6.73    | SU    |       |     | FA |
| Temperature                           | 2/23/21 12:31 | 2/23/21 12:3 | 1         |     | 20.88   | С     |       |     | FA |
| Turbidity                             | 2/23/21 12:31 | 2/23/21 12:3 | <b>31</b> |     | 3.03    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



Customer Account: WMWGORLF Sample Date: 2/23/21 12:35

2/24/21 09:29

**Customer ID:** 

**Delivery Date:** 

Description: Gorgas Landfill - MW-8

Laboratory ID Number: BB04034

|         |                        |       |            | MB       |       |         |         |          | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| BB04070 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 278     | 288     | 5.12     | 4.25 to 5.75       | -120  | 70.0 to 130 | 3.53  | 20.0          |
| BB04070 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.101   | 0.0993  | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 1.70  | 20.0          |
| BB04070 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.334   | 0.333   | 0.207    | 0.170 to 0.230     | 136   | 70.0 to 130 | 0.300 | 20.0          |
| BB04070 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 17.3    | 16.7    | 10.3     | 8.50 to 11.5       | 106   | 70.0 to 130 | 3.53  | 20.0          |
| BB04070 | Manganese, Dissolved   | mg/L  | 0.0000065  | 0.000147 | 0.10  | 0.0987  | 0.0975  | 0.0997   | 0.0850 to 0.115    | 98.5  | 70.0 to 130 | 1.22  | 20.0          |
| BB04070 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.105   | 0.103   | 0.104    | 0.0850 to 0.115    | 105   | 70.0 to 130 | 1.92  | 20.0          |
| BB04070 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.111   | 0.112   | 0.0999   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.897 | 20.0          |
| BB04070 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 283     | 294     | 5.15     | 4.25 to 5.75       | -80.0 | 70.0 to 130 | 3.81  | 20.0          |
| BB04070 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 0.100   | 0.0976  | 0.0992   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 2.43  | 20.0          |
| BB04070 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.06    | 1.06    | 1.03     | 0.850 to 1.15      | 103   | 70.0 to 130 | 0.00  | 20.0          |
| BB04070 | Iron, Dissolved        | mg/L  | -0.0000794 | 0.0176   | 0.2   | 0.199   | 0.197   | 0.205    | 0.170 to 0.230     | 99.5  | 70.0 to 130 | 1.01  | 20.0          |
| BB04070 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 0.205   | 0.203   | 0.209    | 0.170 to 0.230     | 98.4  | 70.0 to 130 | 0.980 | 20.0          |
| BB04070 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0948  | 0.0973  | 0.0942   | 0.0850 to 0.115    | 94.8  | 70.0 to 130 | 2.60  | 20.0          |
| BB04070 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.104   | 0.105   | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.957 | 20.0          |
| BB04070 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0975  | 0.0974  | 0.0984   | 0.0850 to 0.115    | 97.5  | 70.0 to 130 | 0.103 | 20.0          |
| BB04070 | Mercury, Total by CVAA | mg/L  | 0.0000921  | 0.000500 | 0.004 | 0.00419 | 0.00426 | 0.00412  | 0.00340 to 0.00460 | 105   | 70.0 to 130 | 1.66  | 20.0          |
| BB04070 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.101   | 0.0990  | 0.0987   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.00  | 20.0          |
| BB04070 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 39.8    | 39.8    | 5.15     | 4.25 to 5.75       | 82.0  | 70.0 to 130 | 0.00  | 20.0          |
| BB04070 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0911  | 0.0912  | 0.0942   | 0.0850 to 0.115    | 91.1  | 70.0 to 130 | 0.110 | 20.0          |
| BB04070 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0998  | 0.0985  | 0.0985   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 1.31  | 20.0          |
| BB04070 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0955  | 0.0960  | 0.0981   | 0.0850 to 0.115    | 95.5  | 70.0 to 130 | 0.522 | 20.0          |
| BB04070 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0936  | 0.0950  | 0.0951   | 0.0850 to 0.115    | 93.6  | 70.0 to 130 | 1.48  | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

2/23/21 12:35

**Customer ID:** 

**Delivery Date:** 

2/24/21 09:29

Description: Gorgas Landfill - MW-8

Laboratory ID Number: BB04034

|   |         |                            |       |        | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---|---------|----------------------------|-------|--------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB     | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| ı | BB04034 | Fluoride                   | mg/L  | 0.0232 | 0.0500 | 2.50  | 2.82 | 0.214     | 2.63     | 2.25 to 2.75 | 104  | 80.0 to 120 | 2.84  | 20.0          |
| ı | BB04156 | Alkalinity, Total as CaCO3 | mg/L  |        |        |       |      | 224       | 52.0     | 45.0 to 55.0 |      |             | 2.21  | 10.0          |
| ı | BB04034 | Chloride                   | mg/L  | -0.073 | 0.500  | 10.0  | 27.3 | 17.9      | 10.2     | 9.00 to 11.0 | 94.0 | 80.0 to 120 | 0.00  | 20.0          |
| 1 | BB04070 | Solids, Dissolved          | mg/L  | -1.00  | 25.0   |       |      | 2580      | 51.0     | 40.0 to 60.0 |      |             | 0.194 | 5.00          |
| ı | BB04034 | Sulfate                    | mg/L  | -0.295 | 0.500  | 2000  | 3620 | 1420      | 19.2     | 18.0 to 22.0 | 110  | 80.0 to 120 | 0.00  | 20.0          |
|   |         |                            |       |        |        |       |      |           |          |              |      |             |       |               |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 3/30/21

Reported: 3/31/2021 Version: 3.2 COA\_CCR

# Certificate Of Analysis



Description: Gorgas Landfill - MW-13Location Code:WMWGORLFCollected:2/23/21 08:33

**Customer ID:** 

**Submittal Date:** 2/24/21 13:49

| Laboratory ID Number: BB04064         |               | Submittal Date: 2/24/21 13:49 |          |       |              |              |          |            |   |  |  |
|---------------------------------------|---------------|-------------------------------|----------|-------|--------------|--------------|----------|------------|---|--|--|
| Name                                  | Prepared      | Analyzed                      | Vio Spec | DF    | Results      | Units        | MDL      | RL         | Q |  |  |
| Analytical Method: EPA 200.7          | Anal          | yst: RDA                      |          |       | Preparati    | on Method: L | EPA 1638 |            |   |  |  |
| * Boron, Total                        | 3/16/21 09:07 | 3/17/21 09                    | :53      | 1.015 | 0.0650       | mg/L         | 0.030000 | 0.1015     | J |  |  |
| * Calcium, Total                      | 3/16/21 09:07 | 3/19/21 10                    | :30      | 20.3  | 238          | mg/L         | 1.4007   | 8.12       |   |  |  |
| * Iron, Total                         | 3/16/21 09:07 | 3/17/21 09                    | :53      | 1.015 | 0.176        | mg/L         | 0.008120 | 0.0406     |   |  |  |
| * Lithium, Total                      | 3/16/21 09:07 | 3/17/21 09                    | :53      | 1.015 | 0.0240       | mg/L         | 0.007105 | 0.01999956 | ; |  |  |
| * Magnesium, Total                    | 3/16/21 09:07 | 3/19/21 10                    | :30      | 20.3  | 285          | mg/L         | 0.4263   | 8.12       |   |  |  |
| * Sodium, Total                       | 3/16/21 09:07 | 3/17/21 09                    | :53      | 1.015 | 32.8         | mg/L         | 0.02030  | 0.406      |   |  |  |
| Analytical Method: EPA 200.7          | Anal          | yst: RDA                      |          |       |              |              |          |            |   |  |  |
| * Iron, Dissolved                     | 3/11/21 11:00 | 3/12/21 11                    | :44      | 1.015 | 0.0879       | mg/L         | 0.008120 | 0.0406     |   |  |  |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ                      |          |       | Preparati    | on Method: L | EPA 1638 |            |   |  |  |
| * Antimony, Total                     | 2/26/21 06:45 | 2/26/21 12                    | :08      | 1.015 | Not Detected | mg/L         | 0.000507 | 0.001015   | U |  |  |
| * Arsenic, Total                      | 2/26/21 06:45 | 2/26/21 12                    | :08      | 1.015 | 0.000293     | mg/L         | 0.000068 | 0.000203   |   |  |  |
| * Barium, Total                       | 2/26/21 06:45 | 2/26/21 12                    | :08      | 1.015 | 0.0110       | mg/L         | 0.000101 | 0.000203   |   |  |  |
| * Beryllium, Total                    | 2/26/21 06:45 | 2/26/21 12                    | :08      | 1.015 | Not Detected | mg/L         | 0.000406 | 0.001015   | U |  |  |
| * Cadmium, Total                      | 2/26/21 06:45 | 2/26/21 12                    | :08      | 1.015 | Not Detected | mg/L         | 0.000068 | 0.000203   | U |  |  |
| * Chromium, Total                     | 2/26/21 06:45 | 2/26/21 12                    | :08      | 1.015 | 0.000295     | mg/L         | 0.000203 | 0.001015   | J |  |  |
| * Cobalt, Total                       | 2/26/21 06:45 | 2/26/21 12                    | :08      | 1.015 | 0.00685      | mg/L         | 0.000068 | 0.000203   |   |  |  |
| * Lead, Total                         | 2/26/21 06:45 | 2/26/21 12                    | :08      | 1.015 | Not Detected | mg/L         | 0.000068 | 0.000203   | U |  |  |
| <ul> <li>Molybdenum, Total</li> </ul> | 2/26/21 06:45 | 2/26/21 12                    | :08      | 1.015 | 0.000495     | mg/L         | 0.000068 | 0.000203   |   |  |  |
| * Potassium, Total                    | 2/26/21 06:45 | 2/26/21 12                    | :08      | 1.015 | 7.93         | mg/L         | 0.169505 | 0.5075     |   |  |  |
| * Manganese, Total                    | 2/26/21 06:45 | 2/26/21 17                    | :45      | 5.075 | 2.56         | mg/L         | 0.000340 | 0.001015   |   |  |  |
| * Selenium, Total                     | 2/26/21 06:45 | 2/26/21 12                    | :08      | 1.015 | 0.00170      | mg/L         | 0.000507 | 0.001015   |   |  |  |
| * Thallium, Total                     | 2/26/21 06:45 | 2/26/21 12                    | :08      | 1.015 | Not Detected | mg/L         | 0.000068 | 0.000203   | U |  |  |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ                      |          |       |              |              |          |            |   |  |  |
| * Manganese, Dissolved                | 2/26/21 08:46 | 2/26/21 16                    | :45      | 5.075 | 2.64         | mg/L         | 0.000340 | 0.001015   |   |  |  |
| Analytical Method: EPA 245.1          | Anal          | yst: ABB                      |          |       |              |              |          |            |   |  |  |
| Mercury, Total by CVAA                | 3/8/21 11:16  | 3/9/21 12:3                   | 31       | 1     | Not Detected | mg/L         | 0.0003   | 0.0005     | U |  |  |
| Analytical Method: SM 2320 B          | Anal          | yst: JAG                      |          |       |              |              |          |            |   |  |  |
| Alkalinity, Total as CaCO3            | 3/3/21 11:10  | 3/3/21 12:0                   | )9       | 1     | 297          | mg/L         |          | 0.1        |   |  |  |
| Analytical Method: SM 2540C           | Anal          | yst: TJW                      |          |       |              |              |          |            |   |  |  |
| * Solids, Dissolved                   | 2/25/21 10:55 | 3/2/21 09:3                   | 30       | 1     | 2370         | mg/L         |          | 125        |   |  |  |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



**Description:** Gorgas Landfill - MW-13

**Location Code:** 

WMWGORLF

Collected:

Customer ID: Submittal Date: 2/23/21 08:33

2/24/21 13:49

Laboratory ID Number: BB04064

| Laboratory ID Number: BB04064         |               |                |             |         |       |       |     |    |
|---------------------------------------|---------------|----------------|-------------|---------|-------|-------|-----|----|
| Name                                  | Prepared      | Analyzed       | Vio Spec DF | Results | Units | MDL   | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | alyst: JAG     |             |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 11:10  | 3/3/21 12:09   | ) 1         | 297     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 11:10  | 3/3/21 12:09   | ) 1         | 0.13    | mg/L  |       |     |    |
| Analytical Method: SM4500CI E         | Ana           | alyst: JCC     |             |         |       |       |     |    |
| * Chloride                            | 2/25/21 11:1  | 5 2/25/21 11:1 | 5 1         | 1.60    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | alyst: JCC     |             |         |       |       |     |    |
| * Fluoride                            | 2/25/21 15:50 | 0 2/25/21 15:5 | 50 1        | 0.224   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | alyst: JCC     |             |         |       |       |     |    |
| * Sulfate                             | 2/26/21 11:50 | 0 2/26/21 11:5 | 50 50       | 1470    | mg/L  | 25.00 | 50  |    |
| Analytical Method: Field Measurements | Ana           | alyst: DKG     |             |         |       |       |     |    |
| Conductivity                          | 2/23/21 08:3  | 1 2/23/21 08:3 | 31          | 2250.95 | uS/cm |       |     | FA |
| рН                                    | 2/23/21 08:3  | 1 2/23/21 08:3 | 31          | 6.55    | SU    |       |     | FA |
| Temperature                           | 2/23/21 08:3  | 1 2/23/21 08:3 | 31          | 17.67   | С     |       |     | FA |
| Turbidity                             | 2/23/21 08:3  | 1 2/23/21 08:3 | 31          | 0.21    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 2/23/21 08:33

Customer ID:

**Delivery Date:** 2/24/21 13:49

Description: Gorgas Landfill - MW-13

Laboratory ID Number: BB04064

|         |                        |       |            | MB       |       |         |         |          | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| BB04070 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 278     | 288     | 5.12     | 4.25 to 5.75       | -120  | 70.0 to 130 | 3.53  | 20.0          |
| BB04070 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.334   | 0.333   | 0.207    | 0.170 to 0.230     | 136   | 70.0 to 130 | 0.300 | 20.0          |
| 3B04070 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0911  | 0.0912  | 0.0942   | 0.0850 to 0.115    | 91.1  | 70.0 to 130 | 0.110 | 20.0          |
| 3B04070 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0998  | 0.0985  | 0.0985   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 1.31  | 20.0          |
| BB04070 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0955  | 0.0960  | 0.0981   | 0.0850 to 0.115    | 95.5  | 70.0 to 130 | 0.522 | 20.0          |
| BB04070 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0936  | 0.0950  | 0.0951   | 0.0850 to 0.115    | 93.6  | 70.0 to 130 | 1.48  | 20.0          |
| BB04070 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.101   | 0.0993  | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 1.70  | 20.0          |
| BB04070 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 17.3    | 16.7    | 10.3     | 8.50 to 11.5       | 106   | 70.0 to 130 | 3.53  | 20.0          |
| BB04070 | Manganese, Dissolved   | mg/L  | 0.0000065  | 0.000147 | 0.10  | 0.0987  | 0.0975  | 0.0997   | 0.0850 to 0.115    | 98.5  | 70.0 to 130 | 1.22  | 20.0          |
| BB04070 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0975  | 0.0974  | 0.0984   | 0.0850 to 0.115    | 97.5  | 70.0 to 130 | 0.103 | 20.0          |
| 3B04070 | Mercury, Total by CVAA | mg/L  | 0.0000921  | 0.000500 | 0.004 | 0.00419 | 0.00426 | 0.00412  | 0.00340 to 0.00460 | 105   | 70.0 to 130 | 1.66  | 20.0          |
| 3B04070 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.101   | 0.0990  | 0.0987   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.00  | 20.0          |
| 3B04070 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 39.8    | 39.8    | 5.15     | 4.25 to 5.75       | 82.0  | 70.0 to 130 | 0.00  | 20.0          |
| 3B04070 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.105   | 0.103   | 0.104    | 0.0850 to 0.115    | 105   | 70.0 to 130 | 1.92  | 20.0          |
| BB04070 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.111   | 0.112   | 0.0999   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.897 | 20.0          |
| BB04070 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 283     | 294     | 5.15     | 4.25 to 5.75       | -80.0 | 70.0 to 130 | 3.81  | 20.0          |
| BB04070 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 0.100   | 0.0976  | 0.0992   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 2.43  | 20.0          |
| BB04070 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.06    | 1.06    | 1.03     | 0.850 to 1.15      | 103   | 70.0 to 130 | 0.00  | 20.0          |
| BB04070 | Iron, Dissolved        | mg/L  | -0.0000794 | 0.0176   | 0.2   | 0.199   | 0.197   | 0.205    | 0.170 to 0.230     | 99.5  | 70.0 to 130 | 1.01  | 20.0          |
| BB04070 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 0.205   | 0.203   | 0.209    | 0.170 to 0.230     | 98.4  | 70.0 to 130 | 0.980 | 20.0          |
| BB04070 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0948  | 0.0973  | 0.0942   | 0.0850 to 0.115    | 94.8  | 70.0 to 130 | 2.60  | 20.0          |
| BB04070 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.104   | 0.105   | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.957 | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

2/23/21 08:33

**Customer ID:** 

**Delivery Date:** 

2/24/21 13:49

Description: Gorgas Landfill - MW-13

Laboratory ID Number: BB04064

|         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Samp    | le Analysis                | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB04073 | Chloride                   | mg/L  | -0.0751 | 0.500  | 10.0  | 12.1 | 0.137     | 10.8     | 9.00 to 11.0 | 121  | 80.0 to 120 | 0.00  | 20.0          |
| BB04073 | Sulfate                    | mg/L  | -0.310  | 0.500  | 20.0  | 18.7 | -0.318    | 18.9     | 18.0 to 22.0 | 93.5 | 80.0 to 120 | 0.00  | 20.0          |
| BB04156 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 224       | 52.0     | 45.0 to 55.0 |      |             | 2.21  | 10.0          |
| BB04073 | Fluoride                   | mg/L  | 0.0184  | 0.0500 | 2.50  | 2.53 | 0.0137    | 2.63     | 2.25 to 2.75 | 101  | 80.0 to 120 | 0.00  | 20.0          |
| BB04070 | Solids, Dissolved          | mg/L  | -1.00   | 25.0   |       |      | 2580      | 51.0     | 40.0 to 60.0 |      |             | 0.194 | 5.00          |
|         |                            |       |         |        |       |      |           |          |              |      |             |       |               |

# Certificate Of Analysis



Description: Gorgas Landfill - MW-14Location Code:WMWGORLFCollected:2/23/21 09:45

**Customer ID:** 

**Submittal Date:** 2/24/21 13:49

| Laboratory ID Number: BB04065 |               |             |          |       | Submit       | tal Date:    | 2/24/21 13:4 | 9          |   |
|-------------------------------|---------------|-------------|----------|-------|--------------|--------------|--------------|------------|---|
| Name                          | Prepared      | Analyzed    | Vio Spec | DF    | Results      | Units        | MDL          | RL         | Q |
| Analytical Method: EPA 200.7  | Anal          | yst: RDA    |          |       | Preparati    | on Method: L | EPA 1638     |            |   |
| * Boron, Total                | 3/16/21 09:07 | 3/17/21 09: | :56      | 1.015 | 0.0516       | mg/L         | 0.030000     | 0.1015     | J |
| * Calcium, Total              | 3/16/21 09:07 | 3/19/21 10: | :33      | 20.3  | 312          | mg/L         | 1.4007       | 8.12       |   |
| * Iron, Total                 | 3/16/21 09:07 | 3/17/21 09: | :56      | 1.015 | 1.49         | mg/L         | 0.008120     | 0.0406     |   |
| * Lithium, Total              | 3/16/21 09:07 | 3/17/21 09: | :56      | 1.015 | 0.0398       | mg/L         | 0.007105     | 0.01999956 | j |
| * Magnesium, Total            | 3/16/21 09:07 | 3/19/21 10: | :33      | 20.3  | 358          | mg/L         | 0.4263       | 8.12       |   |
| * Sodium, Total               | 3/16/21 09:07 | 3/17/21 09: | :56      | 1.015 | 34.8         | mg/L         | 0.02030      | 0.406      |   |
| Analytical Method: EPA 200.7  | Anal          | yst: RDA    |          |       |              |              |              |            |   |
| * Iron, Dissolved             | 3/11/21 11:00 | 3/12/21 11: | :47      | 1.015 | 1.40         | mg/L         | 0.008120     | 0.0406     |   |
| Analytical Method: EPA 200.8  | Anal          | yst: DLJ    |          |       | Preparati    | on Method: L | EPA 1638     |            |   |
| * Antimony, Total             | 2/26/21 06:45 | 2/26/21 12: | :11      | 1.015 | Not Detected | mg/L         | 0.000507     | 0.001015   | U |
| * Arsenic, Total              | 2/26/21 06:45 | 2/26/21 12: | :11      | 1.015 | 0.000893     | mg/L         | 0.000068     | 0.000203   |   |
| * Barium, Total               | 2/26/21 06:45 | 2/26/21 12: | :11      | 1.015 | 0.0133       | mg/L         | 0.000101     | 0.000203   |   |
| * Beryllium, Total            | 2/26/21 06:45 | 2/26/21 12: | :11      | 1.015 | Not Detected | mg/L         | 0.000406     | 0.001015   | U |
| * Cadmium, Total              | 2/26/21 06:45 | 2/26/21 12: | :11      | 1.015 | 0.000122     | mg/L         | 0.000068     | 0.000203   | J |
| * Chromium, Total             | 2/26/21 06:45 | 2/26/21 12: | :11      | 1.015 | 0.000253     | mg/L         | 0.000203     | 0.001015   | J |
| * Cobalt, Total               | 2/26/21 06:45 | 2/26/21 12: | :11      | 1.015 | 0.00918      | mg/L         | 0.000068     | 0.000203   |   |
| * Lead, Total                 | 2/26/21 06:45 | 2/26/21 12: | :11      | 1.015 | 0.000108     | mg/L         | 0.000068     | 0.000203   | J |
| * Molybdenum, Total           | 2/26/21 06:45 | 2/26/21 12: | :11      | 1.015 | 0.000933     | mg/L         | 0.000068     | 0.000203   |   |
| * Potassium, Total            | 2/26/21 06:45 | 2/26/21 12: | :11      | 1.015 | 8.76         | mg/L         | 0.169505     | 0.5075     |   |
| * Manganese, Total            | 2/26/21 06:45 | 2/26/21 17: | :49      | 5.075 | 2.57         | mg/L         | 0.000340     | 0.001015   |   |
| * Selenium, Total             | 2/26/21 06:45 | 2/26/21 12: | :11      | 1.015 | Not Detected | mg/L         | 0.000507     | 0.001015   | U |
| * Thallium, Total             | 2/26/21 06:45 | 2/26/21 12: | :11      | 1.015 | Not Detected | mg/L         | 0.000068     | 0.000203   | U |
| Analytical Method: EPA 200.8  | Anal          | yst: DLJ    |          |       |              |              |              |            |   |
| * Manganese, Dissolved        | 2/26/21 08:46 | 2/26/21 16: | :48      | 5.075 | 2.48         | mg/L         | 0.000340     | 0.001015   |   |
| Analytical Method: EPA 245.1  | Anal          | yst: ABB    |          |       |              |              |              |            |   |
| * Mercury, Total by CVAA      | 3/8/21 11:16  | 3/9/21 12:3 | 33       | 1     | Not Detected | mg/L         | 0.0003       | 0.0005     | U |
| Analytical Method: SM 2320 B  |               | yst: JAG    |          |       |              |              |              |            |   |
| Alkalinity, Total as CaCO3    | 3/3/21 11:10  | 3/3/21 12:0 | 9        | 1     | 288          | mg/L         |              | 0.1        |   |
| Analytical Method: SM 2540C   |               | yst: TJW    |          |       |              | -            |              |            |   |
| * Solids, Dissolved           | 2/25/21 10:55 | •           | 80       | 1     | 3020         | mg/L         |              | 166.7      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Landfill - MW-14

Location Code:

WMWGORLF

Collected:

Customer ID:

2/23/21 09:45

Laboratory ID Number: BB04065

**Submittal Date:** 2/24/21 13:49

| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|-------------|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |             |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 11:10  | 3/3/21 12:09 | 1           | 288     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 11:10  | 3/3/21 12:09 | 1           | 0.10    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |             |         |       |       |     |    |
| * Chloride                            | 2/25/21 11:17 | 2/25/21 11:1 | 7 1         | 1.53    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |             |         |       |       |     |    |
| * Fluoride                            | 2/25/21 15:51 | 2/25/21 15:5 | 51 1        | 0.220   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |             |         |       |       |     |    |
| * Sulfate                             | 2/26/21 11:51 | 2/26/21 11:5 | 51 80       | 1850    | mg/L  | 40.00 | 80  |    |
| Analytical Method: Field Measurements | Ana           | lyst: DKG    |             |         |       |       |     |    |
| Conductivity                          | 2/23/21 09:42 | 2/23/21 09:4 | 2           | 2931.33 | uS/cm |       |     | FA |
| рН                                    | 2/23/21 09:42 | 2/23/21 09:4 | 12          | 6.38    | SU    |       |     | FA |
| Temperature                           | 2/23/21 09:42 | 2/23/21 09:4 | 2           | 18.54   | С     |       |     | FA |
| Turbidity                             | 2/23/21 09:42 | 2/23/21 09:4 | 2           | 3.95    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



Customer Account: WMWGORLF Sample Date:

2/23/21 09:45

**Customer ID:** 

**Delivery Date:** 2/24/21 13:49

Description: Gorgas Landfill - MW-14

Laboratory ID Number: BB04065

|         |                        |       |            | MB       |       |         |         |          | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| BB04070 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.334   | 0.333   | 0.207    | 0.170 to 0.230     | 136   | 70.0 to 130 | 0.300 | 20.0          |
| BB04070 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.101   | 0.0993  | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 1.70  | 20.0          |
| BB04070 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 278     | 288     | 5.12     | 4.25 to 5.75       | -120  | 70.0 to 130 | 3.53  | 20.0          |
| BB04070 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0911  | 0.0912  | 0.0942   | 0.0850 to 0.115    | 91.1  | 70.0 to 130 | 0.110 | 20.0          |
| BB04070 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0998  | 0.0985  | 0.0985   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 1.31  | 20.0          |
| BB04070 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0955  | 0.0960  | 0.0981   | 0.0850 to 0.115    | 95.5  | 70.0 to 130 | 0.522 | 20.0          |
| BB04070 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0936  | 0.0950  | 0.0951   | 0.0850 to 0.115    | 93.6  | 70.0 to 130 | 1.48  | 20.0          |
| BB04070 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 17.3    | 16.7    | 10.3     | 8.50 to 11.5       | 106   | 70.0 to 130 | 3.53  | 20.0          |
| BB04070 | Manganese, Dissolved   | mg/L  | 0.0000065  | 0.000147 | 0.10  | 0.0987  | 0.0975  | 0.0997   | 0.0850 to 0.115    | 98.5  | 70.0 to 130 | 1.22  | 20.0          |
| BB04070 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.06    | 1.06    | 1.03     | 0.850 to 1.15      | 103   | 70.0 to 130 | 0.00  | 20.0          |
| BB04070 | Iron, Dissolved        | mg/L  | -0.0000794 | 0.0176   | 0.2   | 0.199   | 0.197   | 0.205    | 0.170 to 0.230     | 99.5  | 70.0 to 130 | 1.01  | 20.0          |
| BB04070 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 0.205   | 0.203   | 0.209    | 0.170 to 0.230     | 98.4  | 70.0 to 130 | 0.980 | 20.0          |
| BB04070 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0948  | 0.0973  | 0.0942   | 0.0850 to 0.115    | 94.8  | 70.0 to 130 | 2.60  | 20.0          |
| BB04070 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.104   | 0.105   | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.957 | 20.0          |
| BB04070 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0975  | 0.0974  | 0.0984   | 0.0850 to 0.115    | 97.5  | 70.0 to 130 | 0.103 | 20.0          |
| BB04070 | Mercury, Total by CVAA | mg/L  | 0.0000921  | 0.000500 | 0.004 | 0.00419 | 0.00426 | 0.00412  | 0.00340 to 0.00460 | 105   | 70.0 to 130 | 1.66  | 20.0          |
| BB04070 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.101   | 0.0990  | 0.0987   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.00  | 20.0          |
| BB04070 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 39.8    | 39.8    | 5.15     | 4.25 to 5.75       | 82.0  | 70.0 to 130 | 0.00  | 20.0          |
| BB04070 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.105   | 0.103   | 0.104    | 0.0850 to 0.115    | 105   | 70.0 to 130 | 1.92  | 20.0          |
| BB04070 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.111   | 0.112   | 0.0999   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.897 | 20.0          |
| BB04070 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 283     | 294     | 5.15     | 4.25 to 5.75       | -80.0 | 70.0 to 130 | 3.81  | 20.0          |
| BB04070 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 0.100   | 0.0976  | 0.0992   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 2.43  | 20.0          |

### **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

2/23/21 09:45

**Customer ID:** 

**Delivery Date:** 2/24/21 13:49

Description: Gorgas Landfill - MW-14

Laboratory ID Number: BB04065

|   |         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| E | 3B04073 | Chloride                   | mg/L  | -0.0751 | 0.500  | 10.0  | 12.1 | 0.137     | 10.8     | 9.00 to 11.0 | 121  | 80.0 to 120 | 0.00  | 20.0          |
| E | 3B04073 | Fluoride                   | mg/L  | 0.0184  | 0.0500 | 2.50  | 2.53 | 0.0137    | 2.63     | 2.25 to 2.75 | 101  | 80.0 to 120 | 0.00  | 20.0          |
| E | 3B04073 | Sulfate                    | mg/L  | -0.310  | 0.500  | 20.0  | 18.7 | -0.318    | 18.9     | 18.0 to 22.0 | 93.5 | 80.0 to 120 | 0.00  | 20.0          |
| E | 3B04070 | Solids, Dissolved          | mg/L  | -1.00   | 25.0   |       |      | 2580      | 51.0     | 40.0 to 60.0 |      |             | 0.194 | 5.00          |
| E | BB04156 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 224       | 52.0     | 45.0 to 55.0 |      |             | 2.21  | 10.0          |
|   |         |                            |       |         |        |       |      |           |          |              |      |             |       |               |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 3/30/21

> Reported: 3/31/2021 Version: 3.2 COA\_CCR

### Certificate Of Analysis



Description: Gorgas Landfill - MW-15Location Code:WMWGORLFCollected:2/23/21 10:45

Customer ID:

Laboratory ID Number: BB04066 Submittal Date: 2/24/21 13:49

| Name                         | Prepared      | Analyzed      | Vio Spec DF | Results      | Units      | MDL      | RL         | Q |
|------------------------------|---------------|---------------|-------------|--------------|------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Analy         | st: RDA       |             | Preparati    | on Method: | EPA 1638 |            |   |
| * Boron, Total               | 3/16/21 09:07 | 3/17/21 09:59 | 9 1.015     | 0.0534       | mg/L       | 0.030000 | 0.1015     | J |
| * Calcium, Total             | 3/16/21 09:07 | 3/19/21 10:3  | 7 20.3      | 302          | mg/L       | 1.4007   | 8.12       |   |
| * Iron, Total                | 3/16/21 09:07 | 3/19/21 10:3  | 7 20.3      | 19.7         | mg/L       | 0.1624   | 0.812      |   |
| * Lithium, Total             | 3/16/21 09:07 | 3/17/21 09:59 | 9 1.015     | 0.0741       | mg/L       | 0.007105 | 0.01999956 | 6 |
| * Magnesium, Total           | 3/16/21 09:07 | 3/19/21 10:3  | 7 20.3      | 316          | mg/L       | 0.4263   | 8.12       |   |
| * Sodium, Total              | 3/16/21 09:07 | 3/17/21 09:59 | 9 1.015     | 32.9         | mg/L       | 0.02030  | 0.406      |   |
| Analytical Method: EPA 200.7 | Analy         | st: RDA       |             |              |            |          |            |   |
| * Iron, Dissolved            | 3/11/21 11:00 | 3/12/21 13:1  | 5 10.15     | 19.6         | mg/L       | 0.08120  | 0.406      |   |
| Analytical Method: EPA 200.8 | Analy         | st: DLJ       |             | Preparati    | on Method: | EPA 1638 |            |   |
| * Antimony, Total            | 2/26/21 06:45 | 2/26/21 12:1  | 5 1.015     | Not Detected | mg/L       | 0.000507 | 0.001015   | U |
| * Arsenic, Total             | 2/26/21 06:45 | 2/26/21 12:1  | 5 1.015     | 0.000217     | mg/L       | 0.000068 | 0.000203   |   |
| * Barium, Total              | 2/26/21 06:45 | 2/26/21 12:1  | 5 1.015     | 0.0130       | mg/L       | 0.000101 | 0.000203   |   |
| * Beryllium, Total           | 2/26/21 06:45 | 2/26/21 12:1  | 5 1.015     | Not Detected | mg/L       | 0.000406 | 0.001015   | U |
| * Cadmium, Total             | 2/26/21 06:45 | 2/26/21 12:1  | 5 1.015     | Not Detected | mg/L       | 0.000068 | 0.000203   | U |
| * Chromium, Total            | 2/26/21 06:45 | 2/26/21 12:1  | 5 1.015     | Not Detected | mg/L       | 0.000203 | 0.001015   | U |
| * Cobalt, Total              | 2/26/21 06:45 | 2/26/21 12:1  | 5 1.015     | 0.0755       | mg/L       | 0.000068 | 0.000203   |   |
| * Lead, Total                | 2/26/21 06:45 | 2/26/21 12:1  | 5 1.015     | Not Detected | mg/L       | 0.000068 | 0.000203   | U |
| * Molybdenum, Total          | 2/26/21 06:45 | 2/26/21 12:1  | 5 1.015     | 0.0000797    | mg/L       | 0.000068 | 0.000203   | J |
| * Potassium, Total           | 2/26/21 06:45 | 2/26/21 12:1  | 5 1.015     | 5.59         | mg/L       | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 2/26/21 06:45 | 2/26/21 17:5  | 92.365      | 13.9         | mg/L       | 0.006188 | 0.018473   |   |
| * Selenium, Total            | 2/26/21 06:45 | 2/26/21 12:1  | 5 1.015     | Not Detected | mg/L       | 0.000507 | 0.001015   | U |
| * Thallium, Total            | 2/26/21 06:45 | 2/26/21 12:1  | 5 1.015     | Not Detected | mg/L       | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Analy         | st: DLJ       |             |              |            |          |            |   |
| * Manganese, Dissolved       | 2/26/21 08:46 | 2/26/21 16:52 | 2 92.365    | 13.5         | mg/L       | 0.006188 | 0.018473   |   |
| Analytical Method: EPA 245.1 | Analy         | st: ABB       |             |              |            |          |            |   |
| * Mercury, Total by CVAA     | 3/8/21 11:16  | 3/9/21 12:35  | 1           | Not Detected | mg/L       | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B |               | st: JAG       |             |              |            |          |            |   |
| Alkalinity, Total as CaCO3   | 3/3/21 11:10  | 3/3/21 12:09  | 1           | 202          | mg/L       |          | 0.1        |   |
| Analytical Method: SM 2540C  |               | st: TJW       |             |              | -          |          |            |   |
| * Solids, Dissolved          | 2/25/21 10:55 |               | 1           | 2890         | mg/L       |          | 166.7      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

#### Certificate Of Analysis



**Description:** Gorgas Landfill - MW-15

Location Code: Collected:

WMWGORLF 2/23/21 10:45

Customer ID:

Submittal Date:

2/24/21 13:49

| Laboratory ID Number: BB04066         |               |                |             | Subn    | nillai Dale: | 2/24/21 13 | .49 |    |
|---------------------------------------|---------------|----------------|-------------|---------|--------------|------------|-----|----|
| Name                                  | Prepared      | Analyzed       | Vio Spec DF | Results | Units        | MDL        | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG      |             |         |              |            |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 11:10  | 3/3/21 12:09   | 1           | 202     | mg/L         |            |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 11:10  | 3/3/21 12:09   | 1           | 0.03    | mg/L         |            |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC      |             |         |              |            |     |    |
| * Chloride                            | 2/25/21 11:18 | 3 2/25/21 11:1 | 8 1         | 1.41    | mg/L         | 0.50       | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC      |             |         |              |            |     |    |
| * Fluoride                            | 2/25/21 15:52 | 2/25/21 15:5   | 2 1         | 0.275   | mg/L         | 0.06       | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC      |             |         |              |            |     |    |
| * Sulfate                             | 2/26/21 11:53 | 3 2/26/21 11:5 | 3 80        | 1740    | mg/L         | 40.00      | 80  |    |
| Analytical Method: Field Measurements | Ana           | lyst: DKG      |             |         |              |            |     |    |
| Conductivity                          | 2/23/21 10:42 | 2 2/23/21 10:4 | 2           | 2816.88 | uS/cm        |            |     | FA |
| рН                                    | 2/23/21 10:42 | 2 2/23/21 10:4 | 2           | 6.07    | SU           |            |     | FA |
| Temperature                           | 2/23/21 10:42 | 2 2/23/21 10:4 | 2           | 18.39   | С            |            |     | FA |
| Turbidity                             | 2/23/21 10:42 | 2 2/23/21 10:4 | 2           | 1.68    | NTU          |            |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 2/23/21 10:45

Customer ID:

**Delivery Date:** 2/24/21 13:49

Description: Gorgas Landfill - MW-15

Laboratory ID Number: BB04066

|         |                        |       | ·          | MB       |       |         |         |          | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| 3B04070 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.334   | 0.333   | 0.207    | 0.170 to 0.230     | 136   | 70.0 to 130 | 0.300 | 20.0          |
| 3B04070 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.101   | 0.0993  | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 1.70  | 20.0          |
| 3B04070 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 278     | 288     | 5.12     | 4.25 to 5.75       | -120  | 70.0 to 130 | 3.53  | 20.0          |
| 3B04070 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0911  | 0.0912  | 0.0942   | 0.0850 to 0.115    | 91.1  | 70.0 to 130 | 0.110 | 20.0          |
| 3B04070 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0998  | 0.0985  | 0.0985   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 1.31  | 20.0          |
| 3B04070 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0955  | 0.0960  | 0.0981   | 0.0850 to 0.115    | 95.5  | 70.0 to 130 | 0.522 | 20.0          |
| 3B04070 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0936  | 0.0950  | 0.0951   | 0.0850 to 0.115    | 93.6  | 70.0 to 130 | 1.48  | 20.0          |
| 3B04070 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.06    | 1.06    | 1.03     | 0.850 to 1.15      | 103   | 70.0 to 130 | 0.00  | 20.0          |
| 3B04070 | Iron, Dissolved        | mg/L  | -0.0000794 | 0.0176   | 0.2   | 0.199   | 0.197   | 0.205    | 0.170 to 0.230     | 99.5  | 70.0 to 130 | 1.01  | 20.0          |
| 3B04070 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 0.205   | 0.203   | 0.209    | 0.170 to 0.230     | 98.4  | 70.0 to 130 | 0.980 | 20.0          |
| 3B04070 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0948  | 0.0973  | 0.0942   | 0.0850 to 0.115    | 94.8  | 70.0 to 130 | 2.60  | 20.0          |
| 3B04070 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.104   | 0.105   | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.957 | 20.0          |
| 3B04070 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0975  | 0.0974  | 0.0984   | 0.0850 to 0.115    | 97.5  | 70.0 to 130 | 0.103 | 20.0          |
| 3B04070 | Mercury, Total by CVAA | mg/L  | 0.0000921  | 0.000500 | 0.004 | 0.00419 | 0.00426 | 0.00412  | 0.00340 to 0.00460 | 105   | 70.0 to 130 | 1.66  | 20.0          |
| 3B04070 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.101   | 0.0990  | 0.0987   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.00  | 20.0          |
| 3B04070 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 39.8    | 39.8    | 5.15     | 4.25 to 5.75       | 82.0  | 70.0 to 130 | 0.00  | 20.0          |
| 3B04070 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.105   | 0.103   | 0.104    | 0.0850 to 0.115    | 105   | 70.0 to 130 | 1.92  | 20.0          |
| 3B04070 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.111   | 0.112   | 0.0999   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.897 | 20.0          |
| 3B04070 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 283     | 294     | 5.15     | 4.25 to 5.75       | -80.0 | 70.0 to 130 | 3.81  | 20.0          |
| 3B04070 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 0.100   | 0.0976  | 0.0992   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 2.43  | 20.0          |
| 3B04070 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 17.3    | 16.7    | 10.3     | 8.50 to 11.5       | 106   | 70.0 to 130 | 3.53  | 20.0          |
| 3B04070 | Manganese, Dissolved   | mg/L  | 0.0000065  | 0.000147 | 0.10  | 0.0987  | 0.0975  | 0.0997   | 0.0850 to 0.115    | 98.5  | 70.0 to 130 | 1.22  | 20.0          |

### **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

2/23/21 10:45

**Customer ID:** 

**Delivery Date:** 

2/24/21 13:49

Description: Gorgas Landfill - MW-15

Laboratory ID Number: BB04066

|   |         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| В | 3B04073 | Chloride                   | mg/L  | -0.0751 | 0.500  | 10.0  | 12.1 | 0.137     | 10.8     | 9.00 to 11.0 | 121  | 80.0 to 120 | 0.00  | 20.0          |
| В | B04073  | Sulfate                    | mg/L  | -0.310  | 0.500  | 20.0  | 18.7 | -0.318    | 18.9     | 18.0 to 22.0 | 93.5 | 80.0 to 120 | 0.00  | 20.0          |
| В | B04070  | Solids, Dissolved          | mg/L  | -1.00   | 25.0   |       |      | 2580      | 51.0     | 40.0 to 60.0 |      |             | 0.194 | 5.00          |
| В | B04073  | Fluoride                   | mg/L  | 0.0184  | 0.0500 | 2.50  | 2.53 | 0.0137    | 2.63     | 2.25 to 2.75 | 101  | 80.0 to 120 | 0.00  | 20.0          |
| В | B04156  | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 224       | 52.0     | 45.0 to 55.0 |      |             | 2.21  | 10.0          |
|   |         |                            |       |         |        |       |      |           |          |              |      |             |       |               |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 3/30/21

Reported: 3/31/2021 Version: 3.2 COA\_CCR

### Certificate Of Analysis



Description: Gorgas Landfill - MW-16Location Code:WMWGORLFCollected:2/23/21 11:40

Customer ID:

**Submittal Date:** 2/24/21 13:49

Laboratory ID Number: BB04067

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units       | MDL      | RL         | Q |
|------------------------------|---------------|--------------|-------------|--------------|-------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Analy         | yst: RDA     |             | Preparat     | ion Method: | EPA 1638 |            |   |
| * Boron, Total               | 3/16/21 09:07 | 3/17/21 10:0 | 3 1.015     | 0.0487       | mg/L        | 0.030000 | 0.1015     | J |
| * Calcium, Total             | 3/16/21 09:07 | 3/19/21 10:4 | 0 20.3      | 317          | mg/L        | 1.4007   | 8.12       |   |
| * Iron, Total                | 3/16/21 09:07 | 3/17/21 10:0 | 3 1.015     | 2.96         | mg/L        | 0.008120 | 0.0406     |   |
| * Lithium, Total             | 3/16/21 09:07 | 3/17/21 10:0 | 3 1.015     | 0.0200       | mg/L        | 0.007105 | 0.01999956 | 6 |
| * Magnesium, Total           | 3/16/21 09:07 | 3/19/21 10:4 | 0 20.3      | 262          | mg/L        | 0.4263   | 8.12       |   |
| * Sodium, Total              | 3/16/21 09:07 | 3/17/21 10:0 | 3 1.015     | 35.2         | mg/L        | 0.02030  | 0.406      |   |
| Analytical Method: EPA 200.7 | Analy         | yst: RDA     |             |              |             |          |            |   |
| * Iron, Dissolved            | 3/11/21 11:00 | 3/12/21 11:5 | 4 1.015     | 2.90         | mg/L        | 0.008120 | 0.0406     |   |
| Analytical Method: EPA 200.8 | Analy         | yst: DLJ     |             | Preparat     | ion Method: | EPA 1638 |            |   |
| * Antimony, Total            | 2/26/21 06:45 | 2/26/21 12:1 | 8 1.015     | Not Detected | mg/L        | 0.000507 | 0.001015   | U |
| * Arsenic, Total             | 2/26/21 06:45 | 2/26/21 12:1 | 8 1.015     | 0.00257      | mg/L        | 0.000068 | 0.000203   |   |
| * Barium, Total              | 2/26/21 06:45 | 2/26/21 12:1 | 8 1.015     | 0.0127       | mg/L        | 0.000101 | 0.000203   |   |
| * Beryllium, Total           | 2/26/21 06:45 | 2/26/21 12:1 | 8 1.015     | Not Detected | mg/L        | 0.000406 | 0.001015   | U |
| * Cadmium, Total             | 2/26/21 06:45 | 2/26/21 12:1 | 8 1.015     | Not Detected | mg/L        | 0.000068 | 0.000203   | U |
| * Chromium, Total            | 2/26/21 06:45 | 2/26/21 12:1 | 8 1.015     | Not Detected | mg/L        | 0.000203 | 0.001015   | U |
| * Cobalt, Total              | 2/26/21 06:45 | 2/26/21 12:1 | 8 1.015     | 0.0100       | mg/L        | 0.000068 | 0.000203   |   |
| * Lead, Total                | 2/26/21 06:45 | 2/26/21 12:1 | 8 1.015     | Not Detected | mg/L        | 0.000068 | 0.000203   | U |
| * Molybdenum, Total          | 2/26/21 06:45 | 2/26/21 12:1 | 8 1.015     | 0.000486     | mg/L        | 0.000068 | 0.000203   |   |
| * Potassium, Total           | 2/26/21 06:45 | 2/26/21 12:1 | 8 1.015     | 7.98         | mg/L        | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 2/26/21 06:45 | 2/26/21 17:5 | 6 5.075     | 3.22         | mg/L        | 0.000340 | 0.001015   |   |
| * Selenium, Total            | 2/26/21 06:45 | 2/26/21 12:1 | 8 1.015     | Not Detected | mg/L        | 0.000507 | 0.001015   | U |
| * Thallium, Total            | 2/26/21 06:45 | 2/26/21 12:1 | 8 1.015     | Not Detected | mg/L        | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Analy         | yst: DLJ     |             |              |             |          |            |   |
| * Manganese, Dissolved       | 2/26/21 08:46 | 2/26/21 16:5 | 5 5.075     | 3.15         | mg/L        | 0.000340 | 0.001015   |   |
| Analytical Method: EPA 245.1 | Analy         | yst: ABB     |             |              |             |          |            |   |
| * Mercury, Total by CVAA     | 3/8/21 11:16  | 3/9/21 12:38 | 1           | Not Detected | mg/L        | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B | Analy         | yst: JAG     |             |              |             |          |            |   |
| Alkalinity, Total as CaCO3   | 3/4/21 14:47  | 3/3/21 12:09 | 1           | 371          | mg/L        |          | 0.10       |   |
| Analytical Method: SM 2540C  | Anal          | yst: TJW     |             |              |             |          |            |   |
| * Solids, Dissolved          | 2/25/21 10:55 |              | 1           | 2480         | mg/L        |          | 125        |   |

MDL's and RL's are adjusted for sample dilution, as applicable

#### Certificate Of Analysis



**Description:** Gorgas Landfill - MW-16

**Location Code:** 

WMWGORLF 2/23/21 11:40

Collected: Customer ID:

Submittal Date:

2/24/21 13:49

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anai          | lyst: JAG    |          |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/4/21 14:47  | 3/4/21 14:47 | •        | 1  | 370     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 3/4/21 14:47  | 3/4/21 14:47 | •        | 1  | 0.14    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Anai          | lyst: JCC    |          |    |         |       |       |     |    |
| * Chloride                            | 2/25/21 11:19 | 2/25/21 11:1 | 9        | 1  | 3.08    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Anai          | lyst: JCC    |          |    |         |       |       |     |    |
| * Fluoride                            | 2/25/21 15:53 | 2/25/21 15:5 | i3       | 1  | 0.161   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Anai          | lyst: JCC    |          |    |         |       |       |     |    |
| * Sulfate                             | 2/26/21 11:54 | 2/26/21 11:5 | 54       | 50 | 1330    | mg/L  | 25.00 | 50  |    |
| Analytical Method: Field Measurements | Anal          | lyst: DKG    |          |    |         |       |       |     |    |
| Conductivity                          | 2/23/21 11:37 | 2/23/21 11:3 | 37       |    | 2563.12 | uS/cm |       |     | FA |
| рН                                    | 2/23/21 11:37 | 2/23/21 11:3 | 37       |    | 6.47    | SU    |       |     | FA |
| Temperature                           | 2/23/21 11:37 | 2/23/21 11:3 | 37       |    | 19.08   | С     |       |     | FA |
| Turbidity                             | 2/23/21 11:37 | 2/23/21 11:3 | 37       |    | 0.08    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



Customer Account: WMWGORLF Sample Date: 2/23/21 11:40

**Customer ID:** 

**Delivery Date:** 2/24/21 13:49

Description: Gorgas Landfill - MW-16

Laboratory ID Number: BB04067

|         |                        |       |            | MB       | <u> </u> |         |         |          | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|----------|---------|---------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike    | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| BB04070 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00     | 278     | 288     | 5.12     | 4.25 to 5.75       | -120  | 70.0 to 130 | 3.53  | 20.0          |
| BB04070 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200    | 0.334   | 0.333   | 0.207    | 0.170 to 0.230     | 136   | 70.0 to 130 | 0.300 | 20.0          |
| BB04070 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10     | 0.105   | 0.103   | 0.104    | 0.0850 to 0.115    | 105   | 70.0 to 130 | 1.92  | 20.0          |
| BB04070 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10     | 0.111   | 0.112   | 0.0999   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.897 | 20.0          |
| BB04070 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00     | 283     | 294     | 5.15     | 4.25 to 5.75       | -80.0 | 70.0 to 130 | 3.81  | 20.0          |
| BB04070 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10     | 0.100   | 0.0976  | 0.0992   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 2.43  | 20.0          |
| BB04070 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10     | 0.101   | 0.0993  | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 1.70  | 20.0          |
| BB04070 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0     | 17.3    | 16.7    | 10.3     | 8.50 to 11.5       | 106   | 70.0 to 130 | 3.53  | 20.0          |
| BB04070 | Manganese, Dissolved   | mg/L  | 0.0000065  | 0.000147 | 0.10     | 0.0987  | 0.0975  | 0.0997   | 0.0850 to 0.115    | 98.5  | 70.0 to 130 | 1.22  | 20.0          |
| BB04070 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10     | 0.0911  | 0.0912  | 0.0942   | 0.0850 to 0.115    | 91.1  | 70.0 to 130 | 0.110 | 20.0          |
| BB04070 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10     | 0.0998  | 0.0985  | 0.0985   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 1.31  | 20.0          |
| BB04070 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10     | 0.0955  | 0.0960  | 0.0981   | 0.0850 to 0.115    | 95.5  | 70.0 to 130 | 0.522 | 20.0          |
| BB04070 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10     | 0.0936  | 0.0950  | 0.0951   | 0.0850 to 0.115    | 93.6  | 70.0 to 130 | 1.48  | 20.0          |
| BB04070 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10     | 0.0975  | 0.0974  | 0.0984   | 0.0850 to 0.115    | 97.5  | 70.0 to 130 | 0.103 | 20.0          |
| BB04070 | Mercury, Total by CVAA | mg/L  | 0.0000921  | 0.000500 | 0.004    | 0.00419 | 0.00426 | 0.00412  | 0.00340 to 0.00460 | 105   | 70.0 to 130 | 1.66  | 20.0          |
| BB04070 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10     | 0.101   | 0.0990  | 0.0987   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.00  | 20.0          |
| BB04070 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00     | 39.8    | 39.8    | 5.15     | 4.25 to 5.75       | 82.0  | 70.0 to 130 | 0.00  | 20.0          |
| BB04070 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00     | 1.06    | 1.06    | 1.03     | 0.850 to 1.15      | 103   | 70.0 to 130 | 0.00  | 20.0          |
| BB04070 | Iron, Dissolved        | mg/L  | -0.0000794 | 0.0176   | 0.2      | 0.199   | 0.197   | 0.205    | 0.170 to 0.230     | 99.5  | 70.0 to 130 | 1.01  | 20.0          |
| BB04070 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2      | 0.205   | 0.203   | 0.209    | 0.170 to 0.230     | 98.4  | 70.0 to 130 | 0.980 | 20.0          |
| BB04070 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10     | 0.0948  | 0.0973  | 0.0942   | 0.0850 to 0.115    | 94.8  | 70.0 to 130 | 2.60  | 20.0          |
| BB04070 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10     | 0.104   | 0.105   | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.957 | 20.0          |

### **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

2/23/21 11:40

**Customer ID:** 

**Delivery Date:** 

2/24/21 13:49

Description: Gorgas Landfill - MW-16

Laboratory ID Number: BB04067

|         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB04073 | Chloride                   | mg/L  | -0.0751 | 0.500  | 10.0  | 12.1 | 0.137     | 10.8     | 9.00 to 11.0 | 121  | 80.0 to 120 | 0.00  | 20.0          |
| BB04156 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 224       | 52.0     | 45.0 to 55.0 |      |             | 2.21  | 10.0          |
| BB04073 | Fluoride                   | mg/L  | 0.0184  | 0.0500 | 2.50  | 2.53 | 0.0137    | 2.63     | 2.25 to 2.75 | 101  | 80.0 to 120 | 0.00  | 20.0          |
| BB04073 | Sulfate                    | mg/L  | -0.310  | 0.500  | 20.0  | 18.7 | -0.318    | 18.9     | 18.0 to 22.0 | 93.5 | 80.0 to 120 | 0.00  | 20.0          |
| BB04070 | Solids, Dissolved          | mg/L  | -1.00   | 25.0   |       |      | 2580      | 51.0     | 40.0 to 60.0 |      |             | 0.194 | 5.00          |
|         |                            |       |         |        |       |      |           |          |              |      |             |       |               |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 3/30/21

Reported: 3/31/2021 Version: 3.2 COA\_CCR

### Certificate Of Analysis



Description: Gorgas Landfill - MW-16 DUPLocation Code:WMWGORLFCollected:2/23/21 11:40

Customer ID:

Laboratory ID Number: BB04068 Submittal Date: 2/24/21 13:49

| Name                         | Prepared      | Analyzed          | Vio Spec DF | Results      | Units       | MDL      | RL         | Q   |
|------------------------------|---------------|-------------------|-------------|--------------|-------------|----------|------------|-----|
| Analytical Method: EPA 200.7 | Anal          | yst: RDA          |             | Preparati    | ion Method: | EPA 1638 |            |     |
| * Boron, Total               | 3/16/21 09:07 | 3/17/21 10:0      | 6 1.015     | 0.0475       | mg/L        | 0.030000 | 0.1015     | J   |
| * Calcium, Total             | 3/16/21 09:07 | 3/19/21 10:4      | 4 20.3      | 319          | mg/L        | 1.4007   | 8.12       |     |
| * Iron, Total                | 3/16/21 09:07 | 3/17/21 10:0      | 6 1.015     | 2.90         | mg/L        | 0.008120 | 0.0406     |     |
| * Lithium, Total             | 3/16/21 09:07 | 3/17/21 10:0      | 6 1.015     | 0.0197       | mg/L        | 0.007105 | 0.01999956 | ô J |
| * Magnesium, Total           | 3/16/21 09:07 | 3/19/21 10:4      | 4 20.3      | 264          | mg/L        | 0.4263   | 8.12       |     |
| * Sodium, Total              | 3/16/21 09:07 | 3/17/21 10:0      | 6 1.015     | 34.7         | mg/L        | 0.02030  | 0.406      |     |
| Analytical Method: EPA 200.7 | Anal          | yst: RDA          |             |              |             |          |            |     |
| * Iron, Dissolved            | 3/11/21 11:00 | 3/12/21 11:5      | 8 1.015     | 2.87         | mg/L        | 0.008120 | 0.0406     |     |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ          |             | Preparati    | on Method:  | EPA 1638 |            |     |
| * Antimony, Total            | 2/26/21 06:45 | 2/26/21 12:2      | 2 1.015     | Not Detected | mg/L        | 0.000507 | 0.001015   | U   |
| * Arsenic, Total             | 2/26/21 06:45 | 2/26/21 12:2      | 2 1.015     | 0.00245      | mg/L        | 0.000068 | 0.000203   |     |
| * Barium, Total              | 2/26/21 06:45 | 2/26/21 12:2      | 2 1.015     | 0.0123       | mg/L        | 0.000101 | 0.000203   |     |
| * Beryllium, Total           | 2/26/21 06:45 | 2/26/21 12:2      | 2 1.015     | Not Detected | mg/L        | 0.000406 | 0.001015   | U   |
| * Cadmium, Total             | 2/26/21 06:45 | 2/26/21 12:2      | 2 1.015     | Not Detected | mg/L        | 0.000068 | 0.000203   | U   |
| * Chromium, Total            | 2/26/21 06:45 | 2/26/21 12:2      | 2 1.015     | Not Detected | mg/L        | 0.000203 | 0.001015   | U   |
| * Cobalt, Total              | 2/26/21 06:45 | 2/26/21 12:2      | 2 1.015     | 0.0100       | mg/L        | 0.000068 | 0.000203   |     |
| * Lead, Total                | 2/26/21 06:45 | 2/26/21 12:2      | 2 1.015     | Not Detected | mg/L        | 0.000068 | 0.000203   | U   |
| * Molybdenum, Total          | 2/26/21 06:45 | 2/26/21 12:2      | 2 1.015     | 0.000524     | mg/L        | 0.000068 | 0.000203   |     |
| * Potassium, Total           | 2/26/21 06:45 | 2/26/21 12:2      | 2 1.015     | 8.12         | mg/L        | 0.169505 | 0.5075     |     |
| * Manganese, Total           | 2/26/21 06:45 | 2/26/21 18:0      | 0 5.075     | 3.11         | mg/L        | 0.000340 | 0.001015   |     |
| * Selenium, Total            | 2/26/21 06:45 | 2/26/21 12:2      | 2 1.015     | Not Detected | mg/L        | 0.000507 | 0.001015   | U   |
| * Thallium, Total            | 2/26/21 06:45 | 2/26/21 12:2      | 2 1.015     | Not Detected | mg/L        | 0.000068 | 0.000203   | U   |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ          |             |              |             |          |            |     |
| * Manganese, Dissolved       | 2/26/21 08:46 | 2/26/21 16:5      | 9 5.075     | 3.13         | mg/L        | 0.000340 | 0.001015   |     |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB          |             |              |             |          |            |     |
| * Mercury, Total by CVAA     | 3/8/21 11:16  | 3/9/21 12:40      | 1           | Not Detected | mg/L        | 0.0003   | 0.0005     | U   |
| Analytical Method: SM 2320 B | Anal          | yst: JAG          |             |              |             |          |            |     |
| Alkalinity, Total as CaCO3   | 3/3/21 11:10  | ,<br>3/3/21 12:09 | 1           | 475          | mg/L        |          | 0.1        |     |
| Analytical Method: SM 2540C  |               | yst: TJW          |             |              | -           |          |            |     |
| * Solids, Dissolved          | 2/25/21 10:55 |                   | 1           | 2440         | mg/L        |          | 125        |     |

MDL's and RL's are adjusted for sample dilution, as applicable

### Certificate Of Analysis



Description: Gorgas Landfill - MW-16 DUP

**Location Code:** 

WMWGORLF

Collected:

Customer ID: Submittal Date:

2/23/21 11:40

2/24/21 13:49

Laboratory ID Number: BB04068

| Laboratory ID Number: BB04068         |               |              |          |    |         |       |       |     |    |
|---------------------------------------|---------------|--------------|----------|----|---------|-------|-------|-----|----|
| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results | Units | MDL   | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |          |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 11:10  | 3/3/21 12:09 | )        | 1  | 475     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 11:10  | 3/3/21 12:09 | )        | 1  | 0.18    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Chloride                            | 2/25/21 11:20 | 2/25/21 11:2 | 20       | 1  | 3.08    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Fluoride                            | 2/25/21 15:54 | 2/25/21 15:5 | 54       | 1  | 0.163   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Sulfate                             | 2/26/21 11:55 | 2/26/21 11:5 | 55       | 50 | 1320    | mg/L  | 25.00 | 50  |    |
| Analytical Method: Field Measurements | Ana           | lyst: DKG    |          |    |         |       |       |     |    |
| Conductivity                          | 2/23/21 11:37 | 2/23/21 11:3 | 37       |    | 2563.12 | uS/cm |       |     | FA |
| рН                                    | 2/23/21 11:37 | 2/23/21 11:3 | 37       |    | 6.47    | SU    |       |     | FA |
| Temperature                           | 2/23/21 11:37 | 2/23/21 11:3 | 37       |    | 19.08   | С     |       |     | FA |
| Turbidity                             | 2/23/21 11:37 | 2/23/21 11:3 | 37       |    | 0.08    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

#### **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 2/23/21 11:40

Customer ID:

2/25/2

Delivery Date:

2/24/21 13:49

Description: Gorgas Landfill - MW-16 DUP

Laboratory ID Number: BB04068

|         |                        |       |            | MB       |       |         |         |          | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| BB04070 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 278     | 288     | 5.12     | 4.25 to 5.75       | -120  | 70.0 to 130 | 3.53  | 20.0          |
| BB04070 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.334   | 0.333   | 0.207    | 0.170 to 0.230     | 136   | 70.0 to 130 | 0.300 | 20.0          |
| BB04070 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.105   | 0.103   | 0.104    | 0.0850 to 0.115    | 105   | 70.0 to 130 | 1.92  | 20.0          |
| BB04070 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.111   | 0.112   | 0.0999   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.897 | 20.0          |
| BB04070 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 283     | 294     | 5.15     | 4.25 to 5.75       | -80.0 | 70.0 to 130 | 3.81  | 20.0          |
| BB04070 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 0.100   | 0.0976  | 0.0992   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 2.43  | 20.0          |
| BB04070 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0911  | 0.0912  | 0.0942   | 0.0850 to 0.115    | 91.1  | 70.0 to 130 | 0.110 | 20.0          |
| BB04070 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0998  | 0.0985  | 0.0985   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 1.31  | 20.0          |
| BB04070 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0955  | 0.0960  | 0.0981   | 0.0850 to 0.115    | 95.5  | 70.0 to 130 | 0.522 | 20.0          |
| BB04070 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0936  | 0.0950  | 0.0951   | 0.0850 to 0.115    | 93.6  | 70.0 to 130 | 1.48  | 20.0          |
| BB04070 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.101   | 0.0993  | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 1.70  | 20.0          |
| BB04070 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.06    | 1.06    | 1.03     | 0.850 to 1.15      | 103   | 70.0 to 130 | 0.00  | 20.0          |
| BB04070 | Iron, Dissolved        | mg/L  | -0.0000794 | 0.0176   | 0.2   | 0.199   | 0.197   | 0.205    | 0.170 to 0.230     | 99.5  | 70.0 to 130 | 1.01  | 20.0          |
| BB04070 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 0.205   | 0.203   | 0.209    | 0.170 to 0.230     | 98.4  | 70.0 to 130 | 0.980 | 20.0          |
| BB04070 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0948  | 0.0973  | 0.0942   | 0.0850 to 0.115    | 94.8  | 70.0 to 130 | 2.60  | 20.0          |
| BB04070 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.104   | 0.105   | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.957 | 20.0          |
| BB04070 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 17.3    | 16.7    | 10.3     | 8.50 to 11.5       | 106   | 70.0 to 130 | 3.53  | 20.0          |
| BB04070 | Manganese, Dissolved   | mg/L  | 0.0000065  | 0.000147 | 0.10  | 0.0987  | 0.0975  | 0.0997   | 0.0850 to 0.115    | 98.5  | 70.0 to 130 | 1.22  | 20.0          |
| BB04070 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0975  | 0.0974  | 0.0984   | 0.0850 to 0.115    | 97.5  | 70.0 to 130 | 0.103 | 20.0          |
| BB04070 | Mercury, Total by CVAA | mg/L  | 0.0000921  | 0.000500 | 0.004 | 0.00419 | 0.00426 | 0.00412  | 0.00340 to 0.00460 | 105   | 70.0 to 130 | 1.66  | 20.0          |
| BB04070 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.101   | 0.0990  | 0.0987   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.00  | 20.0          |
| BB04070 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 39.8    | 39.8    | 5.15     | 4.25 to 5.75       | 82.0  | 70.0 to 130 | 0.00  | 20.0          |

### **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

2/23/21 11:40

**Customer ID:** 

**Delivery Date:** 2/24/21 13:49

Description: Gorgas Landfill - MW-16 DUP

Laboratory ID Number: BB04068

|         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB04073 | Chloride                   | mg/L  | -0.0751 | 0.500  | 10.0  | 12.1 | 0.137     | 10.8     | 9.00 to 11.0 | 121  | 80.0 to 120 | 0.00  | 20.0          |
| BB04073 | Sulfate                    | mg/L  | -0.310  | 0.500  | 20.0  | 18.7 | -0.318    | 18.9     | 18.0 to 22.0 | 93.5 | 80.0 to 120 | 0.00  | 20.0          |
| BB04070 | Solids, Dissolved          | mg/L  | -1.00   | 25.0   |       |      | 2580      | 51.0     | 40.0 to 60.0 |      |             | 0.194 | 5.00          |
| BB04156 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 224       | 52.0     | 45.0 to 55.0 |      |             | 2.21  | 10.0          |
| BB04073 | Fluoride                   | mg/L  | 0.0184  | 0.0500 | 2.50  | 2.53 | 0.0137    | 2.63     | 2.25 to 2.75 | 101  | 80.0 to 120 | 0.00  | 20.0          |
|         |                            |       |         |        |       |      |           |          |              |      |             |       |               |

### Certificate Of Analysis



Description: Gorgas Landfill - MW-17RLocation Code:WMWGORLFCollected:2/23/21 12:53

Customer ID:

**Submittal Date:** 2/24/21 13:49

Laboratory ID Number: BB04069

| Name                         | Prepared      | Analyzed          | Vio Spec DF | Results      | Units       | MDL      | RL         | Q |
|------------------------------|---------------|-------------------|-------------|--------------|-------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Anal          | yst: RDA          |             | Preparat     | ion Method: | EPA 1638 |            |   |
| * Boron, Total               | 3/16/21 09:07 | 3/17/21 10:1      | 0 1.015     | 0.0536       | mg/L        | 0.030000 | 0.1015     | J |
| * Calcium, Total             | 3/16/21 09:07 | 3/19/21 10:4      | 7 20.3      | 389          | mg/L        | 1.4007   | 8.12       |   |
| * Iron, Total                | 3/16/21 09:07 | 3/19/21 10:4      | 7 20.3      | 23.4         | mg/L        | 0.1624   | 0.812      |   |
| * Lithium, Total             | 3/16/21 09:07 | 3/17/21 10:1      | 0 1.015     | 0.0569       | mg/L        | 0.007105 | 0.01999956 | 6 |
| * Magnesium, Total           | 3/16/21 09:07 | 3/19/21 10:4      | 7 20.3      | 429          | mg/L        | 0.4263   | 8.12       |   |
| * Sodium, Total              | 3/16/21 09:07 | 3/19/21 10:4      | 7 20.3      | 37.8         | mg/L        | 0.406    | 8.12       |   |
| Analytical Method: EPA 200.7 | Anal          | yst: RDA          |             |              |             |          |            |   |
| * Iron, Dissolved            | 3/11/21 11:00 | 3/12/21 13:1      | 8 10.15     | 21.4         | mg/L        | 0.08120  | 0.406      |   |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ          |             | Preparat     | ion Method: | EPA 1638 |            |   |
| * Antimony, Total            | 2/26/21 06:45 | 2/26/21 12:2      | 6 1.015     | Not Detected | mg/L        | 0.000507 | 0.001015   | U |
| * Arsenic, Total             | 2/26/21 06:45 | 2/26/21 12:2      | 6 1.015     | 0.00190      | mg/L        | 0.000068 | 0.000203   |   |
| * Barium, Total              | 2/26/21 06:45 | 2/26/21 12:2      | 6 1.015     | 0.0130       | mg/L        | 0.000101 | 0.000203   |   |
| * Beryllium, Total           | 2/26/21 06:45 | 2/26/21 12:2      | 6 1.015     | Not Detected | mg/L        | 0.000406 | 0.001015   | U |
| * Cadmium, Total             | 2/26/21 06:45 | 2/26/21 12:2      | 6 1.015     | Not Detected | mg/L        | 0.000068 | 0.000203   | U |
| * Chromium, Total            | 2/26/21 06:45 | 2/26/21 12:2      | 6 1.015     | Not Detected | mg/L        | 0.000203 | 0.001015   | U |
| * Cobalt, Total              | 2/26/21 06:45 | 2/26/21 12:2      | 6 1.015     | 0.385        | mg/L        | 0.000068 | 0.000203   |   |
| * Lead, Total                | 2/26/21 06:45 | 2/26/21 12:2      | 6 1.015     | Not Detected | mg/L        | 0.000068 | 0.000203   | U |
| * Molybdenum, Total          | 2/26/21 06:45 | 2/26/21 12:2      | 6 1.015     | 0.000159     | mg/L        | 0.000068 | 0.000203   | J |
| * Potassium, Total           | 2/26/21 06:45 | 2/26/21 12:2      | 6 1.015     | 7.36         | mg/L        | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 2/26/21 06:45 | 2/26/21 18:0      | 3 92.365    | 23.3         | mg/L        | 0.006188 | 0.018473   |   |
| * Selenium, Total            | 2/26/21 06:45 | 2/26/21 12:2      | 6 1.015     | 0.000778     | mg/L        | 0.000507 | 0.001015   | J |
| * Thallium, Total            | 2/26/21 06:45 | 2/26/21 12:2      | 6 1.015     | Not Detected | mg/L        | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ          |             |              |             |          |            |   |
| * Manganese, Dissolved       | 2/26/21 08:46 | 2/26/21 17:0      | 3 92.365    | 20.9         | mg/L        | 0.006188 | 0.018473   |   |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB          |             |              |             |          |            |   |
| * Mercury, Total by CVAA     | 3/8/21 11:16  | 3/9/21 12:43      | 1           | Not Detected | mg/L        | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B | Anal          | yst: JAG          |             |              |             |          |            |   |
| Alkalinity, Total as CaCO3   | 3/3/21 11:10  | ,<br>3/3/21 12:09 | 1           | 212          | mg/L        |          | 0.1        |   |
| Analytical Method: SM 2540C  |               | yst: TJW          |             |              |             |          |            |   |
| * Solids, Dissolved          | 2/25/21 10:55 | -                 | 1           | 3930         | mg/L        |          | 250        |   |

MDL's and RL's are adjusted for sample dilution, as applicable

### Certificate Of Analysis



**Description:** Gorgas Landfill - MW-17R

Laboratory ID Number: BB04069

**Location Code:** 

**WMWGORLF** 

Collected:

**Customer ID:** 

2/23/21 12:53

Submittal Date:

2/24/21 13:49

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF  | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|-----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anal          | lyst: JAG    |          |     |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 11:10  | 3/3/21 12:09 | ,        | 1   | 212     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 11:10  | 3/3/21 12:09 | ,        | 1   | 0.03    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Anal          | lyst: JCC    |          |     |         |       |       |     |    |
| * Chloride                            | 2/25/21 11:22 | 2/25/21 11:2 | 2 -      | 1   | 2.36    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Anal          | lyst: JCC    |          |     |         |       |       |     |    |
| * Fluoride                            | 2/25/21 15:56 | 2/25/21 15:5 | 6 ′      | 1   | 0.154   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Anal          | lyst: JCC    |          |     |         |       |       |     |    |
| * Sulfate                             | 2/26/21 11:56 | 2/26/21 11:5 | 6 ′      | 100 | 2380    | mg/L  | 50.00 | 100 |    |
| Analytical Method: Field Measurements | Anal          | lyst: DKG    |          |     |         |       |       |     |    |
| Conductivity                          | 2/23/21 12:51 | 2/23/21 12:5 | 1        |     | 3239.73 | uS/cm |       |     | FA |
| рН                                    | 2/23/21 12:51 | 2/23/21 12:5 | 1        |     | 5.91    | SU    |       |     | FA |
| Temperature                           | 2/23/21 12:51 | 2/23/21 12:5 | 1        |     | 21.27   | С     |       |     | FA |
| Turbidity                             | 2/23/21 12:51 | 2/23/21 12:5 | 1        |     | 0.47    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



Customer Account: WMWGORLF Sample Date:

**Customer ID:** 

2/23/21 12:53

**Delivery Date:** 2/24/21 13:49

Description: Gorgas Landfill - MW-17R

Laboratory ID Number: BB04069

|         |                        |       |            | MB       |       |         |         |          | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| BB04070 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 278     | 288     | 5.12     | 4.25 to 5.75       | -120  | 70.0 to 130 | 3.53  | 20.0          |
| BB04070 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.334   | 0.333   | 0.207    | 0.170 to 0.230     | 136   | 70.0 to 130 | 0.300 | 20.0          |
| 3B04070 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.101   | 0.0993  | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 1.70  | 20.0          |
| 3B04070 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 17.3    | 16.7    | 10.3     | 8.50 to 11.5       | 106   | 70.0 to 130 | 3.53  | 20.0          |
| BB04070 | Manganese, Dissolved   | mg/L  | 0.0000065  | 0.000147 | 0.10  | 0.0987  | 0.0975  | 0.0997   | 0.0850 to 0.115    | 98.5  | 70.0 to 130 | 1.22  | 20.0          |
| BB04070 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.06    | 1.06    | 1.03     | 0.850 to 1.15      | 103   | 70.0 to 130 | 0.00  | 20.0          |
| BB04070 | Iron, Dissolved        | mg/L  | -0.0000794 | 0.0176   | 0.2   | 0.199   | 0.197   | 0.205    | 0.170 to 0.230     | 99.5  | 70.0 to 130 | 1.01  | 20.0          |
| BB04070 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 0.205   | 0.203   | 0.209    | 0.170 to 0.230     | 98.4  | 70.0 to 130 | 0.980 | 20.0          |
| BB04070 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0948  | 0.0973  | 0.0942   | 0.0850 to 0.115    | 94.8  | 70.0 to 130 | 2.60  | 20.0          |
| 3B04070 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.104   | 0.105   | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.957 | 20.0          |
| BB04070 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0975  | 0.0974  | 0.0984   | 0.0850 to 0.115    | 97.5  | 70.0 to 130 | 0.103 | 20.0          |
| 3B04070 | Mercury, Total by CVAA | mg/L  | 0.0000921  | 0.000500 | 0.004 | 0.00419 | 0.00426 | 0.00412  | 0.00340 to 0.00460 | 105   | 70.0 to 130 | 1.66  | 20.0          |
| 3B04070 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.101   | 0.0990  | 0.0987   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.00  | 20.0          |
| 3B04070 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 39.8    | 39.8    | 5.15     | 4.25 to 5.75       | 82.0  | 70.0 to 130 | 0.00  | 20.0          |
| BB04070 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.105   | 0.103   | 0.104    | 0.0850 to 0.115    | 105   | 70.0 to 130 | 1.92  | 20.0          |
| BB04070 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.111   | 0.112   | 0.0999   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.897 | 20.0          |
| BB04070 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 283     | 294     | 5.15     | 4.25 to 5.75       | -80.0 | 70.0 to 130 | 3.81  | 20.0          |
| BB04070 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 0.100   | 0.0976  | 0.0992   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 2.43  | 20.0          |
| BB04070 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0911  | 0.0912  | 0.0942   | 0.0850 to 0.115    | 91.1  | 70.0 to 130 | 0.110 | 20.0          |
| BB04070 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0998  | 0.0985  | 0.0985   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 1.31  | 20.0          |
| BB04070 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0955  | 0.0960  | 0.0981   | 0.0850 to 0.115    | 95.5  | 70.0 to 130 | 0.522 | 20.0          |
| BB04070 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0936  | 0.0950  | 0.0951   | 0.0850 to 0.115    | 93.6  | 70.0 to 130 | 1.48  | 20.0          |

### **Batch QC Summary**



Customer Account: WMWGORLF

**Sample Date:** 2/23/21 12:53

**Customer ID:** 

**Delivery Date:** 2/24/21 13:49

Description: Gorgas Landfill - MW-17R

Laboratory ID Number: BB04069

|   |         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| ı | BB04073 | Chloride                   | mg/L  | -0.0751 | 0.500  | 10.0  | 12.1 | 0.137     | 10.8     | 9.00 to 11.0 | 121  | 80.0 to 120 | 0.00  | 20.0          |
| ı | BB04073 | Sulfate                    | mg/L  | -0.310  | 0.500  | 20.0  | 18.7 | -0.318    | 18.9     | 18.0 to 22.0 | 93.5 | 80.0 to 120 | 0.00  | 20.0          |
| 1 | BB04156 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 224       | 52.0     | 45.0 to 55.0 |      |             | 2.21  | 10.0          |
| ı | BB04073 | Fluoride                   | mg/L  | 0.0184  | 0.0500 | 2.50  | 2.53 | 0.0137    | 2.63     | 2.25 to 2.75 | 101  | 80.0 to 120 | 0.00  | 20.0          |
| ı | BB04070 | Solids, Dissolved          | mg/L  | -1.00   | 25.0   |       |      | 2580      | 51.0     | 40.0 to 60.0 |      |             | 0.194 | 5.00          |
|   |         |                            |       |         |        |       |      |           |          |              |      |             |       |               |

#### Certificate Of Analysis



Description: Gorgas Landfill - MW-18Location Code:WMWGORLFCollected:2/23/21 14:00

Customer ID:

Laboratory ID Number: BB04070 Submittal Date: 2/24/21 13:49

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units       | MDL      | RL       | Q  |
|------------------------------|---------------|--------------|-------------|--------------|-------------|----------|----------|----|
| Analytical Method: EPA 200.7 | Analy         | yst: RDA     |             | Preparat     | ion Method: | EPA 1638 |          |    |
| * Boron, Total               | 3/16/21 09:07 | 3/17/21 10:1 | 3 1.015     | 0.0343       | mg/L        | 0.030000 | 0.1015   | J  |
| * Calcium, Total             | 3/16/21 09:07 | 3/19/21 10:5 | 0 20.3      | 284          | mg/L        | 1.4007   | 8.12     | R/ |
| * Iron, Total                | 3/16/21 09:07 | 3/17/21 10:1 | 3 1.015     | 0.00812      | mg/L        | 0.008120 | 0.0406   | J  |
| * Lithium, Total             | 3/16/21 09:07 | 3/17/21 10:1 | 3 1.015     | 0.0627       | mg/L        | 0.007105 | 0.019999 | R  |
| * Magnesium, Total           | 3/16/21 09:07 | 3/19/21 10:5 | 0 20.3      | 287          | mg/L        | 0.4263   | 8.12     | R/ |
| * Sodium, Total              | 3/16/21 09:07 | 3/17/21 10:1 | 3 1.015     | 35.7         | mg/L        | 0.02030  | 0.406    |    |
| Analytical Method: EPA 200.7 | Anal          | yst: RDA     |             |              |             |          |          |    |
| * Iron, Dissolved            | 3/11/21 11:00 | 3/12/21 12:0 | 4 1.015     | Not Detected | mg/L        | 0.008120 | 0.0406   | U  |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             | Preparati    | ion Method: | EPA 1638 |          |    |
| * Antimony, Total            | 2/26/21 06:45 | 2/26/21 12:2 | 9 1.015     | Not Detected | mg/L        | 0.000507 | 0.001015 | U  |
| * Arsenic, Total             | 2/26/21 06:45 | 2/26/21 12:2 | 9 1.015     | Not Detected | mg/L        | 0.000068 | 0.000203 | U  |
| * Barium, Total              | 2/26/21 06:45 | 2/26/21 12:2 | 9 1.015     | 0.0103       | mg/L        | 0.000101 | 0.000203 |    |
| * Beryllium, Total           | 2/26/21 06:45 | 2/26/21 12:2 | 9 1.015     | Not Detected | mg/L        | 0.000406 | 0.001015 | U  |
| * Cadmium, Total             | 2/26/21 06:45 | 2/26/21 12:2 | 9 1.015     | Not Detected | mg/L        | 0.000068 | 0.000203 | U  |
| * Chromium, Total            | 2/26/21 06:45 | 2/26/21 12:2 | 9 1.015     | Not Detected | mg/L        | 0.000203 | 0.001015 | U  |
| * Cobalt, Total              | 2/26/21 06:45 | 2/26/21 12:2 | 9 1.015     | Not Detected | mg/L        | 0.000068 | 0.000203 | U  |
| * Lead, Total                | 2/26/21 06:45 | 2/26/21 12:2 | 9 1.015     | Not Detected | mg/L        | 0.000068 | 0.000203 | U  |
| * Molybdenum, Total          | 2/26/21 06:45 | 2/26/21 12:2 | 9 1.015     | 0.000120     | mg/L        | 0.000068 | 0.000203 | J  |
| * Potassium, Total           | 2/26/21 06:45 | 2/26/21 12:2 | 9 1.015     | 6.73         | mg/L        | 0.169505 | 0.5075   |    |
| * Manganese, Total           | 2/26/21 06:45 | 2/26/21 12:2 | 9 1.015     | 0.000224     | mg/L        | 0.000068 | 0.000203 |    |
| * Selenium, Total            | 2/26/21 06:45 | 2/26/21 12:2 | 9 1.015     | 0.00310      | mg/L        | 0.000507 | 0.001015 |    |
| * Thallium, Total            | 2/26/21 06:45 | 2/26/21 12:2 | 9 1.015     | Not Detected | mg/L        | 0.000068 | 0.000203 | U  |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             |              |             |          |          |    |
| * Manganese, Dissolved       | 2/26/21 08:46 | 2/26/21 10:4 | 1 1.015     | 0.000169     | mg/L        | 0.000068 | 0.000203 | J  |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB     |             |              |             |          |          |    |
| * Mercury, Total by CVAA     | 3/8/21 11:16  | 3/9/21 12:45 | 1           | Not Detected | mg/L        | 0.0003   | 0.0005   | U  |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |              |             |          |          |    |
| Alkalinity, Total as CaCO3   | 3/3/21 11:10  | 3/3/21 12:09 | 1           | 212          | mg/L        |          | 0.1      |    |
| Analytical Method: SM 2540C  | Anal          | yst: TJW     |             |              |             |          |          |    |
| * Solids, Dissolved          | 2/25/21 10:55 | 3/2/21 09:30 | 1           | 2570         | mg/L        |          | 125      |    |

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Lithium MS/MSD recoveries failed. Post digestion spike and serial dilution were performed. Matrix issue is suspected. LBM 3/30/21

#### Certificate Of Analysis



**Description:** Gorgas Landfill - MW-18

**Location Code:** 

WMWGORLF

Collected:

2/23/21 14:00

**Customer ID:** 

Submittal Date:

2/24/21 13:49

| Laboratory ID Number: BB04070         |               |               |          |    | Subii   | iillai Dale. | 2/24/21 13 | .43 |    |
|---------------------------------------|---------------|---------------|----------|----|---------|--------------|------------|-----|----|
| Name                                  | Prepared      | Analyzed      | Vio Spec | DF | Results | Units        | MDL        | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG     |          |    |         |              |            |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 11:10  | 3/3/21 12:0   | 9        | 1  | 212     | mg/L         |            |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 11:10  | 3/3/21 12:0   | 9        | 1  | 0.12    | mg/L         |            |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC     |          |    |         |              |            |     |    |
| * Chloride                            | 2/25/21 11:23 | 3 2/25/21 11: | 23       | 1  | 1.34    | mg/L         | 0.50       | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC     |          |    |         |              |            |     |    |
| * Fluoride                            | 2/25/21 15:57 | 2/25/21 15:   | 57       | 1  | 0.290   | mg/L         | 0.06       | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC     |          |    |         |              |            |     |    |
| * Sulfate                             | 2/26/21 11:57 | 2/26/21 11:   | 57       | 50 | 1560    | mg/L         | 25.00      | 50  |    |
| Analytical Method: Field Measurements | Ana           | lyst: DKG     |          |    |         |              |            |     |    |
| Conductivity                          | 2/23/21 13:58 | 3 2/23/21 13: | 58       |    | 2615.49 | uS/cm        |            |     | FA |
| рН                                    | 2/23/21 13:58 | 3 2/23/21 13: | 58       |    | 6.47    | SU           |            |     | FA |
| Temperature                           | 2/23/21 13:58 | 3 2/23/21 13: | 58       |    | 20.34   | С            |            |     | FA |
| Turbidity                             | 2/23/21 13:58 | 3 2/23/21 13: | 58       |    | 1.01    | NTU          |            |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Lithium MS/MSD recoveries failed. Post digestion spike and serial dilution were performed. Matrix issue is suspected. LBM 3/30/21

#### **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 2/23/21 14:00

Customer ID:

**Delivery Date:** 2/24/21 13:49

Description: Gorgas Landfill - MW-18

Laboratory ID Number: BB04070

|         |                        |       |            | MB       |       |         | <u> </u> |          | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|----------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD      | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| 3B04070 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.334   | 0.333    | 0.207    | 0.170 to 0.230     | 136   | 70.0 to 130 | 0.300 | 20.0          |
| 3B04070 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.101   | 0.0993   | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 1.70  | 20.0          |
| 3B04070 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 278     | 288      | 5.12     | 4.25 to 5.75       | -120  | 70.0 to 130 | 3.53  | 20.0          |
| 3B04070 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.105   | 0.103    | 0.104    | 0.0850 to 0.115    | 105   | 70.0 to 130 | 1.92  | 20.0          |
| 3B04070 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.111   | 0.112    | 0.0999   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.897 | 20.0          |
| 3B04070 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 283     | 294      | 5.15     | 4.25 to 5.75       | -80.0 | 70.0 to 130 | 3.81  | 20.0          |
| 3B04070 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 0.100   | 0.0976   | 0.0992   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 2.43  | 20.0          |
| 3B04070 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0911  | 0.0912   | 0.0942   | 0.0850 to 0.115    | 91.1  | 70.0 to 130 | 0.110 | 20.0          |
| 3B04070 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0998  | 0.0985   | 0.0985   | 0.0850 to 0.115    | 99.8  | 70.0 to 130 | 1.31  | 20.0          |
| 3B04070 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0955  | 0.0960   | 0.0981   | 0.0850 to 0.115    | 95.5  | 70.0 to 130 | 0.522 | 20.0          |
| 3B04070 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0936  | 0.0950   | 0.0951   | 0.0850 to 0.115    | 93.6  | 70.0 to 130 | 1.48  | 20.0          |
| 3B04070 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 17.3    | 16.7     | 10.3     | 8.50 to 11.5       | 106   | 70.0 to 130 | 3.53  | 20.0          |
| 3B04070 | Manganese, Dissolved   | mg/L  | 0.0000065  | 0.000147 | 0.10  | 0.0987  | 0.0975   | 0.0997   | 0.0850 to 0.115    | 98.5  | 70.0 to 130 | 1.22  | 20.0          |
| 3B04070 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.06    | 1.06     | 1.03     | 0.850 to 1.15      | 103   | 70.0 to 130 | 0.00  | 20.0          |
| 3B04070 | Iron, Dissolved        | mg/L  | -0.0000794 | 0.0176   | 0.2   | 0.199   | 0.197    | 0.205    | 0.170 to 0.230     | 99.5  | 70.0 to 130 | 1.01  | 20.0          |
| 3B04070 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 0.205   | 0.203    | 0.209    | 0.170 to 0.230     | 98.4  | 70.0 to 130 | 0.980 | 20.0          |
| 3B04070 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0948  | 0.0973   | 0.0942   | 0.0850 to 0.115    | 94.8  | 70.0 to 130 | 2.60  | 20.0          |
| 3B04070 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.104   | 0.105    | 0.102    | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.957 | 20.0          |
| 3B04070 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0975  | 0.0974   | 0.0984   | 0.0850 to 0.115    | 97.5  | 70.0 to 130 | 0.103 | 20.0          |
| 3B04070 | Mercury, Total by CVAA | mg/L  | 0.0000921  | 0.000500 | 0.004 | 0.00419 | 0.00426  | 0.00412  | 0.00340 to 0.00460 | 105   | 70.0 to 130 | 1.66  | 20.0          |
| 3B04070 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.101   | 0.0990   | 0.0987   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.00  | 20.0          |
| 3B04070 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 39.8    | 39.8     | 5.15     | 4.25 to 5.75       | 82.0  | 70.0 to 130 | 0.00  | 20.0          |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Lithium MS/MSD recoveries failed. Post digestion spike and serial dilution were performed. Matrix issue is suspected. LBM 3/30/21

## **Batch QC Summary**



Customer Account: WMWGORLF

**Sample Date:** 2/23/21 14:00

**Customer ID:** 

**Delivery Date:** 2/24/21 13:49

Description: Gorgas Landfill - MW-18

Laboratory ID Number: BB04070

|         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | l Limit      | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB04073 | Chloride                   | mg/L  | -0.0751 | 0.500  | 10.0  | 12.1 | 0.137     | 10.8     | 9.00 to 11.0 | 121  | 80.0 to 120 | 0.00  | 20.0          |
| BB04073 | Sulfate                    | mg/L  | -0.310  | 0.500  | 20.0  | 18.7 | -0.318    | 18.9     | 18.0 to 22.0 | 93.5 | 80.0 to 120 | 0.00  | 20.0          |
| BB04070 | Solids, Dissolved          | mg/L  | -1.00   | 25.0   |       |      | 2580      | 51.0     | 40.0 to 60.0 |      |             | 0.194 | 5.00          |
| BB04073 | Fluoride                   | mg/L  | 0.0184  | 0.0500 | 2.50  | 2.53 | 0.0137    | 2.63     | 2.25 to 2.75 | 101  | 80.0 to 120 | 0.00  | 20.0          |
| BB04156 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 224       | 52.0     | 45.0 to 55.0 |      |             | 2.21  | 10.0          |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Lithium MS/MSD recoveries failed. Post digestion spike and serial dilution were performed. Matrix issue is suspected. LBM 3/30/21

### Certificate Of Analysis



Description: Gorgas Landfill - MW-12VLocation Code:WMWGORLFCollected:2/24/21 08:38

Customer ID:

Laboratory ID Number: BB04071 Submittal Date: 2/24/21 13:49

| Name                         | Prepared      | Analyzed \    | Vio Spec DF | Results      | Units      | MDL      | RL         | Q |
|------------------------------|---------------|---------------|-------------|--------------|------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Analy         | st: RDA       |             | Preparati    | on Method: | EPA 1638 |            |   |
| * Boron, Total               | 3/16/21 09:07 | 3/17/21 10:30 | 1.015       | 0.160        | mg/L       | 0.030000 | 0.1015     |   |
| * Calcium, Total             | 3/16/21 09:07 | 3/19/21 11:07 | 20.3        | 293          | mg/L       | 1.4007   | 8.12       |   |
| * Iron, Total                | 3/16/21 09:07 | 3/17/21 10:30 | 1.015       | 3.84         | mg/L       | 0.008120 | 0.0406     |   |
| * Lithium, Total             | 3/16/21 09:07 | 3/17/21 10:30 | 1.015       | 0.345        | mg/L       | 0.007105 | 0.01999956 | 6 |
| * Magnesium, Total           | 3/16/21 09:07 | 3/19/21 11:07 | 20.3        | 194          | mg/L       | 0.4263   | 8.12       |   |
| * Sodium, Total              | 3/16/21 09:07 | 3/19/21 11:07 | 20.3        | 109          | mg/L       | 0.406    | 8.12       |   |
| Analytical Method: EPA 200.7 | Analy         | st: RDA       |             |              |            |          |            |   |
| * Iron, Dissolved            | 3/11/21 11:00 | 3/12/21 12:28 | 1.015       | 3.87         | mg/L       | 0.008120 | 0.0406     |   |
| Analytical Method: EPA 200.8 | Analy         | st: DLJ       |             | Preparati    | on Method: | EPA 1638 |            |   |
| * Antimony, Total            | 2/26/21 06:45 | 2/26/21 12:51 | 1.015       | Not Detected | mg/L       | 0.000507 | 0.001015   | U |
| * Arsenic, Total             | 2/26/21 06:45 | 2/26/21 12:51 | 1.015       | 0.00584      | mg/L       | 0.000068 | 0.000203   |   |
| * Barium, Total              | 2/26/21 06:45 | 2/26/21 12:51 | 1.015       | 0.0185       | mg/L       | 0.000101 | 0.000203   |   |
| * Beryllium, Total           | 2/26/21 06:45 | 2/26/21 12:51 | 1.015       | Not Detected | mg/L       | 0.000406 | 0.001015   | U |
| * Cadmium, Total             | 2/26/21 06:45 | 2/26/21 12:51 | 1.015       | Not Detected | mg/L       | 0.000068 | 0.000203   | U |
| * Chromium, Total            | 2/26/21 06:45 | 2/26/21 12:51 | 1.015       | Not Detected | mg/L       | 0.000203 | 0.001015   | U |
| * Cobalt, Total              | 2/26/21 06:45 | 2/26/21 12:51 | 1.015       | 0.000378     | mg/L       | 0.000068 | 0.000203   |   |
| * Lead, Total                | 2/26/21 06:45 | 2/26/21 12:51 | 1.015       | Not Detected | mg/L       | 0.000068 | 0.000203   | U |
| * Molybdenum, Total          | 2/26/21 06:45 | 2/26/21 12:51 | 1.015       | 0.00174      | mg/L       | 0.000068 | 0.000203   |   |
| * Potassium, Total           | 2/26/21 06:45 | 2/26/21 12:51 | 1.015       | 7.27         | mg/L       | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 2/26/21 06:45 | 2/26/21 12:51 | 1.015       | 0.523        | mg/L       | 0.000068 | 0.000203   |   |
| * Selenium, Total            | 2/26/21 06:45 | 2/26/21 12:51 | 1.015       | Not Detected | mg/L       | 0.000507 | 0.001015   | U |
| * Thallium, Total            | 2/26/21 06:45 | 2/26/21 12:51 | 1.015       | Not Detected | mg/L       | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Analy         | st: DLJ       |             |              |            |          |            |   |
| * Manganese, Dissolved       | 2/26/21 08:46 | 2/26/21 11:03 | 1.015       | 0.512        | mg/L       | 0.000068 | 0.000203   |   |
| Analytical Method: EPA 245.1 | Analy         | st: ABB       |             |              |            |          |            |   |
| * Mercury, Total by CVAA     | 3/8/21 11:16  | 3/9/21 13:01  | 1           | Not Detected | mg/L       | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B |               | st: JAG       |             |              |            |          |            |   |
| Alkalinity, Total as CaCO3   | 3/3/21 11:10  | 3/3/21 12:09  | 1           | 218          | mg/L       |          | 0.1        |   |
| Analytical Method: SM 2540C  |               | /st: TJW      |             |              |            |          |            |   |
| * Solids, Dissolved          | 3/1/21 16:45  | 3/3/21 09:00  | 1           | 2240         | mg/L       |          | 125        |   |

MDL's and RL's are adjusted for sample dilution, as applicable

#### Certificate Of Analysis



Description: Gorgas Landfill - MW-12V

**Location Code:** 

WMWGORLF

Collected:

Customer ID:

2/24/21 08:38

2/24/21 13:49

Laboratory ID Number: BB04071

Submittal Date:

| Name                                  | Prepared      | Analyzed     | Vio Spec   | DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|------------|----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |            |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 11:10  | 3/3/21 12:09 | )          | 1  | 218     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 11:10  | 3/3/21 12:09 | )          | 1  | 0.18    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |            |    |         |       |       |     |    |
| * Chloride                            | 2/25/21 11:41 | 2/25/21 11:4 | <b>1</b> 1 | 8  | 101     | mg/L  | 4.00  | 8   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |            |    |         |       |       |     |    |
| * Fluoride                            | 2/25/21 15:58 | 2/25/21 15:5 | 58         | 1  | 0.170   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |            |    |         |       |       |     |    |
| * Sulfate                             | 2/26/21 11:59 | 2/26/21 11:5 | 59         | 50 | 1220    | mg/L  | 25.00 | 50  |    |
| Analytical Method: Field Measurements | Ana           | lyst: DKG    |            |    |         |       |       |     |    |
| Conductivity                          | 2/24/21 08:34 | 2/24/21 08:3 | 34         |    | 2603.60 | uS/cm |       |     | FA |
| рН                                    | 2/24/21 08:34 | 2/24/21 08:3 | 34         |    | 6.83    | SU    |       |     | FA |
| Temperature                           | 2/24/21 08:34 | 2/24/21 08:3 | 34         |    | 20.02   | С     |       |     | FA |
| Turbidity                             | 2/24/21 08:34 | 2/24/21 08:3 | 34         |    | 0.11    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

#### **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 2/24/21 08:38

Customer ID:

**Delivery Date:** 2/24/21 13:49

Description: Gorgas Landfill - MW-12V

Laboratory ID Number: BB04071

|         |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Pred         |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|--------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mi |
| 3B04156 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 333     | 332     | 5.12     | 4.25 to 5.75       | 107  | 70.0 to 130 | 0.401 | 20.0         |
| 3B04156 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0980  | 0.0989  | 0.0942   | 0.0850 to 0.115    | 98.0 | 70.0 to 130 | 0.914 | 20.0         |
| 3B04156 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0950  | 0.0964  | 0.0951   | 0.0850 to 0.115    | 95.0 | 70.0 to 130 | 1.46  | 20.0         |
| 3B04156 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.103   | 0.107   | 0.104    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 3.81  | 20.0         |
| 3B04156 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.0996  | 0.101   | 0.0987   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 1.40  | 20.0         |
| 3B04156 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 2.16    | 2.19    | 0.0992   | 0.0850 to 0.115    | 40.0 | 70.0 to 130 | 1.38  | 20.0         |
| 3B04156 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 36.7    | 36.2    | 5.15     | 4.25 to 5.75       | 109  | 70.0 to 130 | 1.24  | 20.0         |
| 3B04156 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0973  | 0.0969  | 0.0984   | 0.0850 to 0.115    | 97.3 | 70.0 to 130 | 0.412 | 20.0         |
| 3B04156 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.138   | 0.137   | 0.102    | 0.0850 to 0.115    | 100  | 70.0 to 130 | 0.727 | 20.0         |
| 3B04156 | Iron, Dissolved        | mg/L  | 0.000207   | 0.0176   | 0.2   | 1.85    | 1.86    | 0.205    | 0.170 to 0.230     | 80.0 | 70.0 to 130 | 0.539 | 20.0         |
| 3B04156 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 2.62    | 2.61    | 0.209    | 0.170 to 0.230     | 90.0 | 70.0 to 130 | 0.382 | 20.0         |
| 3B04156 | Mercury, Total by CVAA | mg/L  | 0.0000917  | 0.000500 | 0.004 | 0.00422 | 0.00461 | 0.00412  | 0.00340 to 0.00460 | 106  | 70.0 to 130 | 8.83  | 20.0         |
| 3B04156 | Manganese, Dissolved   | mg/L  | 0.0000065  | 0.000147 | 0.10  | 2.14    | 2.13    | 0.0997   | 0.0850 to 0.115    | 40.0 | 70.0 to 130 | 0.468 | 20.0         |
| 3B04156 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.112   | 0.113   | 0.0999   | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.889 | 20.0         |
| 3B04156 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 16.4    | 16.5    | 10.3     | 8.50 to 11.5       | 103  | 70.0 to 130 | 0.608 | 20.0         |
| 3B04156 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0970  | 0.0974  | 0.0981   | 0.0850 to 0.115    | 97.0 | 70.0 to 130 | 0.412 | 20.0         |
| 3B04156 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0955  | 0.0941  | 0.0942   | 0.0850 to 0.115    | 95.5 | 70.0 to 130 | 1.48  | 20.0         |
| 3B04156 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.09    | 1.09    | 1.03     | 0.850 to 1.15      | 105  | 70.0 to 130 | 0.00  | 20.0         |
| 3B04156 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0994  | 0.0988  | 0.0985   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 0.605 | 20.0         |
| 3B04156 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.366   | 0.362   | 0.207    | 0.170 to 0.230     | 145  | 70.0 to 130 | 1.10  | 20.0         |
| 3B04156 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 351     | 349     | 5.15     | 4.25 to 5.75       | 145  | 70.0 to 130 | 0.640 | 20.0         |
| 3B04156 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.102   | 0.103   | 0.102    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.976 | 20.0         |

### **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

2/24/21 08:38

**Customer ID:** 

**Delivery Date:** 

2/24/21 13:49

Description: Gorgas Landfill - MW-12V

Laboratory ID Number: BB04071

|   |         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec  |
|---|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|-------|
|   | Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | Limit |
| E | 3B04073 | Chloride                   | mg/L  | -0.0751 | 0.500  | 10.0  | 12.1 | 0.137     | 10.8     | 9.00 to 11.0 | 121  | 80.0 to 120 | 0.00  | 20.0  |
| E | 3B04073 | Sulfate                    | mg/L  | -0.310  | 0.500  | 20.0  | 18.7 | -0.318    | 18.9     | 18.0 to 22.0 | 93.5 | 80.0 to 120 | 0.00  | 20.0  |
| E | 3B04156 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 224       | 52.0     | 45.0 to 55.0 |      |             | 2.21  | 10.0  |
| E | 3B04073 | Fluoride                   | mg/L  | 0.0184  | 0.0500 | 2.50  | 2.53 | 0.0137    | 2.63     | 2.25 to 2.75 | 101  | 80.0 to 120 | 0.00  | 20.0  |
| E | 3B04155 | Solids, Dissolved          | mg/L  | 2.00    | 25.0   |       |      | 3120      | 50.0     | 40.0 to 60.0 |      |             | 0.808 | 5.00  |
|   |         |                            |       |         |        |       |      |           |          |              |      |             |       |       |

# Certificate Of Analysis



Description: Gorgas Landfill - MW-12Location Code:WMWGORLFCollected:2/24/21 09:48

Customer ID:

**Submittal Date:** 2/24/21 13:49

| Laboratory ID Number: BB04072 |               |             |          |        | Submitt      | ai Date:     | 2/24/21 13:4 | 9          |   |
|-------------------------------|---------------|-------------|----------|--------|--------------|--------------|--------------|------------|---|
| Name                          | Prepared      | Analyzed    | Vio Spec | DF     | Results      | Units        | MDL          | RL         | Q |
| Analytical Method: EPA 200.7  | Anal          | yst: RDA    |          |        | Preparati    | on Method: L | EPA 1638     |            |   |
| * Boron, Total                | 3/16/21 09:07 | 3/17/21 10  | :33      | 1.015  | 0.193        | mg/L         | 0.030000     | 0.1015     |   |
| * Calcium, Total              | 3/16/21 09:07 | 3/19/21 11  | :11      | 50.75  | 346          | mg/L         | 3.50175      | 20.3       |   |
| * Iron, Total                 | 3/16/21 09:07 | 3/19/21 11  | :11      | 50.75  | 165          | mg/L         | 0.40600      | 2.03       |   |
| * Lithium, Total              | 3/16/21 09:07 | 3/17/21 10  | :33      | 1.015  | 0.0949       | mg/L         | 0.007105     | 0.01999956 | ò |
| * Magnesium, Total            | 3/16/21 09:07 | 3/19/21 11  | :11      | 50.75  | 370          | mg/L         | 1.06575      | 20.3       |   |
| * Sodium, Total               | 3/16/21 09:07 | 3/19/21 11  | :11      | 50.75  | 46.2         | mg/L         | 1.0150       | 20.3       |   |
| Analytical Method: EPA 200.7  | Anal          | yst: RDA    |          |        |              |              |              |            |   |
| * Iron, Dissolved             | 3/11/21 11:00 | 3/12/21 13  | :22      | 101.5  | 155          | mg/L         | 0.8120       | 4.06       |   |
| Analytical Method: EPA 200.8  | Anal          | yst: DLJ    |          |        | Preparati    | on Method: L | PA 1638      |            |   |
| * Antimony, Total             | 2/26/21 06:45 | 2/26/21 12  | :54      | 1.015  | Not Detected | mg/L         | 0.000507     | 0.001015   | U |
| * Arsenic, Total              | 2/26/21 06:45 | 2/26/21 12  | :54      | 1.015  | 0.0516       | mg/L         | 0.000068     | 0.000203   |   |
| * Barium, Total               | 2/26/21 06:45 | 2/26/21 12  | :54      | 1.015  | 0.0123       | mg/L         | 0.000101     | 0.000203   |   |
| * Beryllium, Total            | 2/26/21 06:45 | 2/26/21 12  | :54      | 1.015  | Not Detected | mg/L         | 0.000406     | 0.001015   | U |
| * Cadmium, Total              | 2/26/21 06:45 | 2/26/21 12  | :54      | 1.015  | Not Detected | mg/L         | 0.000068     | 0.000203   | U |
| * Chromium, Total             | 2/26/21 06:45 | 2/26/21 12  | :54      | 1.015  | Not Detected | mg/L         | 0.000203     | 0.001015   | U |
| * Cobalt, Total               | 2/26/21 06:45 | 2/26/21 12  | :54      | 1.015  | 0.0442       | mg/L         | 0.000068     | 0.000203   |   |
| * Lead, Total                 | 2/26/21 06:45 | 2/26/21 12  | :54      | 1.015  | 0.000178     | mg/L         | 0.000068     | 0.000203   | J |
| * Molybdenum, Total           | 2/26/21 06:45 | 2/26/21 12  | :54      | 1.015  | 0.000088     | mg/L         | 0.000068     | 0.000203   | J |
| * Potassium, Total            | 2/26/21 06:45 | 2/26/21 12  | :54      | 1.015  | 22.2         | mg/L         | 0.169505     | 0.5075     |   |
| * Manganese, Total            | 2/26/21 06:45 | 2/26/21 18  | :18      | 92.365 | 19.6         | mg/L         | 0.006188     | 0.018473   |   |
| * Selenium, Total             | 2/26/21 06:45 | 2/26/21 12  | :54      | 1.015  | Not Detected | mg/L         | 0.000507     | 0.001015   | U |
| * Thallium, Total             | 2/26/21 06:45 | 2/26/21 12  | :54      | 1.015  | Not Detected | mg/L         | 0.000068     | 0.000203   | U |
| Analytical Method: EPA 200.8  | Anal          | yst: DLJ    |          |        |              |              |              |            |   |
| * Manganese, Dissolved        | 2/26/21 08:46 | 2/26/21 17  | :06      | 92.365 | 19.3         | mg/L         | 0.006188     | 0.018473   |   |
| Analytical Method: EPA 245.1  | Anal          | yst: ABB    |          |        |              |              |              |            |   |
| * Mercury, Total by CVAA      | 3/8/21 11:16  | 3/9/21 13:0 | )4       | 1      | Not Detected | mg/L         | 0.0003       | 0.0005     | U |
| Analytical Method: SM 2320 B  |               | yst: JAG    |          |        |              |              |              |            |   |
| Alkalinity, Total as CaCO3    | 3/3/21 11:10  | 3/3/21 12:( | )9       | 1      | 281          | mg/L         |              | 0.1        |   |
| Analytical Method: SM 2540C   | Anai          | lyst: TJW   |          |        |              |              |              |            |   |
| * Solids, Dissolved           | 3/1/21 16:45  | 3/3/21 09:0 | 00       | 1      | 3810         | mg/L         |              | 166.7      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

### Certificate Of Analysis



**Description:** Gorgas Landfill - MW-12

**Location Code:** 

WMWGORLF 2/24/21 09:48

Collected: Customer ID:

Submittal Date:

2/24/21 13:49

Laboratory ID Number: BB04072

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF  | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|-----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anai          | lyst: JAG    |          |     |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 11:10  | 3/3/21 12:09 | )        | 1   | 281     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 11:10  | 3/3/21 12:09 | )        | 1   | 0.02    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Anai          | lyst: JCC    |          |     |         |       |       |     |    |
| * Chloride                            | 2/25/21 11:25 | 2/25/21 11:2 | 25       | 1   | 11.2    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Anai          | lyst: JCC    |          |     |         |       |       |     |    |
| * Fluoride                            | 2/25/21 15:59 | 2/25/21 15:5 | 59       | 1   | 0.172   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Anai          | lyst: JCC    |          |     |         |       |       |     |    |
| * Sulfate                             | 2/26/21 12:00 | 2/26/21 12:0 | 00       | 100 | 2280    | mg/L  | 50.00 | 100 |    |
| Analytical Method: Field Measurements | Anai          | lyst: DKG    |          |     |         |       |       |     |    |
| Conductivity                          | 2/24/21 09:45 | 2/24/21 09:4 | 5        |     | 3570.82 | uS/cm |       |     | FA |
| рН                                    | 2/24/21 09:45 | 2/24/21 09:4 | 5        |     | 5.83    | SU    |       |     | FA |
| Temperature                           | 2/24/21 09:45 | 2/24/21 09:4 | 5        |     | 20.29   | С     |       |     | FA |
| Turbidity                             | 2/24/21 09:45 | 2/24/21 09:4 | 5        |     | 3.19    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

#### **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

2/24/21 09:48

Customer ID:

**Delivery Date:** 2/24/21 13:49

**Description**: Gorgas Landfill - MW-12

Laboratory ID Number: BB04072

|         |                        |       | ·          | MB       |       | ·       | ·       |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB04156 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 333     | 332     | 5.12     | 4.25 to 5.75       | 107  | 70.0 to 130 | 0.401 | 20.0          |
| 3B04156 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0980  | 0.0989  | 0.0942   | 0.0850 to 0.115    | 98.0 | 70.0 to 130 | 0.914 | 20.0          |
| BB04156 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0950  | 0.0964  | 0.0951   | 0.0850 to 0.115    | 95.0 | 70.0 to 130 | 1.46  | 20.0          |
| BB04156 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.112   | 0.113   | 0.0999   | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.889 | 20.0          |
| BB04156 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 16.4    | 16.5    | 10.3     | 8.50 to 11.5       | 103  | 70.0 to 130 | 0.608 | 20.0          |
| BB04156 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0970  | 0.0974  | 0.0981   | 0.0850 to 0.115    | 97.0 | 70.0 to 130 | 0.412 | 20.0          |
| BB04156 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0973  | 0.0969  | 0.0984   | 0.0850 to 0.115    | 97.3 | 70.0 to 130 | 0.412 | 20.0          |
| BB04156 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.138   | 0.137   | 0.102    | 0.0850 to 0.115    | 100  | 70.0 to 130 | 0.727 | 20.0          |
| BB04156 | Iron, Dissolved        | mg/L  | 0.000207   | 0.0176   | 0.2   | 1.85    | 1.86    | 0.205    | 0.170 to 0.230     | 80.0 | 70.0 to 130 | 0.539 | 20.0          |
| 3B04156 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 2.62    | 2.61    | 0.209    | 0.170 to 0.230     | 90.0 | 70.0 to 130 | 0.382 | 20.0          |
| 3B04156 | Mercury, Total by CVAA | mg/L  | 0.0000917  | 0.000500 | 0.004 | 0.00422 | 0.00461 | 0.00412  | 0.00340 to 0.00460 | 106  | 70.0 to 130 | 8.83  | 20.0          |
| 3B04156 | Manganese, Dissolved   | mg/L  | 0.0000065  | 0.000147 | 0.10  | 2.14    | 2.13    | 0.0997   | 0.0850 to 0.115    | 40.0 | 70.0 to 130 | 0.468 | 20.0          |
| BB04156 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0955  | 0.0941  | 0.0942   | 0.0850 to 0.115    | 95.5 | 70.0 to 130 | 1.48  | 20.0          |
| 3B04156 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.09    | 1.09    | 1.03     | 0.850 to 1.15      | 105  | 70.0 to 130 | 0.00  | 20.0          |
| BB04156 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0994  | 0.0988  | 0.0985   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 0.605 | 20.0          |
| BB04156 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.366   | 0.362   | 0.207    | 0.170 to 0.230     | 145  | 70.0 to 130 | 1.10  | 20.0          |
| BB04156 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 351     | 349     | 5.15     | 4.25 to 5.75       | 145  | 70.0 to 130 | 0.640 | 20.0          |
| BB04156 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.102   | 0.103   | 0.102    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.976 | 20.0          |
| BB04156 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 2.16    | 2.19    | 0.0992   | 0.0850 to 0.115    | 40.0 | 70.0 to 130 | 1.38  | 20.0          |
| BB04156 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 36.7    | 36.2    | 5.15     | 4.25 to 5.75       | 109  | 70.0 to 130 | 1.24  | 20.0          |
| BB04156 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.103   | 0.107   | 0.104    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 3.81  | 20.0          |
| BB04156 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.0996  | 0.101   | 0.0987   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 1.40  | 20.0          |

### **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

2/24/21 09:48

**Customer ID:** 

Delivery Date:

2/24/21 13:49

Description: Gorgas Landfill - MW-12

Laboratory ID Number: BB04072

|         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | l Limit      | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB04073 | Chloride                   | mg/L  | -0.0751 | 0.500  | 10.0  | 12.1 | 0.137     | 10.8     | 9.00 to 11.0 | 121  | 80.0 to 120 | 0.00  | 20.0          |
| BB04073 | Sulfate                    | mg/L  | -0.310  | 0.500  | 20.0  | 18.7 | -0.318    | 18.9     | 18.0 to 22.0 | 93.5 | 80.0 to 120 | 0.00  | 20.0          |
| BB04156 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 224       | 52.0     | 45.0 to 55.0 |      |             | 2.21  | 10.0          |
| BB04155 | Solids, Dissolved          | mg/L  | 2.00    | 25.0   |       |      | 3120      | 50.0     | 40.0 to 60.0 |      |             | 0.808 | 5.00          |
| BB04073 | Fluoride                   | mg/L  | 0.0184  | 0.0500 | 2.50  | 2.53 | 0.0137    | 2.63     | 2.25 to 2.75 | 101  | 80.0 to 120 | 0.00  | 20.0          |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 3/30/21

Reported: 3/31/2021 Version: 3.2 COA\_CCR

## **Certificate Of Analysis**



Description: Gorgas Landfill Field Blank-1Location Code:WMWGORLFFBCollected:2/24/21 10:20

Customer ID:

**Submittal Date:** 2/24/21 13:49

Laboratory ID Number: BB04073

| Name                                | Prepared      | Analyzed    | Vio Spec DF | Results      | Units          | MDL      | RL         | Q |
|-------------------------------------|---------------|-------------|-------------|--------------|----------------|----------|------------|---|
| Analytical Method: EPA 200.7        | Anal          | yst: RDA    |             | Preparati    | ion Method: El | PA 1638  | <u> </u>   |   |
| * Boron, Total                      | 3/16/21 09:07 | 3/17/21 10: | 37 1.015    | Not Detected | mg/L           | 0.030000 | 0.1015     | U |
| * Calcium, Total                    | 3/16/21 09:07 | 3/17/21 10: | 37 1.015    | Not Detected | mg/L           | 0.070035 | 0.406      | U |
| * Iron, Total                       | 3/16/21 09:07 | 3/17/21 10: | 37 1.015    | Not Detected | mg/L           | 0.008120 | 0.0406     | U |
| * Lithium, Total                    | 3/16/21 09:07 | 3/17/21 10: | 37 1.015    | Not Detected | mg/L           | 0.007105 | 0.01999956 | U |
| * Magnesium, Total                  | 3/16/21 09:07 | 3/17/21 10: | 37 1.015    | Not Detected | mg/L           | 0.021315 | 0.406      | U |
| * Sodium, Total                     | 3/16/21 09:07 | 3/17/21 10: | 37 1.015    | Not Detected | mg/L           | 0.02030  | 0.406      | U |
| Analytical Method: EPA 200.8        | Anal          | yst: DLJ    |             | Preparati    | ion Method: El | PA 1638  |            |   |
| * Antimony, Total                   | 2/26/21 06:45 | 2/26/21 12: | 58 1.015    | Not Detected | mg/L           | 0.000507 | 0.001015   | U |
| * Arsenic, Total                    | 2/26/21 06:45 | 2/26/21 12: | 58 1.015    | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Barium, Total                     | 2/26/21 06:45 | 2/26/21 12: | 58 1.015    | Not Detected | mg/L           | 0.000101 | 0.000203   | U |
| * Beryllium, Total                  | 2/26/21 06:45 | 2/26/21 12: | 58 1.015    | Not Detected | mg/L           | 0.000406 | 0.001015   | U |
| * Cadmium, Total                    | 2/26/21 06:45 | 2/26/21 12: | 58 1.015    | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Chromium, Total                   | 2/26/21 06:45 | 2/26/21 12: | 58 1.015    | Not Detected | mg/L           | 0.000203 | 0.001015   | U |
| * Cobalt, Total                     | 2/26/21 06:45 | 2/26/21 12: | 58 1.015    | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Lead, Total                       | 2/26/21 06:45 | 2/26/21 12: | 58 1.015    | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Molybdenum, Total                 | 2/26/21 06:45 | 2/26/21 12: | 58 1.015    | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Manganese, Total                  | 2/26/21 06:45 | 2/26/21 12: | 58 1.015    | 0.000110     | mg/L           | 0.000068 | 0.000203   | J |
| * Potassium, Total                  | 2/26/21 06:45 | 2/26/21 12: | 58 1.015    | Not Detected | mg/L           | 0.169505 | 0.5075     | U |
| * Selenium, Total                   | 2/26/21 06:45 | 2/26/21 12: | 58 1.015    | Not Detected | mg/L           | 0.000507 | 0.001015   | U |
| * Thallium, Total                   | 2/26/21 06:45 | 2/26/21 12: | 58 1.015    | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 245.1        | Anal          | yst: ABB    |             |              |                |          |            |   |
| * Mercury, Total by CVAA            | 3/8/21 11:16  | 3/9/21 13:0 | 6 1         | Not Detected | mg/L           | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2540C         | Anal          | yst: TJW    |             |              |                |          |            |   |
| * Solids, Dissolved                 | 3/1/21 16:45  | 3/3/21 09:0 | 0 1         | Not Detected | mg/L           |          | 25         | U |
| Analytical Method: SM4500Cl E       | Anal          | yst: JCC    |             |              |                |          |            |   |
| * Chloride                          | 2/25/21 11:26 | 2/25/21 11: | 26 1        | Not Detected | mg/L           | 0.50     | 1          | U |
| Analytical Method: SM4500F G 2017   | Anal          | yst: JCC    |             |              |                |          |            |   |
| * Fluoride                          | 2/25/21 16:00 |             | 00 1        | Not Detected | mg/L           | 0.06     | 0.1        | U |
| Analytical Method: SM4500SO4 E 2011 | Anal          | yst: JCC    |             |              |                |          |            |   |
| * Sulfate                           | 2/26/21 12:01 | •           | 01 1        | Not Detected | mg/L           | 0.50     | 1          | U |

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: Matrix spike recovery for Chloride is outside of the specification limit. LBM 3/1/2021

### **Batch QC Summary**



Customer Account: WMWGORLFFB

**Sample Date:** 2/24/21 10:20

**Customer ID:** 

**Delivery Date:** 2/24/21 13:49

Description: Gorgas Landfill Field Blank-1

Laboratory ID Number: BB04073

|         |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB04156 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 333     | 332     | 5.12     | 4.25 to 5.75       | 107  | 70.0 to 130 | 0.401 | 20.0          |
| BB04156 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0980  | 0.0989  | 0.0942   | 0.0850 to 0.115    | 98.0 | 70.0 to 130 | 0.914 | 20.0          |
| BB04156 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0950  | 0.0964  | 0.0951   | 0.0850 to 0.115    | 95.0 | 70.0 to 130 | 1.46  | 20.0          |
| BB04156 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.112   | 0.113   | 0.0999   | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.889 | 20.0          |
| BB04156 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 16.4    | 16.5    | 10.3     | 8.50 to 11.5       | 103  | 70.0 to 130 | 0.608 | 20.0          |
| BB04156 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0970  | 0.0974  | 0.0981   | 0.0850 to 0.115    | 97.0 | 70.0 to 130 | 0.412 | 20.0          |
| BB04156 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0973  | 0.0969  | 0.0984   | 0.0850 to 0.115    | 97.3 | 70.0 to 130 | 0.412 | 20.0          |
| BB04156 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.138   | 0.137   | 0.102    | 0.0850 to 0.115    | 100  | 70.0 to 130 | 0.727 | 20.0          |
| BB04156 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 2.62    | 2.61    | 0.209    | 0.170 to 0.230     | 90.0 | 70.0 to 130 | 0.382 | 20.0          |
| BB04156 | Mercury, Total by CVAA | mg/L  | 0.0000917  | 0.000500 | 0.004 | 0.00422 | 0.00461 | 0.00412  | 0.00340 to 0.00460 | 106  | 70.0 to 130 | 8.83  | 20.0          |
| BB04156 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0955  | 0.0941  | 0.0942   | 0.0850 to 0.115    | 95.5 | 70.0 to 130 | 1.48  | 20.0          |
| BB04156 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.09    | 1.09    | 1.03     | 0.850 to 1.15      | 105  | 70.0 to 130 | 0.00  | 20.0          |
| BB04156 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0994  | 0.0988  | 0.0985   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 0.605 | 20.0          |
| BB04156 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.366   | 0.362   | 0.207    | 0.170 to 0.230     | 145  | 70.0 to 130 | 1.10  | 20.0          |
| BB04156 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 351     | 349     | 5.15     | 4.25 to 5.75       | 145  | 70.0 to 130 | 0.640 | 20.0          |
| BB04156 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.102   | 0.103   | 0.102    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.976 | 20.0          |
| BB04156 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 2.16    | 2.19    | 0.0992   | 0.0850 to 0.115    | 40.0 | 70.0 to 130 | 1.38  | 20.0          |
| BB04156 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 36.7    | 36.2    | 5.15     | 4.25 to 5.75       | 109  | 70.0 to 130 | 1.24  | 20.0          |
| BB04156 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.103   | 0.107   | 0.104    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 3.81  | 20.0          |
| BB04156 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.0996  | 0.101   | 0.0987   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 1.40  | 20.0          |

Comments: Matrix spike recovery for Chloride is outside of the specification limit. LBM 3/1/2021

### **Batch QC Summary**



Customer Account: WMWGORLFFB

**Sample Date:** 2/24/21 10:20

**Customer ID:** 

**Delivery Date:** 2/24/21 13:49

Description: Gorgas Landfill Field Blank-1

Laboratory ID Number: BB04073

|         |                   |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|-------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis          | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB04073 | Sulfate           | mg/L  | -0.310  | 0.500  | 20.0  | 18.7 | -0.318    | 18.9     | 18.0 to 22.0 | 93.5 | 80.0 to 120 | 0.00  | 20.0          |
| BB04073 | Chloride          | mg/L  | -0.0751 | 0.500  | 10.0  | 12.1 | 0.137     | 10.8     | 9.00 to 11.0 | 121  | 80.0 to 120 | 0.00  | 20.0          |
| BB04073 | Fluoride          | mg/L  | 0.0184  | 0.0500 | 2.50  | 2.53 | 0.0137    | 2.63     | 2.25 to 2.75 | 101  | 80.0 to 120 | 0.00  | 20.0          |
| BB04155 | Solids, Dissolved | mg/L  | 2.00    | 25.0   |       |      | 3120      | 50.0     | 40.0 to 60.0 |      |             | 0.808 | 5.00          |

Comments: Matrix spike recovery for Chloride is outside of the specification limit. LBM 3/1/2021

# Certificate Of Analysis



Description: Gorgas Landfill - MW-5Location Code:WMWGORLFCollected:2/23/21 11:58

**Customer ID:** 

**Submittal Date:** 2/25/21 09:38

| Laboratory ID Number: BB04150         |               |             |            |     | Submitt      | al Date:     | 2/25/21 09:3 | 8          |   |
|---------------------------------------|---------------|-------------|------------|-----|--------------|--------------|--------------|------------|---|
| Name                                  | Prepared      | Analyzed    | Vio Spec [ | DF  | Results      | Units        | MDL          | RL         | Q |
| Analytical Method: EPA 200.7          | Anai          | lyst: RDA   |            |     | Preparati    | on Method: L | EPA 1638     |            |   |
| * Boron, Total                        | 3/16/21 09:07 | 3/17/21 10: | 40 1.      | 015 | 0.0369       | mg/L         | 0.030000     | 0.1015     | J |
| * Calcium, Total                      | 3/16/21 09:07 | 3/19/21 11: | 14 20      | 0.3 | 394          | mg/L         | 1.4007       | 8.12       |   |
| * Iron, Total                         | 3/16/21 09:07 | 3/17/21 10: | 40 1.      | 015 | 2.30         | mg/L         | 0.008120     | 0.0406     |   |
| Lithium, Total                        | 3/16/21 09:07 | 3/17/21 10: | 40 1.      | 015 | 0.133        | mg/L         | 0.007105     | 0.01999956 |   |
| * Magnesium, Total                    | 3/16/21 09:07 | 3/19/21 11: | 14 20      | 0.3 | 413          | mg/L         | 0.4263       | 8.12       |   |
| * Sodium, Total                       | 3/16/21 09:07 | 3/19/21 11: | 14 20      | 0.3 | 56.4         | mg/L         | 0.406        | 8.12       |   |
| Analytical Method: EPA 200.7          | Anai          | lyst: RDA   |            |     |              |              |              |            |   |
| * Iron, Dissolved                     | 3/11/21 11:00 | 3/12/21 12: | 35 1.      | 015 | 2.09         | mg/L         | 0.008120     | 0.0406     |   |
| Analytical Method: EPA 200.8          | Anai          | lyst: DLJ   |            |     | Preparati    | on Method: I | EPA 1638     |            |   |
| * Antimony, Total                     | 2/26/21 06:45 | 2/26/21 13: | 01 1.      | 015 | Not Detected | mg/L         | 0.000507     | 0.001015   | U |
| * Arsenic, Total                      | 2/26/21 06:45 | 2/26/21 13: | 01 1.      | 015 | 0.000309     | mg/L         | 0.000068     | 0.000203   |   |
| * Barium, Total                       | 2/26/21 06:45 | 2/26/21 13: | 01 1.      | 015 | 0.0116       | mg/L         | 0.000101     | 0.000203   |   |
| * Beryllium, Total                    | 2/26/21 06:45 | 2/26/21 13: | 01 1.      | 015 | Not Detected | mg/L         | 0.000406     | 0.001015   | U |
| Cadmium, Total                        | 2/26/21 06:45 | 2/26/21 13: | 01 1.      | 015 | Not Detected | mg/L         | 0.000068     | 0.000203   | U |
| * Chromium, Total                     | 2/26/21 06:45 | 2/26/21 13: | 01 1.      | 015 | Not Detected | mg/L         | 0.000203     | 0.001015   | U |
| * Cobalt, Total                       | 2/26/21 06:45 | 2/26/21 13: | 01 1.      | 015 | 0.00102      | mg/L         | 0.000068     | 0.000203   |   |
| * Lead, Total                         | 2/26/21 06:45 | 2/26/21 13: | 01 1.      | 015 | Not Detected | mg/L         | 0.000068     | 0.000203   | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 2/26/21 06:45 | 2/26/21 13: | 01 1.      | 015 | 0.00140      | mg/L         | 0.000068     | 0.000203   |   |
| * Potassium, Total                    | 2/26/21 06:45 | 2/26/21 13: | 01 1.      | 015 | 6.74         | mg/L         | 0.169505     | 0.5075     |   |
| * Manganese, Total                    | 2/26/21 06:45 | 2/26/21 13: | 01 1.      | 015 | 0.384        | mg/L         | 0.000068     | 0.000203   |   |
| * Selenium, Total                     | 2/26/21 06:45 | 2/26/21 13: | 01 1.      | 015 | 0.00233      | mg/L         | 0.000507     | 0.001015   |   |
| * Thallium, Total                     | 2/26/21 06:45 | 2/26/21 13: | 01 1.      | 015 | Not Detected | mg/L         | 0.000068     | 0.000203   | U |
| Analytical Method: EPA 200.8          | Anai          | lyst: DLJ   |            |     |              |              |              |            |   |
| * Manganese, Dissolved                | 2/26/21 08:46 | 2/26/21 11: | 11 1.      | 015 | 0.386        | mg/L         | 0.000068     | 0.000203   |   |
| Analytical Method: EPA 245.1          | Anai          | yst: ABB    |            |     |              |              |              |            |   |
| * Mercury, Total by CVAA              | 3/8/21 11:16  | 3/9/21 13:0 | 9 1        |     | Not Detected | mg/L         | 0.0003       | 0.0005     | U |
| Analytical Method: SM 2320 B          | Anai          | lyst: JAG   |            |     |              |              |              |            |   |
| Alkalinity, Total as CaCO3            | 3/3/21 11:10  | 3/3/21 12:0 | 9 1        |     | 288          | mg/L         |              | 0.1        |   |
| Analytical Method: SM 2540C           |               | lyst: TJW   | •          |     |              | Ü            |              |            |   |
| * Solids, Dissolved                   | 3/1/21 16:45  | 3/3/21 09:0 | 0 1        |     | 3740         | mg/L         |              | 166.7      |   |
| 2 30, 2                               | 3/1/21 10.43  | J/J/21 UJ.U |            |     | 37 70        | 9/ =         |              | .00.7      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

#### Certificate Of Analysis



Description: Gorgas Landfill - MW-5

**Location Code:** 

Submittal Date:

**WMWGORLF** 

Collected:

**Customer ID:** 

2/23/21 11:58

2/25/21 09:38

| Laboratory ID Number: BB04150         |               |              |             |         |       |       |     |    |
|---------------------------------------|---------------|--------------|-------------|---------|-------|-------|-----|----|
| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results | Units | MDL   | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |             |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 11:10  | 3/3/21 12:09 | 1           | 288     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 11:10  | 3/3/21 12:09 | 1           | 0.12    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |             |         |       |       |     |    |
| * Chloride                            | 2/25/21 11:42 | 2/25/21 11:4 | 2 1         | 6.19    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |             |         |       |       |     |    |
| * Fluoride                            | 2/25/21 16:14 | 2/25/21 16:1 | 4 1         | 0.287   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |             |         |       |       |     |    |
| * Sulfate                             | 2/26/21 12:40 | 2/26/21 12:4 | 0 100       | 2210    | mg/L  | 50.00 | 100 |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD    |             |         |       |       |     |    |
| Conductivity                          | 2/23/21 11:54 | 2/23/21 11:5 | 4           | 3701.43 | uS/cm |       |     | FA |
| рН                                    | 2/23/21 11:54 | 2/23/21 11:5 | 4           | 6.47    | SU    |       |     | FA |
| Temperature                           | 2/23/21 11:54 | 2/23/21 11:5 | 4           | 19.94   | С     |       |     | FA |
| Turbidity                             | 2/23/21 11:54 | 2/23/21 11:5 | 4           | 2.58    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 2/23/21 11:58

Customer ID:

**Delivery Date:** 2/25/21 09:38

Description: Gorgas Landfill - MW-5

Laboratory ID Number: BB04150

|         |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| 3B04156 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 333     | 332     | 5.12     | 4.25 to 5.75       | 107  | 70.0 to 130 | 0.401 | 20.0          |
| 3B04156 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.103   | 0.107   | 0.104    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 3.81  | 20.0          |
| 3B04156 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.0996  | 0.101   | 0.0987   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 1.40  | 20.0          |
| 3B04156 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0980  | 0.0989  | 0.0942   | 0.0850 to 0.115    | 98.0 | 70.0 to 130 | 0.914 | 20.0          |
| 3B04156 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0950  | 0.0964  | 0.0951   | 0.0850 to 0.115    | 95.0 | 70.0 to 130 | 1.46  | 20.0          |
| 3B04156 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 2.16    | 2.19    | 0.0992   | 0.0850 to 0.115    | 40.0 | 70.0 to 130 | 1.38  | 20.0          |
| 3B04156 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 36.7    | 36.2    | 5.15     | 4.25 to 5.75       | 109  | 70.0 to 130 | 1.24  | 20.0          |
| 3B04156 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0973  | 0.0969  | 0.0984   | 0.0850 to 0.115    | 97.3 | 70.0 to 130 | 0.412 | 20.0          |
| 3B04156 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.138   | 0.137   | 0.102    | 0.0850 to 0.115    | 100  | 70.0 to 130 | 0.727 | 20.0          |
| 3B04156 | Iron, Dissolved        | mg/L  | 0.000207   | 0.0176   | 0.2   | 1.85    | 1.86    | 0.205    | 0.170 to 0.230     | 80.0 | 70.0 to 130 | 0.539 | 20.0          |
| 3B04156 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 2.62    | 2.61    | 0.209    | 0.170 to 0.230     | 90.0 | 70.0 to 130 | 0.382 | 20.0          |
| 3B04156 | Mercury, Total by CVAA | mg/L  | 0.0000917  | 0.000500 | 0.004 | 0.00422 | 0.00461 | 0.00412  | 0.00340 to 0.00460 | 106  | 70.0 to 130 | 8.83  | 20.0          |
| 3B04156 | Manganese, Dissolved   | mg/L  | 0.0000065  | 0.000147 | 0.10  | 2.14    | 2.13    | 0.0997   | 0.0850 to 0.115    | 40.0 | 70.0 to 130 | 0.468 | 20.0          |
| 3B04156 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0955  | 0.0941  | 0.0942   | 0.0850 to 0.115    | 95.5 | 70.0 to 130 | 1.48  | 20.0          |
| 3B04156 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.09    | 1.09    | 1.03     | 0.850 to 1.15      | 105  | 70.0 to 130 | 0.00  | 20.0          |
| 3B04156 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0994  | 0.0988  | 0.0985   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 0.605 | 20.0          |
| 3B04156 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.366   | 0.362   | 0.207    | 0.170 to 0.230     | 145  | 70.0 to 130 | 1.10  | 20.0          |
| 3B04156 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 351     | 349     | 5.15     | 4.25 to 5.75       | 145  | 70.0 to 130 | 0.640 | 20.0          |
| 3B04156 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.102   | 0.103   | 0.102    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.976 | 20.0          |
| 3B04156 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.112   | 0.113   | 0.0999   | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.889 | 20.0          |
| 3B04156 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 16.4    | 16.5    | 10.3     | 8.50 to 11.5       | 103  | 70.0 to 130 | 0.608 | 20.0          |
| 3B04156 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0970  | 0.0974  | 0.0981   | 0.0850 to 0.115    | 97.0 | 70.0 to 130 | 0.412 | 20.0          |

### **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

2/23/21 11:58

Customer ID:

**Delivery Date:** 

2/25/21 09:38

Description: Gorgas Landfill - MW-5

Laboratory ID Number: BB04150

|   |         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| ı | BB04157 | Sulfate                    | mg/L  | -0.276  | 0.500  | 20.0  | 19.1 | -0.324    | 19.0     | 18.0 to 22.0 | 95.5 | 80.0 to 120 | 0.00  | 20.0          |
| ı | BB04155 | Solids, Dissolved          | mg/L  | 2.00    | 25.0   |       |      | 3120      | 50.0     | 40.0 to 60.0 |      |             | 0.808 | 5.00          |
| 1 | BB04157 | Chloride                   | mg/L  | -0.0488 | 0.500  | 10.0  | 10.3 | 0.135     | 10.1     | 9.00 to 11.0 | 103  | 80.0 to 120 | 0.00  | 20.0          |
| ı | BB04156 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 224       | 52.0     | 45.0 to 55.0 |      |             | 2.21  | 10.0          |
| ı | BB04157 | Fluoride                   | mg/L  | 0.0213  | 0.0500 | 2.50  | 2.51 | 0.0138    | 2.63     | 2.25 to 2.75 | 100  | 80.0 to 120 | 0.00  | 20.0          |
|   |         |                            |       |         |        |       |      |           |          |              |      |             |       |               |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 3/30/21

Reported: 3/31/2021 Version: 3.2 COA\_CCR

# Certificate Of Analysis



Description: Gorgas Landfill - MW-10Location Code:WMWGORLFCollected:2/23/21 13:40

Customer ID:

**Submittal Date:** 2/25/21 09:38

Laboratory ID Number: BB04151

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units      | MDL      | RL         | Q |
|------------------------------|---------------|--------------|-------------|--------------|------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Analy         | yst: RDA     |             | Preparati    | on Method: | EPA 1638 |            |   |
| * Boron, Total               | 3/16/21 09:07 | 3/17/21 10:4 | 4 1.015     | 0.205        | mg/L       | 0.030000 | 0.1015     |   |
| * Calcium, Total             | 3/16/21 09:07 | 3/19/21 11:1 | 7 20.3      | 151          | mg/L       | 1.4007   | 8.12       |   |
| * Iron, Total                | 3/16/21 09:07 | 3/19/21 11:1 | 7 20.3      | 11.3         | mg/L       | 0.1624   | 0.812      |   |
| * Lithium, Total             | 3/16/21 09:07 | 3/17/21 10:4 | 4 1.015     | 0.223        | mg/L       | 0.007105 | 0.01999956 | ô |
| * Magnesium, Total           | 3/16/21 09:07 | 3/19/21 11:1 | 7 20.3      | 74.0         | mg/L       | 0.4263   | 8.12       |   |
| * Sodium, Total              | 3/16/21 09:07 | 3/19/21 11:1 | 7 20.3      | 66.5         | mg/L       | 0.406    | 8.12       |   |
| Analytical Method: EPA 200.7 | Analy         | yst: RDA     |             |              |            |          |            |   |
| * Iron, Dissolved            | 3/11/21 11:00 | 3/12/21 13:2 | 5 10.15     | 14.5         | mg/L       | 0.08120  | 0.406      |   |
| Analytical Method: EPA 200.8 | Analy         | yst: DLJ     |             | Preparati    | on Method: | EPA 1638 |            |   |
| * Antimony, Total            | 2/26/21 06:45 | 2/26/21 13:0 | 5 1.015     | Not Detected | mg/L       | 0.000507 | 0.001015   | U |
| * Arsenic, Total             | 2/26/21 06:45 | 2/26/21 13:0 | 5 1.015     | 0.00160      | mg/L       | 0.000068 | 0.000203   |   |
| * Barium, Total              | 2/26/21 06:45 | 2/26/21 13:0 | 5 1.015     | 0.0201       | mg/L       | 0.000101 | 0.000203   |   |
| * Beryllium, Total           | 2/26/21 06:45 | 2/26/21 13:0 | 5 1.015     | 0.00128      | mg/L       | 0.000406 | 0.001015   |   |
| * Cadmium, Total             | 2/26/21 06:45 | 2/26/21 13:0 | 5 1.015     | 0.000148     | mg/L       | 0.000068 | 0.000203   | J |
| * Chromium, Total            | 2/26/21 06:45 | 2/26/21 13:0 | 5 1.015     | Not Detected | mg/L       | 0.000203 | 0.001015   | U |
| * Cobalt, Total              | 2/26/21 06:45 | 2/26/21 13:0 | 5 1.015     | 0.0167       | mg/L       | 0.000068 | 0.000203   |   |
| * Lead, Total                | 2/26/21 06:45 | 2/26/21 13:0 | 5 1.015     | Not Detected | mg/L       | 0.000068 | 0.000203   | U |
| * Molybdenum, Total          | 2/26/21 06:45 | 2/26/21 13:0 | 5 1.015     | Not Detected | mg/L       | 0.000068 | 0.000203   | U |
| * Potassium, Total           | 2/26/21 06:45 | 2/26/21 13:0 | 5 1.015     | 5.92         | mg/L       | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 2/26/21 06:45 | 2/26/21 18:2 | 1 5.075     | 1.47         | mg/L       | 0.000340 | 0.001015   |   |
| * Selenium, Total            | 2/26/21 06:45 | 2/26/21 13:0 | 5 1.015     | 0.00217      | mg/L       | 0.000507 | 0.001015   |   |
| * Thallium, Total            | 2/26/21 06:45 | 2/26/21 13:0 | 5 1.015     | Not Detected | mg/L       | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Analy         | yst: DLJ     |             |              |            |          |            |   |
| * Manganese, Dissolved       | 2/26/21 08:46 | 2/26/21 17:1 | 0 5.075     | 1.81         | mg/L       | 0.000340 | 0.001015   |   |
| Analytical Method: EPA 245.1 | Analy         | yst: ABB     |             |              |            |          |            |   |
| * Mercury, Total by CVAA     | 3/8/21 11:16  | 3/9/21 13:11 | 1           | Not Detected | mg/L       | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B | Analy         | yst: JAG     |             |              |            |          |            |   |
| Alkalinity, Total as CaCO3   | 3/3/21 11:10  |              | 1           | 134          | mg/L       |          | 0.1        |   |
| Analytical Method: SM 2540C  |               | yst: TJW     |             |              | -          |          |            |   |
| * Solids, Dissolved          | 3/1/21 16:45  | 3/3/21 09:00 | 1           | 1110         | mg/L       |          | 83.3       |   |

MDL's and RL's are adjusted for sample dilution, as applicable

# Certificate Of Analysis



Description: Gorgas Landfill - MW-10

Laboratory ID Number: BB04151

**Location Code:** 

WMWGORLF

Collected:

**Customer ID:** 

2/23/21 13:40

Submittal Date:

2/25/21 09:38

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anal          | lyst: JAG    |          |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 11:10  | 3/3/21 12:09 | 1        | I  | 134     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 11:10  | 3/3/21 12:09 | 1        | I  | 0.03    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Anal          | lyst: JCC    |          |    |         |       |       |     |    |
| * Chloride                            | 2/25/21 11:43 | 2/25/21 11:4 | 3 1      | 1  | 3.63    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Anal          | lyst: JCC    |          |    |         |       |       |     |    |
| * Fluoride                            | 2/25/21 16:15 | 2/25/21 16:1 | 5 1      | 1  | 0.202   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Anal          | lyst: JCC    |          |    |         |       |       |     |    |
| * Sulfate                             | 2/26/21 12:41 | 2/26/21 12:4 | 1 4      | 10 | 747     | mg/L  | 20.00 | 40  |    |
| Analytical Method: Field Measurements | Anal          | lyst: TJD    |          |    |         |       |       |     |    |
| Conductivity                          | 2/23/21 13:37 | 2/23/21 13:3 | 7        |    | 1434.52 | uS/cm |       |     | FA |
| рН                                    | 2/23/21 13:37 | 2/23/21 13:3 | 7        |    | 6.45    | SU    |       |     | FA |
| Temperature                           | 2/23/21 13:37 | 2/23/21 13:3 | 7        |    | 19.52   | С     |       |     | FA |
| Turbidity                             | 2/23/21 13:37 | 2/23/21 13:3 | 7        |    | 6.45    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 2/23/21 13:40

Customer ID:

**Delivery Date:** 2/25/21 09:38

Description: Gorgas Landfill - MW-10

Laboratory ID Number: BB04151

|         |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB04156 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 333     | 332     | 5.12     | 4.25 to 5.75       | 107  | 70.0 to 130 | 0.401 | 20.0          |
| 3B04156 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0980  | 0.0989  | 0.0942   | 0.0850 to 0.115    | 98.0 | 70.0 to 130 | 0.914 | 20.0          |
| 3B04156 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0950  | 0.0964  | 0.0951   | 0.0850 to 0.115    | 95.0 | 70.0 to 130 | 1.46  | 20.0          |
| 3B04156 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 2.16    | 2.19    | 0.0992   | 0.0850 to 0.115    | 40.0 | 70.0 to 130 | 1.38  | 20.0          |
| 3B04156 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 36.7    | 36.2    | 5.15     | 4.25 to 5.75       | 109  | 70.0 to 130 | 1.24  | 20.0          |
| BB04156 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.103   | 0.107   | 0.104    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 3.81  | 20.0          |
| 3B04156 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.0996  | 0.101   | 0.0987   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 1.40  | 20.0          |
| 3B04156 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0973  | 0.0969  | 0.0984   | 0.0850 to 0.115    | 97.3 | 70.0 to 130 | 0.412 | 20.0          |
| 3B04156 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.138   | 0.137   | 0.102    | 0.0850 to 0.115    | 100  | 70.0 to 130 | 0.727 | 20.0          |
| 3B04156 | Iron, Dissolved        | mg/L  | 0.000207   | 0.0176   | 0.2   | 1.85    | 1.86    | 0.205    | 0.170 to 0.230     | 80.0 | 70.0 to 130 | 0.539 | 20.0          |
| 3B04156 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 2.62    | 2.61    | 0.209    | 0.170 to 0.230     | 90.0 | 70.0 to 130 | 0.382 | 20.0          |
| 3B04156 | Mercury, Total by CVAA | mg/L  | 0.0000917  | 0.000500 | 0.004 | 0.00422 | 0.00461 | 0.00412  | 0.00340 to 0.00460 | 106  | 70.0 to 130 | 8.83  | 20.0          |
| 3B04156 | Manganese, Dissolved   | mg/L  | 0.0000065  | 0.000147 | 0.10  | 2.14    | 2.13    | 0.0997   | 0.0850 to 0.115    | 40.0 | 70.0 to 130 | 0.468 | 20.0          |
| 3B04156 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.112   | 0.113   | 0.0999   | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.889 | 20.0          |
| 3B04156 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 16.4    | 16.5    | 10.3     | 8.50 to 11.5       | 103  | 70.0 to 130 | 0.608 | 20.0          |
| 3B04156 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0970  | 0.0974  | 0.0981   | 0.0850 to 0.115    | 97.0 | 70.0 to 130 | 0.412 | 20.0          |
| 3B04156 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0955  | 0.0941  | 0.0942   | 0.0850 to 0.115    | 95.5 | 70.0 to 130 | 1.48  | 20.0          |
| 3B04156 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.09    | 1.09    | 1.03     | 0.850 to 1.15      | 105  | 70.0 to 130 | 0.00  | 20.0          |
| 3B04156 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0994  | 0.0988  | 0.0985   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 0.605 | 20.0          |
| 3B04156 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.366   | 0.362   | 0.207    | 0.170 to 0.230     | 145  | 70.0 to 130 | 1.10  | 20.0          |
| 3B04156 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 351     | 349     | 5.15     | 4.25 to 5.75       | 145  | 70.0 to 130 | 0.640 | 20.0          |
| 3B04156 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.102   | 0.103   | 0.102    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.976 | 20.0          |

# **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

2/23/21 13:40

**Customer ID:** 

**Delivery Date:** 

2/25/21 09:38

Description: Gorgas Landfill - MW-10

Laboratory ID Number: BB04151

|   |         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| ı | BB04157 | Sulfate                    | mg/L  | -0.276  | 0.500  | 20.0  | 19.1 | -0.324    | 19.0     | 18.0 to 22.0 | 95.5 | 80.0 to 120 | 0.00  | 20.0          |
| ı | BB04156 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 224       | 52.0     | 45.0 to 55.0 |      |             | 2.21  | 10.0          |
| ı | BB04157 | Fluoride                   | mg/L  | 0.0213  | 0.0500 | 2.50  | 2.51 | 0.0138    | 2.63     | 2.25 to 2.75 | 100  | 80.0 to 120 | 0.00  | 20.0          |
| ı | BB04155 | Solids, Dissolved          | mg/L  | 2.00    | 25.0   |       |      | 3120      | 50.0     | 40.0 to 60.0 |      |             | 0.808 | 5.00          |
| ı | BB04157 | Chloride                   | mg/L  | -0.0488 | 0.500  | 10.0  | 10.3 | 0.135     | 10.1     | 9.00 to 11.0 | 103  | 80.0 to 120 | 0.00  | 20.0          |
|   |         |                            |       |         |        |       |      |           |          |              |      |             |       |               |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 3/30/21

Reported: 3/31/2021 Version: 3.2 COA\_CCR

# Certificate Of Analysis



Description: Gorgas Landfill - MW-20Location Code:WMWGORLFCollected:2/23/21 14:50

Customer ID:

**Submittal Date:** 2/25/21 09:38

| Lal | oratory ID Number: BB041 | 52 |
|-----|--------------------------|----|
| N   | ame                      |    |

| Name                         | Prepared      | Analyzed    | Vio Spec | DF    | Results      | Units         | MDL      | RL         | Q |
|------------------------------|---------------|-------------|----------|-------|--------------|---------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Ana           | lyst: RDA   |          |       | Preparati    | on Method: EP | A 1638   |            |   |
| * Boron, Total               | 3/16/21 09:07 | 3/17/21 10  | :47      | 1.015 | 0.110        | mg/L          | 0.030000 | 0.1015     |   |
| * Calcium, Total             | 3/16/21 09:07 | 3/19/21 11  | :21      | 20.3  | 343          | mg/L          | 1.4007   | 8.12       |   |
| * Iron, Total                | 3/16/21 09:07 | 3/19/21 11  | :21      | 20.3  | 6.76         | mg/L          | 0.1624   | 0.812      |   |
| * Lithium, Total             | 3/16/21 09:07 | 3/17/21 10  | :47      | 1.015 | 0.270        | mg/L          | 0.007105 | 0.01999956 |   |
| * Magnesium, Total           | 3/16/21 09:07 | 3/19/21 11  | :21      | 20.3  | 183          | mg/L          | 0.4263   | 8.12       |   |
| * Sodium, Total              | 3/16/21 09:07 | 3/19/21 11  | :21      | 20.3  | 137          | mg/L          | 0.406    | 8.12       |   |
| Analytical Method: EPA 200.7 | Ana           | lyst: RDA   |          |       |              |               |          |            |   |
| * Iron, Dissolved            | 3/11/21 11:00 | 3/12/21 13  | :29      | 10.15 | 6.75         | mg/L          | 0.08120  | 0.406      |   |
| Analytical Method: EPA 200.8 | Ana           | lyst: DLJ   |          |       | Preparati    | on Method: EP | A 1638   |            |   |
| * Antimony, Total            | 2/26/21 06:45 | 2/26/21 13  | :08      | 1.015 | Not Detected | mg/L          | 0.000507 | 0.001015   | U |
| * Arsenic, Total             | 2/26/21 06:45 | 2/26/21 13  | :08      | 1.015 | 0.000849     | mg/L          | 0.000068 | 0.000203   |   |
| * Barium, Total              | 2/26/21 06:45 | 2/26/21 13  | :08      | 1.015 | 0.0167       | mg/L          | 0.000101 | 0.000203   |   |
| * Beryllium, Total           | 2/26/21 06:45 | 2/26/21 13  | :08      | 1.015 | Not Detected | mg/L          | 0.000406 | 0.001015   | U |
| * Cadmium, Total             | 2/26/21 06:45 | 2/26/21 13  | :08      | 1.015 | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Chromium, Total            | 2/26/21 06:45 | 2/26/21 13  | :08      | 1.015 | Not Detected | mg/L          | 0.000203 | 0.001015   | U |
| * Cobalt, Total              | 2/26/21 06:45 | 2/26/21 13  | :08      | 1.015 | 0.000234     | mg/L          | 0.000068 | 0.000203   |   |
| * Lead, Total                | 2/26/21 06:45 | 2/26/21 13  | :08      | 1.015 | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Molybdenum, Total          | 2/26/21 06:45 | 2/26/21 13  | :08      | 1.015 | 0.00108      | mg/L          | 0.000068 | 0.000203   |   |
| * Potassium, Total           | 2/26/21 06:45 | 2/26/21 13  | :08      | 1.015 | 6.09         | mg/L          | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 2/26/21 06:45 | 2/26/21 13  | :08      | 1.015 | 1.12         | mg/L          | 0.000068 | 0.000203   |   |
| * Selenium, Total            | 2/26/21 06:45 | 2/26/21 13  | :08      | 1.015 | Not Detected | mg/L          | 0.000507 | 0.001015   | U |
| * Thallium, Total            | 2/26/21 06:45 | 2/26/21 13  | :08      | 1.015 | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Ana           | lyst: DLJ   |          |       |              |               |          |            |   |
| * Manganese, Dissolved       | 2/26/21 08:46 | 2/26/21 11  | :18      | 1.015 | 1.12         | mg/L          | 0.000068 | 0.000203   |   |
| Analytical Method: EPA 245.1 | Ana           | yst: ABB    |          |       |              |               |          |            |   |
| * Mercury, Total by CVAA     | 3/8/21 11:16  | 3/9/21 13:1 | 13       | 1     | Not Detected | mg/L          | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B | Ana           | lyst: JAG   |          |       |              |               |          |            |   |
| Alkalinity, Total as CaCO3   | 3/3/21 11:10  | 3/3/21 12:0 | )9       | 1     | 343          | mg/L          |          | 0.1        |   |
| Analytical Method: SM 2540C  |               | lyst: TJW   |          |       |              | -             |          |            |   |
| * Solids, Dissolved          | 3/1/21 16:45  | 3/3/21 09:0 | 00       | 1     | 2460         | mg/L          |          | 166.7      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

### Certificate Of Analysis



Description: Gorgas Landfill - MW-20

Location Code:

WMWGORLF

Collected:

2/23/21 14:50

Customer ID: Submittal Date:

2/25/21 09:38

| Laboratory ID Number: BB04152         |               |               |             | Subn    | ilitiai Date: | 2/25/21 09 | .30 |    |
|---------------------------------------|---------------|---------------|-------------|---------|---------------|------------|-----|----|
| Name                                  | Prepared      | Analyzed      | Vio Spec DF | Results | Units         | MDL        | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG     |             |         |               |            |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 11:10  | 3/3/21 12:09  | 1           | 343     | mg/L          |            |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 11:10  | 3/3/21 12:09  | 1           | 0.24    | mg/L          |            |     |    |
| Analytical Method: SM4500CI E         | Ana           | lyst: JCC     |             |         |               |            |     |    |
| * Chloride                            | 2/25/21 11:50 | 2/25/21 11:50 | 0 10        | 129     | mg/L          | 5.00       | 10  |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC     |             |         |               |            |     |    |
| * Fluoride                            | 2/25/21 16:16 | 2/25/21 16:16 | 6 1         | 0.117   | mg/L          | 0.06       | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC     |             |         |               |            |     |    |
| * Sulfate                             | 2/26/21 12:42 | 2/26/21 12:42 | 2 50        | 1420    | mg/L          | 25.00      | 50  |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD     |             |         |               |            |     |    |
| Conductivity                          | 2/23/21 14:46 | 2/23/21 14:40 | 6           | 2908.99 | uS/cm         |            |     | FA |
| рН                                    | 2/23/21 14:46 | 2/23/21 14:40 | 6           | 6.75    | SU            |            |     | FA |
| Temperature                           | 2/23/21 14:46 | 2/23/21 14:40 | 6           | 19.18   | С             |            |     | FA |
| Turbidity                             | 2/23/21 14:46 | 2/23/21 14:40 | 6           | 0.7     | NTU           |            |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 2/23/21 14:50

Customer ID:

ustomer iD:

**Delivery Date:** 2/25/21 09:38

Description: Gorgas Landfill - MW-20

Laboratory ID Number: BB04152

| <u></u> |                        |       |            | MB       |       |         | ·       |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB04156 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 333     | 332     | 5.12     | 4.25 to 5.75       | 107  | 70.0 to 130 | 0.401 | 20.0          |
| 3B04156 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.103   | 0.107   | 0.104    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 3.81  | 20.0          |
| 3B04156 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.0996  | 0.101   | 0.0987   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 1.40  | 20.0          |
| 3B04156 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.112   | 0.113   | 0.0999   | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.889 | 20.0          |
| 3B04156 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 16.4    | 16.5    | 10.3     | 8.50 to 11.5       | 103  | 70.0 to 130 | 0.608 | 20.0          |
| BB04156 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0970  | 0.0974  | 0.0981   | 0.0850 to 0.115    | 97.0 | 70.0 to 130 | 0.412 | 20.0          |
| 3B04156 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0973  | 0.0969  | 0.0984   | 0.0850 to 0.115    | 97.3 | 70.0 to 130 | 0.412 | 20.0          |
| 3B04156 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.138   | 0.137   | 0.102    | 0.0850 to 0.115    | 100  | 70.0 to 130 | 0.727 | 20.0          |
| 3B04156 | Iron, Dissolved        | mg/L  | 0.000207   | 0.0176   | 0.2   | 1.85    | 1.86    | 0.205    | 0.170 to 0.230     | 80.0 | 70.0 to 130 | 0.539 | 20.0          |
| 3B04156 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 2.62    | 2.61    | 0.209    | 0.170 to 0.230     | 90.0 | 70.0 to 130 | 0.382 | 20.0          |
| 3B04156 | Mercury, Total by CVAA | mg/L  | 0.0000917  | 0.000500 | 0.004 | 0.00422 | 0.00461 | 0.00412  | 0.00340 to 0.00460 | 106  | 70.0 to 130 | 8.83  | 20.0          |
| 3B04156 | Manganese, Dissolved   | mg/L  | 0.0000065  | 0.000147 | 0.10  | 2.14    | 2.13    | 0.0997   | 0.0850 to 0.115    | 40.0 | 70.0 to 130 | 0.468 | 20.0          |
| 3B04156 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0980  | 0.0989  | 0.0942   | 0.0850 to 0.115    | 98.0 | 70.0 to 130 | 0.914 | 20.0          |
| 3B04156 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0950  | 0.0964  | 0.0951   | 0.0850 to 0.115    | 95.0 | 70.0 to 130 | 1.46  | 20.0          |
| 3B04156 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0955  | 0.0941  | 0.0942   | 0.0850 to 0.115    | 95.5 | 70.0 to 130 | 1.48  | 20.0          |
| 3B04156 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.09    | 1.09    | 1.03     | 0.850 to 1.15      | 105  | 70.0 to 130 | 0.00  | 20.0          |
| 3B04156 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0994  | 0.0988  | 0.0985   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 0.605 | 20.0          |
| 3B04156 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.366   | 0.362   | 0.207    | 0.170 to 0.230     | 145  | 70.0 to 130 | 1.10  | 20.0          |
| 3B04156 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 351     | 349     | 5.15     | 4.25 to 5.75       | 145  | 70.0 to 130 | 0.640 | 20.0          |
| 3B04156 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.102   | 0.103   | 0.102    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.976 | 20.0          |
| 3B04156 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 2.16    | 2.19    | 0.0992   | 0.0850 to 0.115    | 40.0 | 70.0 to 130 | 1.38  | 20.0          |
| 3B04156 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 36.7    | 36.2    | 5.15     | 4.25 to 5.75       | 109  | 70.0 to 130 | 1.24  | 20.0          |

# **Batch QC Summary**



Customer Account: WMWGORLF

**Sample Date:** 2/23/21 14:50

**Customer ID:** 

**Delivery Date:** 2/25/21 09:38

Description: Gorgas Landfill - MW-20

Laboratory ID Number: BB04152

|   |         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| ı | BB04157 | Sulfate                    | mg/L  | -0.276  | 0.500  | 20.0  | 19.1 | -0.324    | 19.0     | 18.0 to 22.0 | 95.5 | 80.0 to 120 | 0.00  | 20.0          |
| ı | BB04156 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 224       | 52.0     | 45.0 to 55.0 |      |             | 2.21  | 10.0          |
| ı | BB04157 | Fluoride                   | mg/L  | 0.0213  | 0.0500 | 2.50  | 2.51 | 0.0138    | 2.63     | 2.25 to 2.75 | 100  | 80.0 to 120 | 0.00  | 20.0          |
| ı | BB04155 | Solids, Dissolved          | mg/L  | 2.00    | 25.0   |       |      | 3120      | 50.0     | 40.0 to 60.0 |      |             | 0.808 | 5.00          |
| ı | BB04157 | Chloride                   | mg/L  | -0.0488 | 0.500  | 10.0  | 10.3 | 0.135     | 10.1     | 9.00 to 11.0 | 103  | 80.0 to 120 | 0.00  | 20.0          |
|   |         |                            |       |         |        |       |      |           |          |              |      |             |       |               |

# **Certificate Of Analysis**



Description: Gorgas Landfill Field Blank-2Location Code:WMWGORLFFBCollected:2/23/21 15:10

Customer ID:

Laboratory ID Number: BB04153 Submittal Date: 2/25/21 09:38

| Name                                | Prepared      | Analyzed     | Vio Spec D | )F  | Results      | Units          | MDL      | RL         | Q |
|-------------------------------------|---------------|--------------|------------|-----|--------------|----------------|----------|------------|---|
| Analytical Method: EPA 200.7        | Anal          | yst: RDA     |            |     | Preparati    | on Method: EPA | 1638     |            |   |
| * Boron, Total                      | 3/16/21 09:07 | 3/17/21 10:5 | 50 1.0     | 015 | Not Detected | mg/L           | 0.030000 | 0.1015     | U |
| * Calcium, Total                    | 3/16/21 09:07 | 3/17/21 10:5 | 50 1.0     | 015 | Not Detected | mg/L           | 0.070035 | 0.406      | U |
| * Iron, Total                       | 3/16/21 09:07 | 3/17/21 10:5 | 50 1.0     | 015 | Not Detected | mg/L           | 0.008120 | 0.0406     | U |
| * Lithium, Total                    | 3/16/21 09:07 | 3/17/21 10:5 | 50 1.0     | 015 | Not Detected | mg/L           | 0.007105 | 0.01999956 | U |
| * Magnesium, Total                  | 3/16/21 09:07 | 3/17/21 10:5 | 50 1.0     | 015 | Not Detected | mg/L           | 0.021315 | 0.406      | U |
| * Sodium, Total                     | 3/16/21 09:07 | 3/17/21 10:5 | 50 1.0     | 015 | Not Detected | mg/L           | 0.02030  | 0.406      | U |
| Analytical Method: EPA 200.8        | Anal          | yst: DLJ     |            |     | Preparati    | on Method: EPA | 1638     |            |   |
| * Antimony, Total                   | 2/26/21 06:45 | 2/26/21 13:1 | 1.0        | 015 | Not Detected | mg/L           | 0.000507 | 0.001015   | U |
| * Arsenic, Total                    | 2/26/21 06:45 | 2/26/21 13:1 | 1.0        | 015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Barium, Total                     | 2/26/21 06:45 | 2/26/21 13:1 | 1.0        | 015 | Not Detected | mg/L           | 0.000101 | 0.000203   | U |
| * Beryllium, Total                  | 2/26/21 06:45 | 2/26/21 13:1 | 1.0        | 015 | Not Detected | mg/L           | 0.000406 | 0.001015   | U |
| * Cadmium, Total                    | 2/26/21 06:45 | 2/26/21 13:1 | 1.0        | 015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Chromium, Total                   | 2/26/21 06:45 | 2/26/21 13:1 | 12 1.0     | 015 | Not Detected | mg/L           | 0.000203 | 0.001015   | U |
| * Cobalt, Total                     | 2/26/21 06:45 | 2/26/21 13:1 | 12 1.0     | 015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Lead, Total                       | 2/26/21 06:45 | 2/26/21 13:1 | 12 1.0     | 015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Molybdenum, Total                 | 2/26/21 06:45 | 2/26/21 13:1 | 1.0        | 015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Manganese, Total                  | 2/26/21 06:45 | 2/26/21 13:1 | 1.0        | 015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Potassium, Total                  | 2/26/21 06:45 | 2/26/21 13:1 | 1.0        | 015 | Not Detected | mg/L           | 0.169505 | 0.5075     | U |
| * Selenium, Total                   | 2/26/21 06:45 | 2/26/21 13:1 | 1.0        | 015 | Not Detected | mg/L           | 0.000507 | 0.001015   | U |
| * Thallium, Total                   | 2/26/21 06:45 | 2/26/21 13:1 | 1.0        | 015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 245.1        | Anal          | yst: ABB     |            |     |              |                |          |            |   |
| * Mercury, Total by CVAA            | 3/8/21 11:16  | 3/9/21 13:16 | 5 1        |     | Not Detected | mg/L           | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2540C         | Anal          | yst: TJW     |            |     |              |                |          |            |   |
| * Solids, Dissolved                 | 3/1/21 16:45  | 3/3/21 09:00 | ) 1        |     | Not Detected | mg/L           |          | 25         | U |
| Analytical Method: SM4500Cl E       | Anal          | yst: JCC     |            |     |              |                |          |            |   |
| * Chloride                          | 2/25/21 11:45 | 2/25/21 11:4 | 15 1       |     | Not Detected | mg/L           | 0.50     | 1          | U |
| Analytical Method: SM4500F G 2017   | Anal          | yst: JCC     |            |     |              |                |          |            |   |
| * Fluoride                          | 2/25/21 16:18 | 2/25/21 16:1 | 18 1       |     | Not Detected | mg/L           | 0.06     | 0.1        | U |
| Analytical Method: SM4500SO4 E 2011 | Anal          | yst: JCC     |            |     |              |                |          |            |   |
| * Sulfate                           | 2/26/21 12:43 |              | 13 1       |     | Not Detected | mg/L           | 0.50     | 1          | U |

MDL's and RL's are adjusted for sample dilution, as applicable

# **Batch QC Summary**



Customer Account: WMWGORLFFB

**Sample Date:** 2/23/21 15:10

**Customer ID:** 

**Delivery Date:** 2/25/21 09:38

Description: Gorgas Landfill Field Blank-2

Laboratory ID Number: BB04153

|         |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB04156 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 333     | 332     | 5.12     | 4.25 to 5.75       | 107  | 70.0 to 130 | 0.401 | 20.0          |
| BB04156 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0980  | 0.0989  | 0.0942   | 0.0850 to 0.115    | 98.0 | 70.0 to 130 | 0.914 | 20.0          |
| BB04156 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0950  | 0.0964  | 0.0951   | 0.0850 to 0.115    | 95.0 | 70.0 to 130 | 1.46  | 20.0          |
| BB04156 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 2.16    | 2.19    | 0.0992   | 0.0850 to 0.115    | 40.0 | 70.0 to 130 | 1.38  | 20.0          |
| BB04156 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 36.7    | 36.2    | 5.15     | 4.25 to 5.75       | 109  | 70.0 to 130 | 1.24  | 20.0          |
| BB04156 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0973  | 0.0969  | 0.0984   | 0.0850 to 0.115    | 97.3 | 70.0 to 130 | 0.412 | 20.0          |
| BB04156 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.138   | 0.137   | 0.102    | 0.0850 to 0.115    | 100  | 70.0 to 130 | 0.727 | 20.0          |
| BB04156 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 2.62    | 2.61    | 0.209    | 0.170 to 0.230     | 90.0 | 70.0 to 130 | 0.382 | 20.0          |
| BB04156 | Mercury, Total by CVAA | mg/L  | 0.0000917  | 0.000500 | 0.004 | 0.00422 | 0.00461 | 0.00412  | 0.00340 to 0.00460 | 106  | 70.0 to 130 | 8.83  | 20.0          |
| BB04156 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.103   | 0.107   | 0.104    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 3.81  | 20.0          |
| BB04156 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.0996  | 0.101   | 0.0987   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 1.40  | 20.0          |
| BB04156 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.112   | 0.113   | 0.0999   | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.889 | 20.0          |
| BB04156 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 16.4    | 16.5    | 10.3     | 8.50 to 11.5       | 103  | 70.0 to 130 | 0.608 | 20.0          |
| BB04156 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0970  | 0.0974  | 0.0981   | 0.0850 to 0.115    | 97.0 | 70.0 to 130 | 0.412 | 20.0          |
| BB04156 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0955  | 0.0941  | 0.0942   | 0.0850 to 0.115    | 95.5 | 70.0 to 130 | 1.48  | 20.0          |
| BB04156 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.09    | 1.09    | 1.03     | 0.850 to 1.15      | 105  | 70.0 to 130 | 0.00  | 20.0          |
| BB04156 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0994  | 0.0988  | 0.0985   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 0.605 | 20.0          |
| BB04156 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.366   | 0.362   | 0.207    | 0.170 to 0.230     | 145  | 70.0 to 130 | 1.10  | 20.0          |
| BB04156 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 351     | 349     | 5.15     | 4.25 to 5.75       | 145  | 70.0 to 130 | 0.640 | 20.0          |
| BB04156 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.102   | 0.103   | 0.102    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.976 | 20.0          |

# **Batch QC Summary**



Customer Account: WMWGORLFFB

**Sample Date:** 2/23/21 15:10

**Customer ID:** 

**Delivery Date:** 2/25/21 09:38

Description: Gorgas Landfill Field Blank-2

Laboratory ID Number: BB04153

|         |                   |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|-------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis          | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB04157 | Sulfate           | mg/L  | -0.276  | 0.500  | 20.0  | 19.1 | -0.324    | 19.0     | 18.0 to 22.0 | 95.5 | 80.0 to 120 | 0.00  | 20.0          |
| BB04157 | Fluoride          | mg/L  | 0.0213  | 0.0500 | 2.50  | 2.51 | 0.0138    | 2.63     | 2.25 to 2.75 | 100  | 80.0 to 120 | 0.00  | 20.0          |
| BB04155 | Solids, Dissolved | mg/L  | 2.00    | 25.0   |       |      | 3120      | 50.0     | 40.0 to 60.0 |      |             | 0.808 | 5.00          |
| BB04157 | Chloride          | mg/L  | -0.0488 | 0.500  | 10.0  | 10.3 | 0.135     | 10.1     | 9.00 to 11.0 | 103  | 80.0 to 120 | 0.00  | 20.0          |

# Certificate Of Analysis



Description: Gorgas Landfill - MW-11Location Code:WMWGORLFCollected:2/24/21 10:13

Customer ID:

**Submittal Date:** 2/25/21 09:38

| Laboratory ID Number: BB04154 |               |             |          |       | Submit       | tal Date:    | 2/25/21 09:3 | 8          |   |
|-------------------------------|---------------|-------------|----------|-------|--------------|--------------|--------------|------------|---|
| Name                          | Prepared      | Analyzed    | Vio Spec | DF    | Results      | Units        | MDL          | RL         | Q |
| Analytical Method: EPA 200.7  | Ana           | lyst: RDA   |          |       | Preparati    | on Method: E | EPA 1638     |            |   |
| * Boron, Total                | 3/16/21 09:07 | 3/17/21 10  | :54      | 1.015 | 0.108        | mg/L         | 0.030000     | 0.1015     |   |
| * Calcium, Total              | 3/16/21 09:07 | 3/19/21 11  | :24      | 20.3  | 325          | mg/L         | 1.4007       | 8.12       |   |
| * Iron, Total                 | 3/16/21 09:07 | 3/19/21 11  | :24      | 20.3  | 4.42         | mg/L         | 0.1624       | 0.812      |   |
| * Lithium, Total              | 3/16/21 09:07 | 3/17/21 10  | :54      | 1.015 | 0.300        | mg/L         | 0.007105     | 0.01999956 | j |
| * Magnesium, Total            | 3/16/21 09:07 | 3/19/21 11  | :24      | 20.3  | 169          | mg/L         | 0.4263       | 8.12       |   |
| * Sodium, Total               | 3/16/21 09:07 | 3/19/21 11  | :24      | 20.3  | 139          | mg/L         | 0.406        | 8.12       |   |
| Analytical Method: EPA 200.7  | Ana           | lyst: RDA   |          |       |              |              |              |            |   |
| * Iron, Dissolved             | 3/11/21 11:00 | 3/12/21 13  | :32      | 10.15 | 4.39         | mg/L         | 0.08120      | 0.406      |   |
| Analytical Method: EPA 200.8  | Ana           | lyst: DLJ   |          |       | Preparati    | on Method: E | PA 1638      |            |   |
| * Antimony, Total             | 2/26/21 06:45 | 2/26/21 13  | :16      | 1.015 | Not Detected | mg/L         | 0.000507     | 0.001015   | U |
| * Arsenic, Total              | 2/26/21 06:45 | 2/26/21 13  | :16      | 1.015 | 0.000834     | mg/L         | 0.000068     | 0.000203   |   |
| * Barium, Total               | 2/26/21 06:45 | 2/26/21 13  | :16      | 1.015 | 0.0150       | mg/L         | 0.000101     | 0.000203   |   |
| * Beryllium, Total            | 2/26/21 06:45 | 2/26/21 13  | :16      | 1.015 | Not Detected | mg/L         | 0.000406     | 0.001015   | U |
| * Cadmium, Total              | 2/26/21 06:45 | 2/26/21 13  | :16      | 1.015 | Not Detected | mg/L         | 0.000068     | 0.000203   | U |
| * Chromium, Total             | 2/26/21 06:45 | 2/26/21 13  | :16      | 1.015 | Not Detected | mg/L         | 0.000203     | 0.001015   | U |
| * Cobalt, Total               | 2/26/21 06:45 | 2/26/21 13  | :16      | 1.015 | 0.000260     | mg/L         | 0.000068     | 0.000203   |   |
| * Lead, Total                 | 2/26/21 06:45 | 2/26/21 13  | :16      | 1.015 | Not Detected | mg/L         | 0.000068     | 0.000203   | U |
| * Molybdenum, Total           | 2/26/21 06:45 | 2/26/21 13  | :16      | 1.015 | 0.00148      | mg/L         | 0.000068     | 0.000203   |   |
| * Potassium, Total            | 2/26/21 06:45 | 2/26/21 13  | :16      | 1.015 | 6.40         | mg/L         | 0.169505     | 0.5075     |   |
| * Manganese, Total            | 2/26/21 06:45 | 2/26/21 13  | :16      | 1.015 | 1.23         | mg/L         | 0.000068     | 0.000203   |   |
| * Selenium, Total             | 2/26/21 06:45 | 2/26/21 13  | :16      | 1.015 | Not Detected | mg/L         | 0.000507     | 0.001015   | U |
| * Thallium, Total             | 2/26/21 06:45 | 2/26/21 13  | :16      | 1.015 | Not Detected | mg/L         | 0.000068     | 0.000203   | U |
| Analytical Method: EPA 200.8  | Ana           | lyst: DLJ   |          |       |              |              |              |            |   |
| * Manganese, Dissolved        | 2/26/21 08:46 | 2/26/21 11  | :21      | 1.015 | 1.22         | mg/L         | 0.000068     | 0.000203   |   |
| Analytical Method: EPA 245.1  | Ana           | yst: ABB    |          |       |              |              |              |            |   |
| * Mercury, Total by CVAA      | 3/8/21 11:16  | 3/9/21 13:1 | 18       | 1     | Not Detected | mg/L         | 0.0003       | 0.0005     | U |
| Analytical Method: SM 2320 B  | Ana           | lyst: JAG   |          |       |              |              |              |            |   |
| Alkalinity, Total as CaCO3    | 3/3/21 11:10  | 3/3/21 12:0 | 09       | 1     | 299          | mg/L         |              | 0.1        |   |
| Analytical Method: SM 2540C   | Ana           | lyst: TJW   |          |       |              |              |              |            |   |
| * Solids, Dissolved           | 3/1/21 16:45  | 3/3/21 09:0 | 00       | 1     | 2370         | mg/L         |              | 125        |   |

MDL's and RL's are adjusted for sample dilution, as applicable

# Certificate Of Analysis



**Description:** Gorgas Landfill - MW-11

Location Code:

WMWGORLF

Collected:

Customer ID:

2/24/21 10:13

Laboratory ID Number: BB04154

**Submittal Date:** 2/25/21 09:38

| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|-------------|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |             |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 11:10  | 3/3/21 12:09 | 1           | 299     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 11:10  | 3/3/21 12:09 | 1           | 0.20    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |             |         |       |       |     |    |
| * Chloride                            | 2/25/21 11:51 | 2/25/21 11:5 | 10          | 113     | mg/L  | 5.00  | 10  |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |             |         |       |       |     |    |
| * Fluoride                            | 2/25/21 16:19 | 2/25/21 16:1 | 9 1         | 0.107   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |             |         |       |       |     |    |
| * Sulfate                             | 2/26/21 12:45 | 2/26/21 12:4 | 5 50        | 1330    | mg/L  | 25.00 | 50  |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD    |             |         |       |       |     |    |
| Conductivity                          | 2/24/21 10:10 | 2/24/21 10:1 | 0           | 2839.08 | uS/cm |       |     | FA |
| рН                                    | 2/24/21 10:10 | 2/24/21 10:1 | 0           | 6.67    | SU    |       |     | FA |
| Temperature                           | 2/24/21 10:10 | 2/24/21 10:1 | 0           | 18.25   | С     |       |     | FA |
| Turbidity                             | 2/24/21 10:10 | 2/24/21 10:1 | 0           | 0.59    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

# **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 2/24/21 10:13

Customer ID:

**Delivery Date:** 2/25/21 09:38

Description: Gorgas Landfill - MW-11

Laboratory ID Number: BB04154

|         |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| 3B04156 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 333     | 332     | 5.12     | 4.25 to 5.75       | 107  | 70.0 to 130 | 0.401 | 20.0          |
| 3B04156 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 2.16    | 2.19    | 0.0992   | 0.0850 to 0.115    | 40.0 | 70.0 to 130 | 1.38  | 20.0          |
| 3B04156 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 36.7    | 36.2    | 5.15     | 4.25 to 5.75       | 109  | 70.0 to 130 | 1.24  | 20.0          |
| 3B04156 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.103   | 0.107   | 0.104    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 3.81  | 20.0          |
| 3B04156 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.0996  | 0.101   | 0.0987   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 1.40  | 20.0          |
| 3B04156 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0980  | 0.0989  | 0.0942   | 0.0850 to 0.115    | 98.0 | 70.0 to 130 | 0.914 | 20.0          |
| 3B04156 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0950  | 0.0964  | 0.0951   | 0.0850 to 0.115    | 95.0 | 70.0 to 130 | 1.46  | 20.0          |
| 3B04156 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0973  | 0.0969  | 0.0984   | 0.0850 to 0.115    | 97.3 | 70.0 to 130 | 0.412 | 20.0          |
| 3B04156 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.138   | 0.137   | 0.102    | 0.0850 to 0.115    | 100  | 70.0 to 130 | 0.727 | 20.0          |
| 3B04156 | Iron, Dissolved        | mg/L  | 0.000207   | 0.0176   | 0.2   | 1.85    | 1.86    | 0.205    | 0.170 to 0.230     | 80.0 | 70.0 to 130 | 0.539 | 20.0          |
| 3B04156 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 2.62    | 2.61    | 0.209    | 0.170 to 0.230     | 90.0 | 70.0 to 130 | 0.382 | 20.0          |
| 3B04156 | Mercury, Total by CVAA | mg/L  | 0.0000917  | 0.000500 | 0.004 | 0.00422 | 0.00461 | 0.00412  | 0.00340 to 0.00460 | 106  | 70.0 to 130 | 8.83  | 20.0          |
| 3B04156 | Manganese, Dissolved   | mg/L  | 0.0000065  | 0.000147 | 0.10  | 2.14    | 2.13    | 0.0997   | 0.0850 to 0.115    | 40.0 | 70.0 to 130 | 0.468 | 20.0          |
| 3B04156 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.112   | 0.113   | 0.0999   | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.889 | 20.0          |
| 3B04156 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 16.4    | 16.5    | 10.3     | 8.50 to 11.5       | 103  | 70.0 to 130 | 0.608 | 20.0          |
| 3B04156 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0970  | 0.0974  | 0.0981   | 0.0850 to 0.115    | 97.0 | 70.0 to 130 | 0.412 | 20.0          |
| 3B04156 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0955  | 0.0941  | 0.0942   | 0.0850 to 0.115    | 95.5 | 70.0 to 130 | 1.48  | 20.0          |
| 3B04156 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.09    | 1.09    | 1.03     | 0.850 to 1.15      | 105  | 70.0 to 130 | 0.00  | 20.0          |
| 3B04156 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0994  | 0.0988  | 0.0985   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 0.605 | 20.0          |
| 3B04156 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.366   | 0.362   | 0.207    | 0.170 to 0.230     | 145  | 70.0 to 130 | 1.10  | 20.0          |
| 3B04156 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 351     | 349     | 5.15     | 4.25 to 5.75       | 145  | 70.0 to 130 | 0.640 | 20.0          |
| 3B04156 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.102   | 0.103   | 0.102    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.976 | 20.0          |

# **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

2/24/21 10:13

**Customer ID:** 

**Delivery Date:** 

2/25/21 09:38

Description: Gorgas Landfill - MW-11

Laboratory ID Number: BB04154

|         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB04157 | Sulfate                    | mg/L  | -0.276  | 0.500  | 20.0  | 19.1 | -0.324    | 19.0     | 18.0 to 22.0 | 95.5 | 80.0 to 120 | 0.00  | 20.0          |
| BB04156 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 224       | 52.0     | 45.0 to 55.0 |      |             | 2.21  | 10.0          |
| BB04157 | Fluoride                   | mg/L  | 0.0213  | 0.0500 | 2.50  | 2.51 | 0.0138    | 2.63     | 2.25 to 2.75 | 100  | 80.0 to 120 | 0.00  | 20.0          |
| BB04155 | Solids, Dissolved          | mg/L  | 2.00    | 25.0   |       |      | 3120      | 50.0     | 40.0 to 60.0 |      |             | 0.808 | 5.00          |
| BB04157 | Chloride                   | mg/L  | -0.0488 | 0.500  | 10.0  | 10.3 | 0.135     | 10.1     | 9.00 to 11.0 | 103  | 80.0 to 120 | 0.00  | 20.0          |
|         |                            |       |         |        |       |      |           |          |              |      |             |       |               |

# Certificate Of Analysis



Description: Gorgas Landfill - MW-19Location Code:WMWGORLFCollected:2/24/21 12:40

Customer ID:

**Submittal Date:** 2/25/21 09:38

| Laboratory ID Number: BB04155 |               |               |         | - ·          | 11.2          | MDI      | DI         |   |
|-------------------------------|---------------|---------------|---------|--------------|---------------|----------|------------|---|
| Name                          | •             |               | Spec DF | Results      | Units         | MDL      | RL         | Q |
| Analytical Method: EPA 200.7  | Analy         | vst: RDA      |         | Preparati    | ion Method: I | EPA 1638 |            |   |
| * Boron, Total                | 3/16/21 09:07 | 3/17/21 10:57 | 1.015   | 0.0393       | mg/L          | 0.030000 | 0.1015     | J |
| * Calcium, Total              | 3/16/21 09:07 | 3/19/21 11:28 | 20.3    | 332          | mg/L          | 1.4007   | 8.12       |   |
| * Iron, Total                 | 3/16/21 09:07 | 3/17/21 10:57 | 1.015   | 2.40         | mg/L          | 0.008120 | 0.0406     |   |
| * Lithium, Total              | 3/16/21 09:07 | 3/17/21 10:57 | 1.015   | 0.0739       | mg/L          | 0.007105 | 0.01999956 | 3 |
| * Magnesium, Total            | 3/16/21 09:07 | 3/19/21 11:28 | 20.3    | 349          | mg/L          | 0.4263   | 8.12       |   |
| * Sodium, Total               | 3/16/21 09:07 | 3/17/21 10:57 | 1.015   | 40.5         | mg/L          | 0.02030  | 0.406      |   |
| Analytical Method: EPA 200.7  | Analy         | st: RDA       |         |              |               |          |            |   |
| * Iron, Dissolved             | 3/11/21 11:00 | 3/12/21 12:48 | 1.015   | 1.68         | mg/L          | 0.008120 | 0.0406     |   |
| Analytical Method: EPA 200.8  | Analy         | st: DLJ       |         | Preparati    | ion Method: I | EPA 1638 |            |   |
| * Antimony, Total             | 2/26/21 06:45 | 2/26/21 13:19 | 1.015   | Not Detected | mg/L          | 0.000507 | 0.001015   | U |
| * Arsenic, Total              | 2/26/21 06:45 | 2/26/21 13:19 | 1.015   | 0.000212     | mg/L          | 0.000068 | 0.000203   |   |
| * Barium, Total               | 2/26/21 06:45 | 2/26/21 13:19 | 1.015   | 0.00981      | mg/L          | 0.000101 | 0.000203   |   |
| * Beryllium, Total            | 2/26/21 06:45 | 2/26/21 13:19 | 1.015   | Not Detected | mg/L          | 0.000406 | 0.001015   | U |
| * Cadmium, Total              | 2/26/21 06:45 | 2/26/21 13:19 | 1.015   | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Chromium, Total             | 2/26/21 06:45 | 2/26/21 13:19 | 1.015   | Not Detected | mg/L          | 0.000203 | 0.001015   | U |
| * Cobalt, Total               | 2/26/21 06:45 | 2/26/21 13:19 | 1.015   | 0.0382       | mg/L          | 0.000068 | 0.000203   |   |
| * Lead, Total                 | 2/26/21 06:45 | 2/26/21 13:19 | 1.015   | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Molybdenum, Total           | 2/26/21 06:45 | 2/26/21 13:19 | 1.015   | 0.000197     | mg/L          | 0.000068 | 0.000203   | J |
| * Potassium, Total            | 2/26/21 06:45 | 2/26/21 13:19 | 1.015   | 6.08         | mg/L          | 0.169505 | 0.5075     |   |
| * Manganese, Total            | 2/26/21 06:45 | 2/26/21 18:25 | 5.075   | 2.07         | mg/L          | 0.000340 | 0.001015   |   |
| * Selenium, Total             | 2/26/21 06:45 | 2/26/21 13:19 | 1.015   | Not Detected | mg/L          | 0.000507 | 0.001015   | U |
| * Thallium, Total             | 2/26/21 06:45 | 2/26/21 13:19 | 1.015   | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8  | Analy         | rst: DLJ      |         |              |               |          |            |   |
| * Manganese, Dissolved        | 2/26/21 08:46 | 2/26/21 17:24 | 5.075   | 2.06         | mg/L          | 0.000340 | 0.001015   |   |
| Analytical Method: EPA 245.1  | Analy         | st: ABB       |         |              |               |          |            |   |
| * Mercury, Total by CVAA      | 3/8/21 11:16  | 3/9/21 13:20  | 1       | Not Detected | mg/L          | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B  | Analy         | vst: JAG      |         |              |               |          |            |   |
| Alkalinity, Total as CaCO3    | 3/3/21 11:10  | 3/3/21 12:09  | 1       | 223          | mg/L          |          | 0.1        |   |
| Analytical Method: SM 2540C   | Analy         | /st: TJW      |         |              |               |          |            |   |
| * Solids, Dissolved           | 3/1/21 16:45  | 3/3/21 09:00  | 1       | 3070         | mg/L          |          | 166.7      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

# Certificate Of Analysis



Description: Gorgas Landfill - MW-19

Location Code:

WMWGORLF

2/25/21 09:38

Collected:

Customer ID: Submittal Date: 2/24/21 12:40

Laboratory ID Number: BB04155

| Laboratory ID Number: BB04155         |               |                |          |     |         |       |       |     |    |
|---------------------------------------|---------------|----------------|----------|-----|---------|-------|-------|-----|----|
| Name                                  | Prepared      | Analyzed       | Vio Spec | DF  | Results | Units | MDL   | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG      |          |     |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 11:10  | 3/3/21 12:09   | )        | 1   | 223     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 11:10  | 3/3/21 12:09   | )        | 1   | 0.05    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC      |          |     |         |       |       |     |    |
| * Chloride                            | 2/25/21 11:48 | 3 2/25/21 11:4 | 18       | 1   | 2.02    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC      |          |     |         |       |       |     |    |
| * Fluoride                            | 2/25/21 16:20 | 2/25/21 16:2   | 20       | 1   | 0.343   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC      |          |     |         |       |       |     |    |
| * Sulfate                             | 2/26/21 12:46 | 3 2/26/21 12:4 | 16       | 100 | 1970    | mg/L  | 50.00 | 100 |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD      |          |     |         |       |       |     |    |
| Conductivity                          | 2/24/21 12:36 | 2/24/21 12:3   | 36       |     | 3183.22 | uS/cm |       |     | FA |
| рН                                    | 2/24/21 12:36 | 3 2/24/21 12:3 | 36       |     | 6.26    | SU    |       |     | FA |
| Temperature                           | 2/24/21 12:36 | 3 2/24/21 12:3 | 36       |     | 20.14   | С     |       |     | FA |
| Turbidity                             | 2/24/21 12:36 | 2/24/21 12:3   | 36       |     | 5.12    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 2/24/21 12:40

Customer ID:

**Delivery Date:** 2/25/21 09:38

Description: Gorgas Landfill - MW-19

Laboratory ID Number: BB04155

|         |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Pred         |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|--------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mi |
| 3B04156 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 333     | 332     | 5.12     | 4.25 to 5.75       | 107  | 70.0 to 130 | 0.401 | 20.0         |
| 3B04156 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 2.16    | 2.19    | 0.0992   | 0.0850 to 0.115    | 40.0 | 70.0 to 130 | 1.38  | 20.0         |
| 3B04156 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 36.7    | 36.2    | 5.15     | 4.25 to 5.75       | 109  | 70.0 to 130 | 1.24  | 20.0         |
| 3B04156 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0973  | 0.0969  | 0.0984   | 0.0850 to 0.115    | 97.3 | 70.0 to 130 | 0.412 | 20.0         |
| 3B04156 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.138   | 0.137   | 0.102    | 0.0850 to 0.115    | 100  | 70.0 to 130 | 0.727 | 20.0         |
| 3B04156 | Iron, Dissolved        | mg/L  | 0.000207   | 0.0176   | 0.2   | 1.85    | 1.86    | 0.205    | 0.170 to 0.230     | 80.0 | 70.0 to 130 | 0.539 | 20.0         |
| 3B04156 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 2.62    | 2.61    | 0.209    | 0.170 to 0.230     | 90.0 | 70.0 to 130 | 0.382 | 20.0         |
| 3B04156 | Mercury, Total by CVAA | mg/L  | 0.0000917  | 0.000500 | 0.004 | 0.00422 | 0.00461 | 0.00412  | 0.00340 to 0.00460 | 106  | 70.0 to 130 | 8.83  | 20.0         |
| 3B04156 | Manganese, Dissolved   | mg/L  | 0.0000065  | 0.000147 | 0.10  | 2.14    | 2.13    | 0.0997   | 0.0850 to 0.115    | 40.0 | 70.0 to 130 | 0.468 | 20.0         |
| 3B04156 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0955  | 0.0941  | 0.0942   | 0.0850 to 0.115    | 95.5 | 70.0 to 130 | 1.48  | 20.0         |
| 3B04156 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.09    | 1.09    | 1.03     | 0.850 to 1.15      | 105  | 70.0 to 130 | 0.00  | 20.0         |
| 3B04156 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0994  | 0.0988  | 0.0985   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 0.605 | 20.0         |
| 3B04156 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.366   | 0.362   | 0.207    | 0.170 to 0.230     | 145  | 70.0 to 130 | 1.10  | 20.0         |
| 3B04156 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 351     | 349     | 5.15     | 4.25 to 5.75       | 145  | 70.0 to 130 | 0.640 | 20.0         |
| 3B04156 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.102   | 0.103   | 0.102    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.976 | 20.0         |
| 3B04156 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.112   | 0.113   | 0.0999   | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.889 | 20.0         |
| 3B04156 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 16.4    | 16.5    | 10.3     | 8.50 to 11.5       | 103  | 70.0 to 130 | 0.608 | 20.0         |
| 3B04156 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0970  | 0.0974  | 0.0981   | 0.0850 to 0.115    | 97.0 | 70.0 to 130 | 0.412 | 20.0         |
| 3B04156 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.103   | 0.107   | 0.104    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 3.81  | 20.0         |
| 3B04156 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.0996  | 0.101   | 0.0987   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 1.40  | 20.0         |
| 3B04156 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0980  | 0.0989  | 0.0942   | 0.0850 to 0.115    | 98.0 | 70.0 to 130 | 0.914 | 20.0         |
| 3B04156 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0950  | 0.0964  | 0.0951   | 0.0850 to 0.115    | 95.0 | 70.0 to 130 | 1.46  | 20.0         |

# **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

2/24/21 12:40

**Customer ID:** 

**Delivery Date:** 

2/25/21 09:38

Description: Gorgas Landfill - MW-19

Laboratory ID Number: BB04155

|   |         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| ı | BB04157 | Sulfate                    | mg/L  | -0.276  | 0.500  | 20.0  | 19.1 | -0.324    | 19.0     | 18.0 to 22.0 | 95.5 | 80.0 to 120 | 0.00  | 20.0          |
| ı | BB04155 | Solids, Dissolved          | mg/L  | 2.00    | 25.0   |       |      | 3120      | 50.0     | 40.0 to 60.0 |      |             | 0.808 | 5.00          |
| 1 | BB04157 | Chloride                   | mg/L  | -0.0488 | 0.500  | 10.0  | 10.3 | 0.135     | 10.1     | 9.00 to 11.0 | 103  | 80.0 to 120 | 0.00  | 20.0          |
| ı | BB04156 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 224       | 52.0     | 45.0 to 55.0 |      |             | 2.21  | 10.0          |
| ı | BB04157 | Fluoride                   | mg/L  | 0.0213  | 0.0500 | 2.50  | 2.51 | 0.0138    | 2.63     | 2.25 to 2.75 | 100  | 80.0 to 120 | 0.00  | 20.0          |
|   |         |                            |       |         |        |       |      |           |          |              |      |             |       |               |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 3/30/21

Reported: 3/31/2021 Version: 3.2 COA\_CCR

### Certificate Of Analysis



Description: Gorgas Landfill - MW-19 DUPLocation Code:WMWGORLFCollected:2/24/21 12:40

Customer ID:

Laboratory ID Number: BB04156 Submittal Date: 2/25/21 09:38

| •             | yst: RDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | you non                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Preparati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | on Method: EP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A 1638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3/16/21 09:07 | 3/17/21 11:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.030000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/16/21 09:07 | 3/19/21 11:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.4007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3/16/21 09:07 | 3/17/21 11:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.008120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3/16/21 09:07 | 3/17/21 11:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.007105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.019999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/16/21 09:07 | 3/19/21 11:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3/16/21 09:07 | 3/19/21 11:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Anal          | yst: RDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3/11/21 11:00 | 3/12/21 12:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.008120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Anal          | yst: DLJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Preparati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | on Method: EP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A 1638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2/26/21 06:45 | 2/26/21 13:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2/26/21 06:45 | 2/26/21 13:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2/26/21 06:45 | 2/26/21 13:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2/26/21 06:45 | 2/26/21 13:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2/26/21 06:45 | 2/26/21 13:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2/26/21 06:45 | 2/26/21 13:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2/26/21 06:45 | 2/26/21 13:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2/26/21 06:45 | 2/26/21 13:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2/26/21 06:45 | 2/26/21 13:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2/26/21 06:45 | 2/26/21 13:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.169505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2/26/21 06:45 | 2/26/21 18:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2/26/21 06:45 | 2/26/21 13:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2/26/21 06:45 | 2/26/21 13:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Anal          | yst: DLJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2/26/21 08:46 | 2/26/21 17:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Anal          | yst: ABB                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3/8/21 11:16  | 3/9/21 13:23                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Anal          | yst: JAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3/3/21 11:10  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | yst: TJW                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 166.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | 3/16/21 09:07 3/16/21 09:07 3/16/21 09:07 3/16/21 09:07 3/16/21 09:07 Analy 3/11/21 11:00 Analy 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 2/26/21 06:45 Analy 3/8/21 11:16 Analy 3/3/21 11:10 | 3/16/21 09:07 3/17/21 11:0 3/16/21 09:07 3/17/21 11:0 3/16/21 09:07 3/19/21 11:3 3/16/21 09:07 3/19/21 11:3 3/16/21 09:07 3/19/21 11:3 Analyst: RDA 3/11/21 11:00 3/12/21 12:0 Analyst: DLJ 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 06:45 2/26/21 13:2 2/26/21 10:45 2/26/21 13:2 3/3/21 11:10 3/3/21 12:05 Analyst: JAG 3/3/21 11:10 3/3/21 12:05 Analyst: TJW | 3/16/21 09:07 3/17/21 11:00 3/16/21 09:07 3/17/21 11:00 3/16/21 09:07 3/19/21 11:31 3/16/21 09:07 3/19/21 11:31  Analyst: RDA 3/11/21 11:00 3/12/21 12:52  Analyst: DLJ  2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 2/26/21 06:45 2/26/21 13:23 Analyst: DLJ 2/26/21 08:46 2/26/21 17:28 Analyst: ABB 3/8/21 11:16 3/9/21 13:23 Analyst: JAG 3/3/21 11:10 3/3/21 12:09 Analyst: TJW | 3/16/21 09:07 3/17/21 11:00 1.015 3/16/21 09:07 3/17/21 11:00 1.015 3/16/21 09:07 3/19/21 11:31 20.3 3/16/21 09:07 3/19/21 11:31 20.3  Analyst: RDA 3/11/21 11:00 3/12/21 12:52 1.015  Analyst: DLJ  2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 2/26/21 06:45 2/26/21 13:23 1.015 | 3/16/21 09:07 3/17/21 11:00 1.015 2.44 3/16/21 09:07 3/17/21 11:00 1.015 0.0752 3/16/21 09:07 3/19/21 11:31 20.3 344 3/16/21 09:07 3/19/21 11:31 20.3 31.2  Analyst: RDA 3/11/21 11:00 3/12/21 12:52 1.015 1.69  Analyst: DLJ Preparati 2/26/21 06:45 2/26/21 13:23 1.015 0.000218 2/26/21 06:45 2/26/21 13:23 1.015 0.00981 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected 2/26/21 106:45 2/26/21 13:23 1.015 Not Detected | 3/16/21 09:07 3/17/21 11:00 1.015 2.44 mg/L 3/16/21 09:07 3/17/21 11:00 1.015 0.0752 mg/L 3/16/21 09:07 3/19/21 11:31 20.3 344 mg/L 3/16/21 09:07 3/19/21 11:31 20.3 31.2 mg/L  Analyst: RDA 3/11/21 11:00 3/12/21 12:52 1.015 1.69 mg/L  Preparation Method: EP  2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 2/26/21 08:46 2/26/21 13:23 1.015 Not Detected mg/L | 3/16/21 09:07 3/17/21 11:00 1.015 2.44 mg/L 0.008120 3/16/21 09:07 3/17/21 11:00 1.015 0.0752 mg/L 0.007105 3/16/21 09:07 3/19/21 11:31 20.3 344 mg/L 0.4263 3/16/21 09:07 3/19/21 11:31 20.3 31.2 mg/L 0.406 Analyst: RDA  3/11/21 11:00 3/12/21 12:52 1.015 1.69 mg/L 0.008120 Preparation Method: EPA 1638 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000507 2/26/21 06:45 2/26/21 13:23 1.015 0.000218 mg/L 0.000101 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000101 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 106:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 106:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 106:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 106:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 2/26/21 106:45 2/26/21 13:23 1.015 N | 3/16/21 09:07 3/17/21 11:00 1.015 2.44 mg/L 0.008120 0.0406 3/16/21 09:07 3/17/21 11:00 1.015 0.0752 mg/L 0.007105 0.019999 3/16/21 09:07 3/19/21 11:31 20.3 344 mg/L 0.4263 8.12 3/16/21 09:07 3/19/21 11:31 20.3 31.2 mg/L 0.406 8.12  Analyst: RDA 3/11/21 11:00 3/12/21 12:52 1.015 1.69 mg/L 0.008120 0.0406  Analyst: DJ Preparation Method: EPA 1638  2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000507 0.001015 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 0.000203 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000101 0.000203 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000406 0.00115 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000406 0.001015 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 0.000203 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 0.000203 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 0.000203 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 0.000203 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 0.000203 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 0.000203 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 0.000203 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 0.000203 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 0.000203 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 0.000203 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 0.000203 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 0.000203 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 0.000203 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000340 0.001015 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000340 0.001015 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000340 0.001015 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 0.000203 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000340 0.001015 2/26/21 06:45 2/26/21 13:23 1.015 Not Detected mg/L 0.000068 0.000203 2/26/21 06:45 2/26 |

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Lithium MS/MSD recoveries failed. Post digestion spike and serial dilution were performed. Matrix issue is suspected. LBM 3/30/21

Laboratory ID Number: BB04156

### Certificate Of Analysis



Description: Gorgas Landfill - MW-19 DUP

**Location Code:** 

**WMWGORLF** 

Collected:

**Customer ID:** 

2/24/21 12:40

Submittal Date:

2/25/21 09:38

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF  | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|-----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |          |     |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 3/3/21 11:10  | 3/3/21 12:09 | )        | 1   | 229     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 3/3/21 11:10  | 3/3/21 12:09 | )        | 1   | 0.05    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |          |     |         |       |       |     |    |
| * Chloride                            | 2/25/21 11:49 | 2/25/21 11:4 | 9        | 1   | 1.98    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |          |     |         |       |       |     |    |
| * Fluoride                            | 2/25/21 16:21 | 2/25/21 16:2 | 21       | 1   | 0.337   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |          |     |         |       |       |     |    |
| * Sulfate                             | 2/26/21 12:47 | 2/26/21 12:4 | 7        | 100 | 1900    | mg/L  | 50.00 | 100 |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD    |          |     |         |       |       |     |    |
| Conductivity                          | 2/24/21 12:36 | 2/24/21 12:3 | 86       |     | 3183.22 | uS/cm |       |     | FA |
| рН                                    | 2/24/21 12:36 | 2/24/21 12:3 | 86       |     | 6.26    | SU    |       |     | FA |
| Temperature                           | 2/24/21 12:36 | 2/24/21 12:3 | 86       |     | 20.14   | С     |       |     | FA |
| Turbidity                             | 2/24/21 12:36 | 2/24/21 12:3 | 36       |     | 5.12    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Lithium MS/MSD recoveries failed. Post digestion spike and serial dilution were performed. Matrix issue is suspected. LBM 3/30/21

### **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date: 2/24/21 12:40

**Customer ID:** 

**Delivery Date:** 2/25/21 09:38

Description: Gorgas Landfill - MW-19 DUP

Laboratory ID Number: BB04156

|         |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB04156 | Calcium, Total         | mg/L  | 0.00281    | 0.152    | 5.00  | 333     | 332     | 5.12     | 4.25 to 5.75       | 107  | 70.0 to 130 | 0.401 | 20.0          |
| BB04156 | Antimony, Total        | mg/L  | 0.000196   | 0.00100  | 0.10  | 0.0980  | 0.0989  | 0.0942   | 0.0850 to 0.115    | 98.0 | 70.0 to 130 | 0.914 | 20.0          |
| BB04156 | Thallium, Total        | mg/L  | -0.0000241 | 0.000147 | 0.10  | 0.0950  | 0.0964  | 0.0951   | 0.0850 to 0.115    | 95.0 | 70.0 to 130 | 1.46  | 20.0          |
| BB04156 | Arsenic, Total         | mg/L  | 0.0000554  | 0.000147 | 0.10  | 0.103   | 0.107   | 0.104    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 3.81  | 20.0          |
| BB04156 | Molybdenum, Total      | mg/L  | 0.0000035  | 0.000147 | 0.10  | 0.0996  | 0.101   | 0.0987   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 1.40  | 20.0          |
| BB04156 | Manganese, Total       | mg/L  | 0.000015   | 0.000147 | 0.10  | 2.16    | 2.19    | 0.0992   | 0.0850 to 0.115    | 40.0 | 70.0 to 130 | 1.38  | 20.0          |
| BB04156 | Sodium, Total          | mg/L  | 0.00298    | 0.0660   | 5.00  | 36.7    | 36.2    | 5.15     | 4.25 to 5.75       | 109  | 70.0 to 130 | 1.24  | 20.0          |
| BB04156 | Beryllium, Total       | mg/L  | -0.0000045 | 0.000880 | 0.10  | 0.0955  | 0.0941  | 0.0942   | 0.0850 to 0.115    | 95.5 | 70.0 to 130 | 1.48  | 20.0          |
| BB04156 | Boron, Total           | mg/L  | 0.0138     | 0.0650   | 1.00  | 1.09    | 1.09    | 1.03     | 0.850 to 1.15      | 105  | 70.0 to 130 | 0.00  | 20.0          |
| BB04156 | Chromium, Total        | mg/L  | -0.0000886 | 0.000440 | 0.10  | 0.0994  | 0.0988  | 0.0985   | 0.0850 to 0.115    | 99.4 | 70.0 to 130 | 0.605 | 20.0          |
| BB04156 | Lithium, Total         | mg/L  | -0.0000484 | 0.0154   | 0.200 | 0.366   | 0.362   | 0.207    | 0.170 to 0.230     | 145  | 70.0 to 130 | 1.10  | 20.0          |
| BB04156 | Magnesium, Total       | mg/L  | 0.00253    | 0.0462   | 5.00  | 351     | 349     | 5.15     | 4.25 to 5.75       | 145  | 70.0 to 130 | 0.640 | 20.0          |
| BB04156 | Selenium, Total        | mg/L  | -0.0000277 | 0.00100  | 0.10  | 0.102   | 0.103   | 0.102    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.976 | 20.0          |
| BB04156 | Barium, Total          | mg/L  | -0.0000324 | 0.000200 | 0.10  | 0.112   | 0.113   | 0.0999   | 0.0850 to 0.115    | 102  | 70.0 to 130 | 0.889 | 20.0          |
| BB04156 | Potassium, Total       | mg/L  | -0.00457   | 0.367    | 10.0  | 16.4    | 16.5    | 10.3     | 8.50 to 11.5       | 103  | 70.0 to 130 | 0.608 | 20.0          |
| BB04156 | Lead, Total            | mg/L  | 0.0000054  | 0.000147 | 0.10  | 0.0970  | 0.0974  | 0.0981   | 0.0850 to 0.115    | 97.0 | 70.0 to 130 | 0.412 | 20.0          |
| BB04156 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0973  | 0.0969  | 0.0984   | 0.0850 to 0.115    | 97.3 | 70.0 to 130 | 0.412 | 20.0          |
| BB04156 | Cobalt, Total          | mg/L  | -0.0000279 | 0.000147 | 0.10  | 0.138   | 0.137   | 0.102    | 0.0850 to 0.115    | 100  | 70.0 to 130 | 0.727 | 20.0          |
| BB04156 | Iron, Dissolved        | mg/L  | 0.000207   | 0.0176   | 0.2   | 1.85    | 1.86    | 0.205    | 0.170 to 0.230     | 80.0 | 70.0 to 130 | 0.539 | 20.0          |
| BB04156 | Iron, Total            | mg/L  | 0.00121    | 0.0176   | 0.2   | 2.62    | 2.61    | 0.209    | 0.170 to 0.230     | 90.0 | 70.0 to 130 | 0.382 | 20.0          |
| BB04156 | Mercury, Total by CVAA | mg/L  | 0.0000917  | 0.000500 | 0.004 | 0.00422 | 0.00461 | 0.00412  | 0.00340 to 0.00460 | 106  | 70.0 to 130 | 8.83  | 20.0          |
| BB04156 | Manganese, Dissolved   | mg/L  | 0.0000065  | 0.000147 | 0.10  | 2.14    | 2.13    | 0.0997   | 0.0850 to 0.115    | 40.0 | 70.0 to 130 | 0.468 | 20.0          |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Lithium MS/MSD recoveries failed. Post digestion spike and serial dilution were performed. Matrix issue is suspected. LBM 3/30/21

### **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

2/24/21 12:40

Customer ID:

**Delivery Date:** 2/25/21 09:38

Description: Gorgas Landfill - MW-19 DUP

Laboratory ID Number: BB04156

|   |         |                            |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---|---------|----------------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| ı | BB04157 | Chloride                   | mg/L  | -0.0488 | 0.500  | 10.0  | 10.3 | 0.135     | 10.1     | 9.00 to 11.0 | 103  | 80.0 to 120 | 0.00  | 20.0          |
| ı | BB04156 | Solids, Dissolved          | mg/L  | 2.00    | 25.0   |       |      | 3120      | 50.0     | 40.0 to 60.0 |      |             | 0.971 | 5.00          |
| ı | BB04157 | Sulfate                    | mg/L  | -0.276  | 0.500  | 20.0  | 19.1 | -0.324    | 19.0     | 18.0 to 22.0 | 95.5 | 80.0 to 120 | 0.00  | 20.0          |
| ı | BB04156 | Alkalinity, Total as CaCO3 | mg/L  |         |        |       |      | 224       | 52.0     | 45.0 to 55.0 |      |             | 2.21  | 10.0          |
| ı | BB04157 | Fluoride                   | mg/L  | 0.0213  | 0.0500 | 2.50  | 2.51 | 0.0138    | 2.63     | 2.25 to 2.75 | 100  | 80.0 to 120 | 0.00  | 20.0          |
|   |         |                            |       |         |        |       |      |           |          |              |      |             |       |               |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Lithium MS/MSD recoveries failed. Post digestion spike and serial dilution were performed. Matrix issue is suspected. LBM 3/30/21

# **Certificate Of Analysis**



Description: Gorgas Landfill Equipment Blank-1Location Code:WMWGORLFEBCollected:2/24/21 13:30

**Customer ID:** 

**Submittal Date:** 2/25/21 09:38

Laboratory ID Number: BB04157

| Name                                | Prepared      | Analyzed     | Vio Spec DF | Results        | Units          | MDL      | RL         | Q |
|-------------------------------------|---------------|--------------|-------------|----------------|----------------|----------|------------|---|
| Analytical Method: EPA 200.7        | Anal          | yst: RDA     |             | Prepara        | tion Method: E | PA 1638  |            |   |
| * Boron, Total                      | 3/16/21 09:07 | 3/17/21 11:2 | 24 1.01     | 5 Not Detected | mg/L           | 0.030000 | 0.1015     | U |
| * Calcium, Total                    | 3/16/21 09:07 | 3/17/21 11:2 | 24 1.01     | 5 Not Detected | mg/L           | 0.070035 | 0.406      | U |
| * Iron, Total                       | 3/16/21 09:07 | 3/17/21 11:2 | 24 1.01     | 5 Not Detected | mg/L           | 0.008120 | 0.0406     | U |
| * Lithium, Total                    | 3/16/21 09:07 | 3/17/21 11:2 | 24 1.01     | 5 Not Detected | mg/L           | 0.007105 | 0.01999956 | U |
| * Magnesium, Total                  | 3/16/21 09:07 | 3/17/21 11:2 | 24 1.01     | Not Detected   | mg/L           | 0.021315 | 0.406      | U |
| * Sodium, Total                     | 3/16/21 09:07 | 3/17/21 11:2 | 24 1.01     | Not Detected   | mg/L           | 0.02030  | 0.406      | U |
| Analytical Method: EPA 200.8        | Anal          | yst: DLJ     |             | Prepara        | tion Method: E | PA 1638  |            |   |
| * Antimony, Total                   | 2/26/21 06:45 | 2/26/21 13:5 | 51 1.01     | Not Detected   | mg/L           | 0.000507 | 0.001015   | U |
| * Arsenic, Total                    | 2/26/21 06:45 | 2/26/21 13:5 | 51 1.01     | Not Detected   | mg/L           | 0.000068 | 0.000203   | U |
| * Barium, Total                     | 2/26/21 06:45 | 2/26/21 13:5 | 51 1.01     | 5 0.000179     | mg/L           | 0.000101 | 0.000203   | J |
| * Beryllium, Total                  | 2/26/21 06:45 | 2/26/21 13:5 | 51 1.01     | Not Detected   | d mg/L         | 0.000406 | 0.001015   | U |
| * Cadmium, Total                    | 2/26/21 06:45 | 2/26/21 13:5 | 51 1.01     | Not Detected   | g mg/L         | 0.000068 | 0.000203   | U |
| * Chromium, Total                   | 2/26/21 06:45 | 2/26/21 13:5 | 51 1.01     | Not Detected   | d mg/L         | 0.000203 | 0.001015   | U |
| * Cobalt, Total                     | 2/26/21 06:45 | 2/26/21 13:5 | 51 1.01     | Not Detected   | d mg/L         | 0.000068 | 0.000203   | U |
| * Lead, Total                       | 2/26/21 06:45 | 2/26/21 13:5 | 51 1.01     | Not Detected   | g mg/L         | 0.000068 | 0.000203   | U |
| * Molybdenum, Total                 | 2/26/21 06:45 | 2/26/21 13:5 | 51 1.01     | Not Detected   | g mg/L         | 0.000068 | 0.000203   | U |
| * Manganese, Total                  | 2/26/21 06:45 | 2/26/21 13:5 | 51 1.01     | Not Detected   | g mg/L         | 0.000068 | 0.000203   | U |
| * Potassium, Total                  | 2/26/21 06:45 | 2/26/21 13:5 | 51 1.01     | 5 Not Detected | g mg/L         | 0.169505 | 0.5075     | U |
| * Selenium, Total                   | 2/26/21 06:45 | 2/26/21 13:5 | 51 1.01     | Not Detected   | d mg/L         | 0.000507 | 0.001015   | U |
| * Thallium, Total                   | 2/26/21 06:45 | 2/26/21 13:5 | 51 1.01     | Not Detected   | mg/L           | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 245.1        | Anal          | yst: ABB     |             |                |                |          |            |   |
| * Mercury, Total by CVAA            | 3/8/21 11:16  | 3/9/21 13:39 | ) 1         | Not Detected   | d mg/L         | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2540C         | Anal          | yst: TJW     |             |                |                |          |            |   |
| * Solids, Dissolved                 | 3/1/21 16:45  | 3/3/21 09:00 | ) 1         | Not Detected   | mg/L           |          | 25         | U |
| Analytical Method: SM4500Cl E       | Anal          | yst: JCC     |             |                |                |          |            |   |
| * Chloride                          | 2/25/21 11:53 | 2/25/21 11:5 | 53 1        | Not Detected   | mg/L           | 0.50     | 1          | U |
| Analytical Method: SM4500F G 2017   | Anal          | yst: JCC     |             |                |                |          |            |   |
| * Fluoride                          | 2/25/21 16:22 | 2/25/21 16:2 | 22 1        | Not Detected   | mg/L           | 0.06     | 0.1        | U |
| Analytical Method: SM4500SO4 E 2011 | Anal          | yst: JCC     |             |                |                |          |            |   |
| * Sulfate                           | 2/26/21 12:48 | 2/26/21 12:4 | l8 1        | Not Detected   | d mg/L         | 0.50     | 1          | U |

MDL's and RL's are adjusted for sample dilution, as applicable

# **Batch QC Summary**



Customer Account: WMWGORLFEB

**Sample Date:** 2/24/21 13:30

**Customer ID:** 

**Delivery Date:** 2/25/21 09:38

Description: Gorgas Landfill Equipment Blank-1

Laboratory ID Number: BB04157

|         |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB04157 | Lithium, Total         | mg/L  | -0.000170  | 0.0154   | 0.200 | 0.208   | 0.212   | 0.217    | 0.170 to 0.230     | 104  | 70.0 to 130 | 1.90  | 20.0          |
| BB04157 | Antimony, Total        | mg/L  | 0.000222   | 0.00100  | 0.10  | 0.0920  | 0.0931  | 0.0931   | 0.0850 to 0.115    | 92.0 | 70.0 to 130 | 1.19  | 20.0          |
| BB04157 | Potassium, Total       | mg/L  | 0.00276    | 0.367    | 10.0  | 10.4    | 10.3    | 11.0     | 8.50 to 11.5       | 104  | 70.0 to 130 | 0.966 | 20.0          |
| BB04157 | Selenium, Total        | mg/L  | 0.0000388  | 0.00100  | 0.10  | 0.0979  | 0.101   | 0.102    | 0.0850 to 0.115    | 97.9 | 70.0 to 130 | 3.12  | 20.0          |
| BB04157 | Barium, Total          | mg/L  | -0.0000222 | 0.000200 | 0.10  | 0.0987  | 0.0994  | 0.0995   | 0.0850 to 0.115    | 98.5 | 70.0 to 130 | 0.707 | 20.0          |
| BB04157 | Beryllium, Total       | mg/L  | 0.0000134  | 0.000880 | 0.10  | 0.0971  | 0.102   | 0.101    | 0.0850 to 0.115    | 97.1 | 70.0 to 130 | 4.92  | 20.0          |
| BB04157 | Calcium, Total         | mg/L  | 0.00134    | 0.152    | 5.00  | 4.92    | 4.90    | 4.92     | 4.25 to 5.75       | 98.4 | 70.0 to 130 | 0.407 | 20.0          |
| BB04157 | Iron, Total            | mg/L  | 0.000326   | 0.0176   | 0.2   | 0.202   | 0.203   | 0.201    | 0.170 to 0.230     | 101  | 70.0 to 130 | 0.494 | 20.0          |
| BB04157 | Arsenic, Total         | mg/L  | 0.0000375  | 0.000147 | 0.10  | 0.101   | 0.100   | 0.102    | 0.0850 to 0.115    | 101  | 70.0 to 130 | 0.995 | 20.0          |
| BB04157 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.10  | 0.0959  | 0.0977  | 0.0988   | 0.0850 to 0.115    | 95.9 | 70.0 to 130 | 1.86  | 20.0          |
| BB04157 | Manganese, Total       | mg/L  | 0.0000216  | 0.000147 | 0.10  | 0.103   | 0.0981  | 0.101    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 4.87  | 20.0          |
| BB04157 | Lead, Total            | mg/L  | 0.000005   | 0.000147 | 0.10  | 0.0982  | 0.0994  | 0.0986   | 0.0850 to 0.115    | 98.2 | 70.0 to 130 | 1.21  | 20.0          |
| BB04157 | Boron, Total           | mg/L  | 0.0101     | 0.0650   | 1.00  | 1.02    | 1.03    | 1.03     | 0.850 to 1.15      | 102  | 70.0 to 130 | 0.976 | 20.0          |
| BB04157 | Cobalt, Total          | mg/L  | -0.0000274 | 0.000147 | 0.10  | 0.1000  | 0.100   | 0.106    | 0.0850 to 0.115    | 100  | 70.0 to 130 | 0.00  | 20.0          |
| BB04157 | Chromium, Total        | mg/L  | -0.000120  | 0.000440 | 0.10  | 0.0983  | 0.0973  | 0.102    | 0.0850 to 0.115    | 98.3 | 70.0 to 130 | 1.02  | 20.0          |
| BB04157 | Magnesium, Total       | mg/L  | 0.00289    | 0.0462   | 5.00  | 5.05    | 5.06    | 5.10     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.198 | 20.0          |
| BB04157 | Mercury, Total by CVAA | mg/L  | 0.000108   | 0.000500 | 0.004 | 0.00416 | 0.00424 | 0.00422  | 0.00340 to 0.00460 | 104  | 70.0 to 130 | 1.90  | 20.0          |
| BB04157 | Molybdenum, Total      | mg/L  | -0.0000037 | 0.000147 | 0.10  | 0.0951  | 0.0978  | 0.0971   | 0.0850 to 0.115    | 95.1 | 70.0 to 130 | 2.80  | 20.0          |
| BB04157 | Sodium, Total          | mg/L  | 0.000966   | 0.0660   | 5.00  | 5.20    | 5.23    | 5.34     | 4.25 to 5.75       | 104  | 70.0 to 130 | 0.575 | 20.0          |
| BB04157 | Thallium, Total        | mg/L  | -0.000025  | 0.000147 | 0.10  | 0.0961  | 0.0965  | 0.0966   | 0.0850 to 0.115    | 96.1 | 70.0 to 130 | 0.415 | 20.0          |

# **Batch QC Summary**



Customer Account: WMWGORLFEB

**Sample Date:** 2/24/21 13:30

**Customer ID:** 

**Delivery Date:** 2/25/21 09:38

Description: Gorgas Landfill Equipment Blank-1

Laboratory ID Number: BB04157

|         |                   |       |         | MB     |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|-------------------|-------|---------|--------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis          | Units | MB      | Limit  | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB04157 | Fluoride          | mg/L  | 0.0213  | 0.0500 | 2.50  | 2.51 | 0.0138    | 2.63     | 2.25 to 2.75 | 100  | 80.0 to 120 | 0.00  | 20.0          |
| BB04157 | Sulfate           | mg/L  | -0.276  | 0.500  | 20.0  | 19.1 | -0.324    | 19.0     | 18.0 to 22.0 | 95.5 | 80.0 to 120 | 0.00  | 20.0          |
| BB04155 | Solids, Dissolved | mg/L  | 2.00    | 25.0   |       |      | 3120      | 50.0     | 40.0 to 60.0 |      |             | 0.808 | 5.00          |
| BB04157 | Chloride          | mg/L  | -0.0488 | 0.500  | 10.0  | 10.3 | 0.135     | 10.1     | 9.00 to 11.0 | 103  | 80.0 to 120 | 0.00  | 20.0          |

R

RA U



| Abbreviatio | n Description                                                                                                   |
|-------------|-----------------------------------------------------------------------------------------------------------------|
| DF          | Dilution Factor                                                                                                 |
| LCS         | Lab Control Sample                                                                                              |
| LFM         | Lab Fortified Matrix                                                                                            |
| MB          | Method Blank                                                                                                    |
| MDL         | Method Detection Limit; minimum concentration of an analyte that can be determined with 99% confidence that the |
|             | concentration is greater than zero.                                                                             |
| MS          | Matrix Spike                                                                                                    |
| MSD         | Matrix Spike Duplicate                                                                                          |
| Prec        | Precision (% RPD)                                                                                               |
| Q           | Qualifier; comment used to note deviations or additional information associated with analytical results.        |
| QC          | Quality Control                                                                                                 |
| Rec         | Recovery of Matrix Spike                                                                                        |
| RL          | Reporting Limit; lowest concentration at which an analyte can be quantitatively measured.                       |
| Vio Spec    | Violation Specification; regulatory limit which has been exceeded by the sample analyzed.                       |
|             |                                                                                                                 |
| Qualifier   | Description                                                                                                     |
| FA          | Field results were reviewed by the Water Field Group.                                                           |
| J           | Reported value is an estimate because concentration is less than reporting limit.                               |

Matrix spike recovery and/or matrix spike duplicate recovery is outside of specification limit.

Matrix spike is invalid due to sample concentration.

Compound was analyzed, but not detected.

| Alabama Por Eab S | Grou          | and       | lwa     | ater       |            |           |                                                                           | Comp   |      |          | Outs          | side     | e Lab      | 1  | DA    |           |       |          |
|-------------------|---------------|-----------|---------|------------|------------|-----------|---------------------------------------------------------------------------|--------|------|----------|---------------|----------|------------|----|-------|-----------|-------|----------|
|                   |               |           |         | esting L   |            | •         |                                                                           |        |      | _        |               | -        |            |    | ET    |           |       | <u> </u> |
| Reque             | sted Con      | _         |         |            |            |           |                                                                           |        |      | 4        | Results       | ł        | Dustin Bro |    |       | reg Dyer  |       |          |
|                   | Site Rep      |           |         |            |            |           |                                                                           |        |      | $\dashv$ | Requested I   | '        | Greg Dye   |    |       | :11       |       |          |
|                   |               | Col       | lecto   | or Anth    | on         | y Goggins |                                                                           |        |      | ᆜ        | Locatio       | on       | Gorgas     | L8 | andf  | <br>      |       |          |
| Bottles           | 1 Metals      |           |         | 00 mL      | 3          |           |                                                                           | 250 m  |      | 5        |               | +        | 50 mL      | ╢  | -     | I/A       | N/A   |          |
|                   | 2 Dissolv     | ed Me     | ta   50 | 00 mL      | 4          | 1 TDS     |                                                                           | 500 m  | ıL   | 6        | Alkalinity    | 2        | 50 mL      | ][ | 8 N   | /A        | N/A   |          |
|                   | Comme         | ents      |         |            |            |           |                                                                           |        |      |          |               |          |            |    |       |           |       |          |
|                   |               |           |         |            |            |           | Во                                                                        | ottle  |      |          |               |          |            |    | Lab   |           |       |          |
|                   | Sampl         | e #       | _       | Date       |            | Time      | Co                                                                        | ount   |      |          | Descriptio    | n        |            | F  | Filte |           |       |          |
| <u> </u>          | /IW-6         |           | -       | 02/23/20   |            | 10:45     |                                                                           | 6      |      |          | water         |          |            | _  |       | BB040     |       |          |
| -                 | /W-7          |           | -       | 02/23/20   |            | 11:35     |                                                                           | 6      |      |          | water         |          |            | _  |       | BB040     |       |          |
|                   | 1W-8          |           | + 0     | )2/23/20:  | <u> </u>   | 12:35     |                                                                           | 6      | Grou | na       | water         |          |            |    |       | BB040     | 34    |          |
|                   |               |           | +       |            |            |           |                                                                           |        |      |          |               |          |            | _  |       |           |       |          |
|                   |               |           | +       |            |            |           |                                                                           |        |      |          |               |          |            |    |       |           |       |          |
|                   |               |           | $\top$  |            |            |           |                                                                           |        |      |          |               |          |            |    |       |           |       |          |
|                   |               |           | $\top$  |            |            |           |                                                                           |        |      |          |               |          |            |    |       |           |       |          |
|                   |               |           |         |            |            |           |                                                                           |        |      |          |               |          |            |    |       |           |       |          |
|                   |               |           |         |            |            |           |                                                                           |        |      |          |               |          |            |    |       |           |       |          |
|                   |               |           |         |            |            |           |                                                                           |        |      |          |               |          |            |    |       |           |       |          |
|                   |               |           |         |            |            |           |                                                                           |        |      |          |               |          |            |    |       |           |       |          |
|                   |               |           |         |            |            |           |                                                                           |        |      |          |               |          |            | L  |       |           |       |          |
|                   |               |           | $\perp$ |            |            |           |                                                                           |        |      |          |               |          |            | L  |       |           |       |          |
|                   |               |           | $\perp$ |            |            |           |                                                                           |        |      |          |               |          |            | L  |       |           |       |          |
|                   |               |           |         |            |            |           |                                                                           |        |      |          |               |          |            | L  |       |           |       |          |
|                   |               |           | $\perp$ |            |            |           |                                                                           |        |      |          |               |          |            | L  |       |           |       |          |
|                   |               |           | _       |            |            |           |                                                                           |        |      |          |               |          |            | _  |       |           |       |          |
| _                 |               |           | _       |            |            |           |                                                                           |        |      |          |               |          |            |    |       |           |       |          |
| -                 |               |           | +       |            |            |           |                                                                           |        |      |          |               |          |            | _  |       |           |       |          |
| L                 | R             | elina     | mick    | ned By     |            |           |                                                                           |        |      |          | Received F    | Sv.      |            | _  |       | Dat       | e/Tim | <u>е</u> |
| Relinquished By   |               |           |         |            |            |           | Have The                                                                  | ,<br>, |      | _        |               | 02/24/2  |            |    |       |           |       |          |
|                   |               |           |         |            |            |           |                                                                           |        |      |          | Values proper | <u> </u> |            |    |       | 02/24/2   | .0210 | 0.30     |
|                   |               |           |         |            |            |           |                                                                           |        |      |          |               |          |            |    |       |           |       |          |
|                   |               |           |         |            |            |           |                                                                           |        |      |          |               |          |            |    |       |           |       |          |
| Çr                | narTroll      | 1D [2     | 7526    | -41445-5   | 5-1        |           | 7                                                                         |        | Д1   | l m      | netals and ra | dio      | المعندعا ا | 20 | ttla  | s have nH |       | <br>7]   |
|                   | urbidity      | -         |         |            |            |           | All metals and radiological bottles have pH < 2 Cooler Temp 0.0 degrees C |        |      |          |               |          |            |    |       |           |       |          |
|                   | mple Eve      |           |         |            | . <u>~</u> |           | $\dashv$                                                                  |        | Т    |          | rmometer II   | ^ F      | 5408-275   |    |       |           |       |          |
|                   | 1             | - [       |         |            |            |           | _                                                                         |        | •    |          | pH Strip II   | _        |            | _  |       |           |       |          |
| Bottles/I         | Pre-Preserved | l Bottles | s are p | rovided by | the (      | GTL       |                                                                           |        |      |          |               |          |            | _  |       |           |       |          |

Page 103 of 108

| Alabama Pow                  | Chain of Groundy        | vater                  | La       | eld Com                                      | -        |      | Outsio        | de Lab      | .l cr   | A .                                          |            | _           |
|------------------------------|-------------------------|------------------------|----------|----------------------------------------------|----------|------|---------------|-------------|---------|----------------------------------------------|------------|-------------|
|                              | APC General             |                        |          |                                              |          | _    |               |             | ab ET   |                                              |            | ᆜ           |
| Reques                       | sted Complete 1         |                        |          |                                              |          | ┨,   | Results To    |             |         | eg Dyer                                      |            |             |
|                              | Site Representa         |                        |          |                                              |          | -    | Requested By  |             | •       |                                              |            |             |
|                              | Colle                   | ctor Dallas            | Gentry   |                                              |          |      | Location      | Gorgas      | Landi   | <u>                                     </u> |            |             |
| Bottles                      | 1 Metals                | 500 mL                 | 3 Hg     | 250 n                                        |          | ₩    | Anions        | 250 mL      | 7 N     |                                              | N/A        |             |
|                              | 2 Dissolved Meta        | 500 mL                 | 4 TDS    | 500 n                                        | nL       | 6    | Alkalinity    | 250 mL      | 8 N,    | <u>/A</u>                                    | N/A        |             |
|                              | Comments                |                        |          |                                              |          |      |               |             |         |                                              |            |             |
|                              |                         |                        |          | Bottle                                       |          |      |               |             | Lab     |                                              |            |             |
|                              | Sample #                | Date                   | Time     | Count                                        |          |      | Description   |             | Filter  | · Lab I                                      | d          |             |
| N                            | ЛW-13                   | 02/23/202 <sup>-</sup> | 1 08:33  | 6                                            | Groun    | ndw  | ater          |             |         | BB040                                        | 64         |             |
| N                            | ЛW-14                   | 02/23/202              | 1 09:45  | 6                                            | Groun    | ndw  | ater          |             |         | BB040                                        | 65         |             |
| M                            | /W-15                   | 02/23/2021             | 10:45    | 6                                            | Groun    | ndwa | ater          |             |         | BB040                                        |            |             |
| Ν                            | /IW-16                  | 02/23/202              | 11:40    | 6                                            | Groun    | ndw  | ater          |             |         | BB040                                        | 67         |             |
| MW-16 dup 02/23/2021 11:40 6 |                         |                        |          |                                              |          | le D | Ouplicate     |             |         | BB040                                        | 68         |             |
| _                            | /W-17R                  | 12:53                  | 6        | Groun                                        | ndwa     | ater | _             |             | BB040   |                                              |            |             |
| -                            | MW-18 02/23/2021 14:00  |                        |          |                                              | Groun    |      |               | _           |         | BB040                                        |            |             |
| <b>⊢</b>                     | /W-12V                  | 02/24/2021             | 6        | Groun                                        |          |      |               | _           | BB040   |                                              |            |             |
| -                            | /IW-12                  | 02/24/2021             | 00.10    | 6                                            | Groun    |      |               |             |         | BB040                                        |            |             |
| F                            | ·B-1                    | 02/24/2021             | 10:20    | 4                                            | Field E  | Blar | nk            |             |         | BB040                                        | 73         |             |
| _                            |                         |                        |          |                                              |          |      |               | _           |         |                                              |            |             |
| -                            |                         |                        |          |                                              |          |      |               |             |         |                                              |            |             |
|                              |                         |                        |          | <u> </u>                                     | <u> </u> |      |               |             |         |                                              |            |             |
|                              |                         |                        |          |                                              | <u> </u> |      |               | _           |         |                                              |            |             |
|                              |                         |                        |          |                                              | <u> </u> |      |               |             |         |                                              |            |             |
|                              |                         |                        | -        |                                              |          |      |               |             |         |                                              |            |             |
|                              |                         |                        |          |                                              | <u> </u> |      |               |             |         |                                              |            |             |
|                              |                         |                        |          |                                              | <br>     |      |               | _           |         |                                              |            |             |
| -                            |                         |                        | +        |                                              |          |      |               |             |         |                                              |            |             |
| _                            |                         |                        | 1        |                                              |          |      |               |             |         |                                              |            |             |
|                              | Relinqu                 | ished By               |          | l                                            |          |      | Received By   |             |         | Date                                         | e/Time     | !           |
| Mes Data                     |                         |                        |          |                                              |          |      | Laura Mily    |             |         | 02/24/2                                      | 021 12     | :50         |
| Value Nag                    |                         |                        |          |                                              |          |      |               |             |         | -                                            |            |             |
|                              |                         |                        |          |                                              |          |      |               |             |         |                                              |            |             |
|                              |                         |                        |          |                                              |          |      |               |             |         |                                              |            |             |
| ∟<br>Çr                      | narTroll ID 75          | 86-41442-5-            | 1        | <u>'                                    </u> | Д 11     | me   | tals and radi | نماموندعا ا | oottlaa | have nH                                      |            | <u></u><br> |
|                              | urbidity ID 39          |                        |          | $\dashv$                                     | 1111     |      | Cooler Temp   |             |         | nave pm                                      | \ <u>\</u> |             |
|                              | mple Event 13           |                        | <u>-</u> | $\dashv$                                     | Τh       |      | mometer ID    | _           |         |                                              |            |             |
| Ja                           | impre Dvent 10          |                        |          | _                                            | 11.      |      | pH Strip ID   |             |         |                                              |            |             |
| Bottles/F                    | Pre-Preserved Bottles a | re provided by th      | e GTL    | _                                            |          |      | r             |             |         |                                              |            |             |

Page 104 of 108

| Alabama Pow | Chain of<br>Groundy<br>APC General | vater            |     | La     |              | Com<br>Comp | plete<br>lete |               | Outsi         | de Lab<br>La | al       | b ETA    | 02/25/20  | <br>021 09     | 9:00     |
|-------------|------------------------------------|------------------|-----|--------|--------------|-------------|---------------|---------------|---------------|--------------|----------|----------|-----------|----------------|----------|
| Dame        |                                    |                  |     | Tutory |              |             |               | _             | Results To    |              | _        |          |           |                |          |
| _           | sted Complete l                    |                  |     |        |              |             |               | $\frac{1}{2}$ |               |              |          |          | g Dyer    |                |          |
|             | Site Representa                    |                  |     |        |              |             |               | ┤             | Requested By  |              | _        |          |           |                |          |
|             | Colle                              | ctor TJ Da       | auç | gnerty |              |             |               | <u>」</u>      | Location      | Gorgas       | 느        | anatili  |           |                |          |
| Bottles     | 1 Metals                           | 500 mL           | 3   | Hg     |              | 250 m       | nL            | 5             | Anions        | 250 mL       | ]        | 7 N/A    |           | N/A            |          |
|             | 2 Diss Metals                      | 500 mL           | 4   | TDS    |              | 500 m       | nL            | 6             | Alkalinity    | 250 mL       |          | 8 N/A    |           | N/A            |          |
|             | Comments                           |                  |     |        |              |             |               |               |               |              | _        |          |           |                |          |
|             |                                    |                  |     |        | Во           | ottle       |               |               |               |              |          | Lab      |           |                |          |
|             | Sample #                           | Date             |     | Time   | Co           | ount        |               |               | Description   |              |          | Filter   | Lab I     | d              |          |
| M           | 1W-5                               | 02/23/202        | 21  | 11:58  |              | 6           | Grour         | ndv           | vater         |              | Γ        |          | BB041     | 50             |          |
| N           | 1W-10                              | 02/23/202        | 21  | 13:40  |              | 6           | Grour         | ndv           | vater         |              | Γ        | 7        | BB041     | 51             |          |
| М           | 1W-20                              | 02/23/202        | 1   | 14:50  |              | 6           | Grour         | ndv           | vater         |              | Γ        |          | BB0415    | 52             |          |
| F           | B-2                                | 02/23/202        | 1   | 15:10  |              | 4           | Field         | Bla           | ank           |              | Γ        |          | BB0415    | 53             |          |
| M           | 1W-11                              | 02/24/202        | 1   | 10:13  |              | 6           | Grour         | ndv           | vater         |              | Γ        |          | BB0415    | 54             |          |
| М           | IW-19                              | 02/24/2021 12:40 |     |        |              | 6           | Grour         | ndv           | vater         |              | Γ        |          | BB0415    | 55             |          |
| М           | 1W-19 Dup                          | 02/24/2021 12:40 |     |        |              | 6           | Samp          | le            | Duplicate     | 1            | Γ        |          | BB0415    | 56             |          |
| E           | B-1                                | 02/24/2021 13:30 |     |        |              | 4           |               |               | ent Blank     |              | Γ        |          | BB0415    | <br>57         |          |
|             |                                    |                  |     | 10.00  |              | -           | <u> </u>      |               |               |              | Г        |          |           |                |          |
|             |                                    |                  |     |        |              |             |               |               |               |              | Г        |          |           |                |          |
|             |                                    |                  |     |        |              |             |               |               |               |              | r        |          |           |                |          |
| F           |                                    |                  |     |        |              |             |               |               |               |              | r        |          |           |                |          |
|             |                                    |                  |     |        |              |             |               |               |               |              |          |          |           |                |          |
|             |                                    |                  |     |        |              |             |               |               |               |              | $\vdash$ |          |           |                |          |
| H           |                                    |                  |     |        |              |             |               |               |               |              |          | -        |           |                |          |
| H           |                                    |                  |     |        |              |             |               |               |               |              | H        |          |           |                |          |
|             |                                    |                  |     |        |              |             |               |               |               |              |          |          |           |                |          |
| $\vdash$    |                                    |                  |     |        |              |             |               |               |               |              | $\vdash$ |          |           |                |          |
|             |                                    |                  |     |        |              |             |               |               |               | 1            | H        |          |           |                |          |
|             |                                    |                  |     |        |              |             |               |               |               |              | H        |          |           |                |          |
| -           |                                    |                  |     |        |              |             |               |               |               |              | H        |          |           |                |          |
|             |                                    |                  |     |        |              |             |               |               |               |              | L        |          |           |                |          |
|             | Relinqu                            | ished By         | _   |        |              |             |               | _             | Received By   |              |          |          | Date      | /Time          | e        |
|             | <del>-</del>                       | Mb .             |     |        |              |             |               |               | Laura IT Wag  |              |          |          | 02/25/20  | 021 08         | 8:45     |
|             | 7                                  | · •              |     |        | $\vdash$     |             |               |               | <i></i>       |              | _        |          |           |                | $\dashv$ |
|             |                                    |                  |     |        | L            |             |               |               |               |              |          |          |           |                |          |
|             |                                    |                  |     |        |              |             |               |               |               |              |          |          |           |                |          |
| Sn          | narTroll ID 75                     | 86-41443-5       | -2  |        | <u> </u><br> |             | All           | m             | etals and rad | iological b  | =        | ottles l | nave pH « | ====<br>< 2  v | <br>1    |

Bottles/Pre-Preserved Bottles are provided by the GTL

Sample Event | 1309

Turbidity ID 3901-20009-2-1

Page 105 of 108

Cooler Temp 0.3 degrees C

pH Strip ID 8206-45803-10-7

Thermometer ID

5408-27568-2-2

| Lab Fiel | Chain of Groundy          | Custody                | Y V Fi                                           | ield Com<br>ab Comp | _        | Outsid           | e Lab      |           |             |          |
|----------|---------------------------|------------------------|--------------------------------------------------|---------------------|----------|------------------|------------|-----------|-------------|----------|
| SERVIC   | APC General               | Vater<br>l Testing Lab | oratory                                          | ao Comp             | лете     |                  | La         | b ETA     |             |          |
| Requ     | ested Complete            | Date Routine           |                                                  |                     |          | Results To       | Dustin Bro | oks, Greg | g Dyer      |          |
|          | Site Representa           |                        |                                                  |                     |          | Requested By     |            |           |             |          |
|          | Colle                     | ector Anthon           | y Goggins                                        |                     |          | Location         | Gorgas I   | andfill   |             |          |
| Bottle   | S 1 Radium                | 1 L                    | 3 N/A                                            | N/A                 |          | 5 N/A            | N/A        | 7 N/A     | N/A         |          |
|          | 2 N/A                     | N/A                    | 4 N/A                                            | N/A                 |          | 6 N/A            | N/A        | 8 N/A     | N/A         |          |
|          | Comments                  | id MS/MSD collect      | ed at MW-6. LB                                   | M 2/24/21           |          |                  |            |           |             |          |
| i        |                           |                        |                                                  | Bottle              |          |                  |            | Lab       |             | <u>-</u> |
|          | Sample #                  | Date                   | Time                                             | Count               |          | Description      |            | Filter    | Lab Id      |          |
|          | MW-6                      | 02/23/2021             | 10:45                                            | 3                   | Groun    | dwater           | Ī          |           | BB04035     |          |
|          | MW-7                      | 02/23/2021             | 11:35                                            | 1                   | Groun    | dwater           |            |           | BB04036     |          |
|          | MW-8                      | 02/23/2021             | 12:35                                            | 1                   | Groun    | dwater           |            |           | BB04037     |          |
|          |                           |                        |                                                  |                     |          |                  |            |           |             |          |
|          |                           |                        |                                                  |                     |          |                  |            |           |             |          |
|          |                           |                        | <u> </u>                                         |                     | ļ        |                  |            |           |             |          |
|          |                           |                        |                                                  |                     |          |                  |            |           |             |          |
|          |                           |                        | <del>                                     </del> | -                   |          |                  |            |           |             |          |
|          |                           |                        | -                                                |                     |          |                  |            |           |             |          |
|          |                           |                        | -                                                |                     |          |                  |            |           |             |          |
|          |                           |                        | +                                                |                     | <u> </u> |                  |            |           |             |          |
|          |                           |                        | -                                                |                     | <br>     |                  |            |           |             | -        |
|          |                           |                        | +                                                |                     | <u> </u> |                  |            |           |             |          |
|          |                           |                        | +                                                |                     | <u> </u> |                  |            |           |             |          |
|          |                           |                        | +                                                | 1                   |          |                  |            | $\dashv$  |             |          |
|          |                           |                        | +                                                |                     | <u> </u> |                  |            |           |             |          |
|          |                           |                        | +                                                |                     | <u> </u> |                  |            |           |             |          |
|          |                           |                        | †                                                |                     |          |                  | <u> </u>   |           |             |          |
|          |                           |                        |                                                  |                     |          |                  | +          |           |             |          |
|          |                           |                        |                                                  |                     |          |                  |            |           |             |          |
|          |                           | iished By              |                                                  |                     |          | Received By      |            |           | Date/Tir    | ne       |
|          | as of                     | g Gji                  |                                                  |                     |          | Received By      |            |           | 02/24/2021  | 08:30    |
|          |                           |                        |                                                  |                     |          | **               |            |           |             |          |
|          |                           |                        |                                                  | -                   |          |                  |            |           |             |          |
|          |                           |                        |                                                  |                     |          |                  |            |           |             |          |
|          | SmarTroll ID 75           | 86-41445-5-4           |                                                  |                     | All      | metals and radio | ological b | ottles h  | nave pH < 2 | <b>V</b> |
|          |                           | 77-23343-4-2           |                                                  |                     |          | ī                | N/A        |           | 1           |          |
|          | Sample Event 13           |                        |                                                  | 7                   | Th       | ermometer ID     | N/A        |           |             |          |
|          |                           |                        |                                                  |                     |          | pH Strip ID      | 8206-4580  | )3-10-7   |             |          |
| Bottle   | s/Pre-Preserved Bottles a | re provided by the     | GTL                                              | _                   |          | - <b>.</b>       |            |           |             |          |

Page 106 of 108

| <b>≥</b> ab<br>Fiel         | Chain of Groundy       | Custody                        | Fi            | eld Com     | -           | <b>✓</b> Outside | e Lab       |            |           |               |
|-----------------------------|------------------------|--------------------------------|---------------|-------------|-------------|------------------|-------------|------------|-----------|---------------|
| SERVIC                      |                        | <b>Vater</b><br>l Testing Labo |               | ab Comp     | lete        |                  | La          | ab ETA     |           |               |
| Requ                        | ested Complete         | Date Routine                   |               |             |             | Results To       | Dustin Bro  | ooks, Greg | g Dyer    |               |
| 1                           | Site Representa        |                                | e             |             | Re          | equested By      | Greg Dye    | er         |           |               |
|                             | -                      | ector Dallas G                 | entry         |             |             | Location         | Gorgas      | Landfill   |           |               |
| Bottle                      | Radium                 | 1 L 3                          | N/A           | N/A         |             | /A   N           | I/A         | 7 N/A      |           | N/A           |
| Dotties                     | 2 N/A                  | N/A 4                          | N/A           | N/A         | 6 N         |                  | N/A         | 8 N/A      |           | I/A           |
|                             |                        |                                |               |             |             | // I             | <b>V</b> /A | 0 11/7     |           | V/A           |
|                             | Comments Re            | adium MS/MSD co                | llected at MV | V-14        |             |                  |             |            |           |               |
|                             |                        |                                |               |             |             |                  |             |            |           |               |
|                             |                        |                                |               | Bottle      |             |                  |             | Lab        |           |               |
|                             | Sample #               | Date                           | Time          | Count       |             | Description      |             | Filter     | Lab Id    |               |
|                             | MW-13                  | 02/23/2021                     | 08:33         | 1           | Groundwa    |                  |             |            | BB04074   |               |
|                             | MW-14                  | 02/23/2021                     | 09:45         | 3           | Groundwa    | ter              |             |            | BB04075   | 5             |
| ļ                           | MW-15                  | 02/23/2021                     | 10:45         | 1           | Groundwa    | ter              |             |            | BB04076   |               |
|                             | MW-16                  | 02/23/2021                     | 11:40         | 1           | Groundwa    | ter              |             |            | BB04077   | •             |
|                             | MW-16 dup              | 02/23/2021                     | 11:40         | 1           | Sample Du   | uplicate         |             |            | BB04078   | <b>;</b>      |
|                             | MW-17R                 | 02/23/2021                     | 12:53         | 1           | Groundwa    | ter              | 1           |            | BB04079   |               |
|                             | MW-18 02/23/2021 14:00 |                                |               |             | Groundwa    | ter              |             |            | BB04080   | )             |
|                             | MW-12V                 | 02/24/2021                     | 08:38         | 1           | Groundwa    | ter              | Ī           |            | BB04081   |               |
| Ī                           | MW-12                  | 02/24/2021                     | 09:48         | 1           | Groundwa    | ter              |             | BB04082    | !         |               |
| İ                           | FB-1                   | 02/24/2021                     | 10:20         | 1           | Field Blank | <b>(</b>         | İ           |            | BB04083   | ;             |
|                             | PB-1 02/24/2021 10:20  |                                |               |             |             |                  |             |            |           |               |
| İ                           |                        |                                |               |             |             |                  |             |            |           |               |
|                             |                        |                                |               |             |             |                  |             |            |           |               |
|                             |                        |                                |               |             |             |                  |             |            |           |               |
| Ì                           |                        |                                |               |             |             |                  | 1           |            |           |               |
| ŀ                           |                        |                                |               |             |             |                  |             |            |           |               |
| ł                           |                        |                                |               |             |             |                  | +           |            |           |               |
| }                           |                        |                                |               |             |             |                  |             |            |           |               |
|                             |                        |                                |               |             |             |                  |             |            |           |               |
| -                           |                        |                                |               |             |             |                  | -           |            |           |               |
| }                           |                        |                                |               |             |             |                  |             |            |           |               |
| L                           |                        |                                |               |             |             |                  |             |            |           |               |
|                             |                        | ished By                       |               |             | F           | Received By      |             |            | Date/     | Гіте          |
|                             | Pales Daty             |                                |               |             |             | Laura Mly        |             |            | 02/24/202 | 21 12:51      |
|                             |                        |                                |               |             |             | •                |             |            |           |               |
|                             |                        |                                |               |             |             |                  |             |            |           |               |
|                             |                        |                                |               |             |             |                  |             |            |           |               |
|                             | m 11                   |                                | <del></del> _ | <del></del> | 4 11        | 1 1 1            | 1           |            |           | _ <del></del> |
|                             |                        | 86-41442-5-1                   |               | 4           |             | als and radio    |             | ottles h   | nave pH < | 2 🗾           |
|                             | Turbidity ID 39        |                                |               | 4           |             | ^ h              | N/A         |            |           |               |
| S                           | ample Event 13         | 09                             |               |             |             |                  | N/A         |            |           |               |
| pH Strip ID 8206-45803-10-7 |                        |                                |               |             |             |                  |             |            |           |               |

Bottles/Pre-Preserved Bottles are provided by the GTL

Page 107 of 108

| Alabama Power | Chain of Custody           |     |
|---------------|----------------------------|-----|
| Field         | Groundwater                |     |
|               | APC General Testing Labora | ato |

| ~ | Field Complete |
|---|----------------|
| · | Lab Complete   |

| • | Outside Lab |
|---|-------------|
|   |             |

| APC General Testing Laboratory  Lab ETA 02/25/2021 09:00            |                         |                       |         |                        |                                                   |            |          |               |              |      |  |  |  |
|---------------------------------------------------------------------|-------------------------|-----------------------|---------|------------------------|---------------------------------------------------|------------|----------|---------------|--------------|------|--|--|--|
| Requested Complete Date Routine Results To Dustin Brooks, Greg Dyer |                         |                       |         |                        |                                                   |            |          |               |              |      |  |  |  |
| •                                                                   | -                       | ntative John          |         | Requested By Greg Dyer |                                                   |            |          |               |              |      |  |  |  |
| Collector TJ Daugherty                                              |                         |                       |         |                        | Location Gorgas                                   |            | Landfill |               |              |      |  |  |  |
| Bottles                                                             | 1 Radium                | 1 L                   | 3 N/A   | N/A                    |                                                   | 5 N/A      | N/A      | 7 N/A         | N/A          |      |  |  |  |
| Dotties                                                             | 2 N/A                   | N/A                   | 4 N/A   | N/A                    |                                                   | 6 N/A      | N/A      | 8 N/A         | N/A          |      |  |  |  |
|                                                                     |                         |                       |         |                        |                                                   |            | ı        |               |              | =    |  |  |  |
| Comments                                                            |                         |                       |         |                        |                                                   |            |          |               |              |      |  |  |  |
|                                                                     |                         |                       |         |                        |                                                   |            |          |               |              |      |  |  |  |
|                                                                     | Sample #                | Date                  | Time    | Bottle Count           |                                                   | Descrip    | tion     | Lab<br>Filter | Lab Id       |      |  |  |  |
| ľ                                                                   | MW-5 02/23/2021 11:58   |                       |         | Groundwater            |                                                   | 1 11001    | BB04158  |               |              |      |  |  |  |
| ľ                                                                   | MW-10 02/23/2021 13:40  |                       |         | Groundwater            |                                                   |            | 1 1      | BB04159       |              |      |  |  |  |
| N                                                                   | MW-20 02/23/2021 14:50  |                       |         | Groundwater            |                                                   |            | BB04160  |               |              |      |  |  |  |
| F                                                                   | FB-2 02/23/2021 15:10   |                       |         | Field Blank            |                                                   |            | BB04161  |               |              |      |  |  |  |
| N                                                                   | MW-11 02/24/2021 10:13  |                       |         | Groundwater            |                                                   |            | BB04162  |               |              |      |  |  |  |
| N                                                                   | лW-19                   | 100                   |         |                        | Groundwater                                       |            |          | BB04163       |              |      |  |  |  |
| N                                                                   | //W-19 Dup              | <del></del>           |         | ) 1                    | Sample Duplicate                                  |            |          | BB04164       |              |      |  |  |  |
| E                                                                   | EB-1                    | 02/24/202             | 13:30   | ) 1                    | Equip                                             | ment Blank |          |               | BB04165      |      |  |  |  |
|                                                                     |                         |                       |         |                        |                                                   |            |          |               |              |      |  |  |  |
|                                                                     |                         |                       |         |                        |                                                   |            |          |               |              |      |  |  |  |
|                                                                     |                         |                       |         |                        |                                                   |            |          |               |              |      |  |  |  |
|                                                                     |                         |                       |         |                        |                                                   |            |          |               |              |      |  |  |  |
|                                                                     |                         |                       |         |                        |                                                   |            |          |               |              |      |  |  |  |
|                                                                     |                         |                       |         |                        |                                                   |            |          | $\sqcup$      |              |      |  |  |  |
| L                                                                   |                         |                       |         |                        |                                                   |            |          | $\perp$       |              |      |  |  |  |
| L                                                                   |                         |                       |         |                        |                                                   |            |          |               |              |      |  |  |  |
|                                                                     |                         |                       |         |                        |                                                   |            |          |               |              |      |  |  |  |
| Ļ                                                                   |                         |                       |         |                        | ļ                                                 |            |          |               |              |      |  |  |  |
| Ļ                                                                   |                         |                       |         |                        |                                                   |            |          |               |              |      |  |  |  |
| L                                                                   |                         |                       |         |                        |                                                   |            |          | $\vdash$      |              |      |  |  |  |
| L                                                                   |                         |                       |         |                        |                                                   |            |          |               |              |      |  |  |  |
|                                                                     | Relin                   | quished By            |         |                        | Received By                                       |            |          | Date/Time     |              |      |  |  |  |
| AL AL                                                               |                         |                       |         |                        | Laura II Wag                                      |            |          |               | 02/25/2021 0 |      |  |  |  |
| 7 70                                                                |                         |                       |         |                        |                                                   |            | og       |               | 02/20/2021 0 | 0.40 |  |  |  |
|                                                                     |                         |                       |         |                        |                                                   |            |          |               |              |      |  |  |  |
|                                                                     |                         |                       |         |                        |                                                   |            |          |               |              |      |  |  |  |
|                                                                     |                         |                       |         |                        |                                                   |            |          |               |              |      |  |  |  |
| SmarTroll ID <b>7586-41443-5-2</b>                                  |                         |                       |         |                        | All metals and radiological bottles have pH < 2 🔽 |            |          |               |              |      |  |  |  |
| Turbidity ID 3901-20009-2-1                                         |                         |                       |         | Cooler Temp N/A        |                                                   |            |          |               |              |      |  |  |  |
| Sample Event 1309                                                   |                         |                       |         |                        | Thermometer ID N/A                                |            |          |               |              |      |  |  |  |
| Bottles/Pre-Preserved Bottles are provided by the GTL               |                         |                       |         |                        |                                                   |            |          |               |              |      |  |  |  |
| Dottics/.                                                           | i i i i i coci ved DUll | ico are provided by t | IIC GIL | _                      |                                                   |            |          |               |              |      |  |  |  |

Page 108 of 108







April 05, 2021

Laura Midkiff Alabama Power 744 Highway 87 **GSC #8** Calera, AL 35040

RE: Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

#### Dear Laura Midkiff:

Enclosed are the analytical results for sample(s) received by the laboratory on March 08, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Greensburg

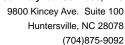
If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

kevin.herring@pacelabs.com

Kein Slury


1(704)875-9092

**HORIZON Database Administrator** 

**Enclosures** 

cc: Brooke Caton, Alabama Power Renee Jernigan, Alabama Power







#### **CERTIFICATIONS**

Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

#### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

**Arkansas Certification** 

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1

Missouri Certification #: 235

New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706

North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282


South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143

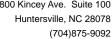
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

#### **REPORT OF LABORATORY ANALYSIS**






#### **SAMPLE SUMMARY**

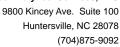
Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Lab ID      | Sample ID         | Matrix | Date Collected | Date Received  |
|-------------|-------------------|--------|----------------|----------------|
| 92526258001 | BB04035 MW-6      | Water  | 02/23/21 10:45 | 03/08/21 09:00 |
| 92526258002 | BB04035 MW-6 MS   | Water  | 02/23/21 10:45 | 03/08/21 09:00 |
| 92526258003 | BB04035 MW-6 MSD  | Water  | 02/23/21 10:45 | 03/08/21 09:00 |
| 92526258004 | BB04036 MW-7      | Water  | 02/23/21 11:35 | 03/08/21 09:00 |
| 92526258005 | BB04037 MW-8      | Water  | 02/23/21 12:35 | 03/08/21 09:00 |
| 92526258006 | BB04074 MW-13     | Water  | 02/23/21 08:33 | 03/08/21 09:00 |
| 92526258007 | BB04075 MW-14     | Water  | 02/23/21 09:45 | 03/08/21 09:00 |
| 92526258008 | BB04075 MW-14 MS  | Water  | 02/23/21 09:45 | 03/08/21 09:00 |
| 92526258009 | BB04075 MW-14 MSD | Water  | 02/23/21 09:45 | 03/08/21 09:00 |
| 92526258010 | BB04076 MW-15     | Water  | 02/23/21 10:45 | 03/08/21 09:00 |
| 92526258011 | BB04077 MW-16     | Water  | 02/23/21 11:40 | 03/08/21 09:00 |
| 92526258012 | BB04078 MW-16 DUP | Water  | 02/23/21 11:40 | 03/08/21 09:00 |
| 92526258013 | BB04079 MW-17R    | Water  | 02/23/21 12:53 | 03/08/21 09:00 |
| 92526258014 | BB04080 MW-18     | Water  | 02/23/21 14:00 | 03/08/21 09:00 |
| 92526258015 | BB04081 MW-12V    | Water  | 02/24/21 08:38 | 03/08/21 09:00 |
| 92526258016 | BB04082 MW-12     | Water  | 02/24/21 09:48 | 03/08/21 09:00 |
| 92526258017 | BB04083 FB-1      | Water  | 02/24/21 10:20 | 03/08/21 09:00 |
| 92526258018 | BB04158 MW-5      | Water  | 02/23/21 11:58 | 03/08/21 09:00 |
| 92526258019 | BB04159 MW-10     | Water  | 02/23/21 13:40 | 03/08/21 09:00 |
| 92526258020 | BB04160 MW-20     | Water  | 02/23/21 14:50 | 03/08/21 09:00 |
| 92526258021 | BB04161 FB-2      | Water  | 02/23/21 15:10 | 03/08/21 09:00 |
| 92526258022 | BB04162 MW-11     | Water  | 02/24/21 10:13 | 03/08/21 09:00 |
| 92526258023 | BB04163 MW-19     | Water  | 02/24/21 12:40 | 03/08/21 09:00 |
| 92526258024 | BB04164 MW-19 DUP | Water  | 02/24/21 12:40 | 03/08/21 09:00 |
| 92526258025 | BB04165 EB-1      | Water  | 02/24/21 13:30 | 03/08/21 09:00 |

#### **REPORT OF LABORATORY ANALYSIS**






# **SAMPLE ANALYTE COUNT**

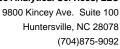
Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Lab ID      | Sample ID         | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------------|--------------------------|----------|----------------------|------------|
| 92526258001 | BB04035 MW-6      | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92526258002 | BB04035 MW-6 MS   | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
| 92526258003 | BB04035 MW-6 MSD  | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
| 92526258004 | BB04036 MW-7      | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92526258005 | BB04037 MW-8      | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92526258006 | BB04074 MW-13     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92526258007 | BB04075 MW-14     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92526258008 | BB04075 MW-14 MS  | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
| 92526258009 | BB04075 MW-14 MSD | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
| 92526258010 | BB04076 MW-15     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92526258011 | BB04077 MW-16     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92526258012 | BB04078 MW-16 DUP | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92526258013 | BB04079 MW-17R    | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92526258014 | BB04080 MW-18     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |






# **SAMPLE ANALYTE COUNT**

Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Lab ID      | Sample ID         | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------------|--------------------------|----------|----------------------|------------|
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92526258015 | BB04081 MW-12V    | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 2526258016  | BB04082 MW-12     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 2526258017  | BB04083 FB-1      | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 2526258018  | BB04158 MW-5      | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 2526258019  | BB04159 MW-10     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 2526258020  | BB04160 MW-20     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 2526258021  | BB04161 FB-2      | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 2526258022  | BB04162 MW-11     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 2526258023  | BB04163 MW-19     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 2526258024  | BB04164 MW-19 DUP | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 2526258025  | BB04165 EB-1      | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | CMC      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg





#### **PROJECT NARRATIVE**

Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

Method: EPA 9315

Description:9315 Total RadiumClient:Alabama PowerDate:April 05, 2021

#### **General Information:**

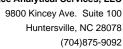
25 samples were analyzed for EPA 9315 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


#### **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### Additional Comments:





#### **PROJECT NARRATIVE**

Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

Method: EPA 9320

**Description:** 9320 Radium 228 **Client:** Alabama Power **Date:** April 05, 2021

#### **General Information:**

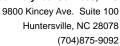
25 samples were analyzed for EPA 9320 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


#### **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### **Additional Comments:**





#### **PROJECT NARRATIVE**

Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

Method:Total Radium CalculationDescription:Total Radium 228+226Client:Alabama PowerDate:April 05, 2021

#### **General Information:**

21 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

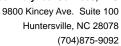
#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### **Additional Comments:**

This data package has been reviewed for quality and completeness and is approved for release.




Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Sample: BB04035 MW-6<br>PWS: | <b>Lab ID: 9252625</b><br>Site ID: | 8001 Collected: 02/23/21 10:45<br>Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|------------------------------|------------------------------------|------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                             | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Ser                | vices - Greensburg                             |           |                |               |      |
| Radium-226                   | EPA 9315                           | 0.262U ± 0.269 (0.537)<br>C:84% T:NA           | pCi/L     | 04/02/21 09:56 | 3 13982-63-3  |      |
|                              | Pace Analytical Ser                | vices - Greensburg                             |           |                |               |      |
| Radium-228                   | EPA 9320                           | 0.892 ± 0.404 (0.666)<br>C:74% T:90%           | pCi/L     | 03/31/21 11:15 | 15262-20-1    |      |
|                              | Pace Analytical Ser                | vices - Greensburg                             |           |                |               |      |
| Total Radium                 | Total Radium Calculation           | 1.15U ± 0.673 (1.20)                           | pCi/L     | 04/02/21 15:26 | 7440-14-4     |      |

03/31/21 11:15 15262-20-1

pCi/L

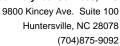




#### **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: GORGAS LANDFILL WMWGORLF\_1309

EPA 9320


Pace Project No.: 92526258

Radium-228

Sample: BB04035 MW-6 MS Lab ID: 92526258002 Collected: 02/23/21 10:45 Received: 03/08/21 09:00 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Method Analyzed Qual Pace Analytical Services - Greensburg 104.79 %REC ± NA (NA) EPA 9315 Radium-226 pCi/L 04/02/21 09:56 13982-63-3 C:NA T:NA Pace Analytical Services - Greensburg

82.97 %REC ± NA (NA)

C:NA T:NA





Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

Sample: BB04035 MW-6 MSD Lab ID: 92526258003 Collected: 02/23/21 10:45 Received: 03/08/21 09:00 Matrix: Water

PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 9315 108.46 %REC 3.45RPD ± Radium-226 pCi/L 04/02/21 09:57 13982-63-3 NA (NA) C:NA T:ŃA Pace Analytical Services - Greensburg EPA 9320 103.43 %REC 21.95 RPD ± Radium-228 pCi/L 03/31/21 11:15 15262-20-1

NA (NA) C:NA T:NA



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Sample: BB04036 MW-7<br>PWS: | <b>Lab ID: 9252625</b><br>Site ID: | Sample Type:                          | Received: | 03/08/21 09:00 | Matrix: Water |      |
|------------------------------|------------------------------------|---------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                             | Act ± Unc (MDC) Carr Trac             | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Ser                | rvices - Greensburg                   |           |                |               |      |
| Radium-226                   | EPA 9315                           | 0.206U ± 0.213 (0.386)<br>C:72% T:NA  | pCi/L     | 04/02/21 09:57 | 13982-63-3    |      |
|                              | Pace Analytical Ser                | rvices - Greensburg                   |           |                |               |      |
| Radium-228                   | EPA 9320                           | 0.490U ± 0.436 (0.887)<br>C:74% T:84% | pCi/L     | 03/31/21 11:15 | 15262-20-1    |      |
|                              | Pace Analytical Ser                | rvices - Greensburg                   |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation        | 0.696U ± 0.649 (1.27)                 | pCi/L     | 04/02/21 15:26 | 7440-14-4     |      |



Project: GORGAS LANDFILL WMWGORLF\_1309

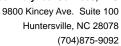
Pace Project No.: 92526258

| Sample: BB04037 MW-8<br>PWS: | <b>Lab ID:</b> 9252625<br>Site ID: | 8005 Collected: 02/23/21 12:35<br>Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|------------------------------|------------------------------------|------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                             | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Ser                | vices - Greensburg                             |           |                |               |      |
| Radium-226                   | EPA 9315                           | 0.159U ± 0.209 (0.442)<br>C:88% T:NA           | pCi/L     | 04/02/21 09:57 | 7 13982-63-3  |      |
|                              | Pace Analytical Ser                | vices - Greensburg                             |           |                |               |      |
| Radium-228                   | EPA 9320                           | 0.526U ± 0.382 (0.749)<br>C:77% T:90%          | pCi/L     | 03/31/21 11:15 | 5 15262-20-1  |      |
|                              | Pace Analytical Ser                | vices - Greensburg                             |           |                |               |      |
| Total Radium                 | Total Radium Calculation           | 0.685U ± 0.591 (1.19)                          | pCi/L     | 04/02/21 15:26 | 7440-14-4     |      |



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258


| Sample: BB04074 MW-13<br>PWS: | <b>Lab ID: 92526</b> Site ID: | <b>Collected:</b> 02/23/21 08:33 Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|-------------------------------|-------------------------------|-----------------------------------------------|-----------|----------------|---------------|------|
| Parameters                    | Method                        | Act ± Unc (MDC) Carr Trac                     | Units     | Analyzed       | CAS No.       | Qual |
|                               | Pace Analytical S             | Services - Greensburg                         |           |                |               |      |
| Radium-226                    | EPA 9315                      | 0.0305U ± 0.145 (0.380)<br>C:92% T:NA         | pCi/L     | 04/02/21 09:57 | 7 13982-63-3  |      |
|                               | Pace Analytical S             | Services - Greensburg                         |           |                |               |      |
| Radium-228                    | EPA 9320                      | 0.422U ± 0.317 (0.621)<br>C:78% T:96%         | pCi/L     | 03/31/21 11:15 | 5 15262-20-1  |      |
|                               | Pace Analytical S             | Services - Greensburg                         |           |                |               |      |
| Total Radium                  | Total Radium Calculation      | 0.453U ± 0.462 (1.00)                         | pCi/L     | 04/02/21 15:26 | 6 7440-14-4   |      |



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| <b>Sample: BB04075 MW-14</b> PWS: | <b>Lab ID</b> : <b>925262</b> Site ID: | 58007 Collected: 02/23/21 09:45<br>Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|-----------------------------------|----------------------------------------|-------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                        | Method                                 | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed       | CAS No.       | Qual |
|                                   | Pace Analytical Se                     | rvices - Greensburg                             |           |                |               |      |
| Radium-226                        | EPA 9315                               | 0.245U ± 0.218 (0.392)<br>C:92% T:NA            | pCi/L     | 04/02/21 09:57 | 7 13982-63-3  |      |
|                                   | Pace Analytical Se                     | rvices - Greensburg                             |           |                |               |      |
| Radium-228                        | EPA 9320                               | 0.559U ± 0.361 (0.681)<br>C:76% T:89%           | pCi/L     | 03/31/21 11:15 | 5 15262-20-1  |      |
|                                   | Pace Analytical Se                     | rvices - Greensburg                             |           |                |               |      |
| Total Radium                      | Total Radium<br>Calculation            | 0.804U ± 0.579 (1.07)                           | pCi/L     | 04/02/21 15:26 | 7440-14-4     |      |





Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

Sample: BB04075 MW-14 MS Lab ID: 92526258008 Collected: 02/23/21 09:45 Received: 03/08/21 09:00 Matrix: Water

C:NA T:NA

PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Method Analyzed Qual Pace Analytical Services - Greensburg 103.27 %REC ± NA (NA) EPA 9315 Radium-226 pCi/L 04/02/21 09:57 13982-63-3 C:NA T:NA Pace Analytical Services - Greensburg 88.52 %REC ± NA (NA) EPA 9320 03/31/21 11:15 15262-20-1 Radium-228

pCi/L



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

Sample: BB04075 MW-14 MSD Lab ID: 92526258009 Collected: 02/23/21 09:45 Received: 03/08/21 09:00 Matrix: Water

PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 9315 104.01 %REC 0.72RPD ± pCi/L Radium-226 04/02/21 09:57 13982-63-3 NA (NA) C:NA T:ŃA Pace Analytical Services - Greensburg EPA 9320 105.07 %REC 17.10 RPD ± Radium-228 pCi/L 03/31/21 11:15 15262-20-1

NA (NA) C:NA T:NA



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Sample: BB04076 MW-15<br>PWS: | <b>Lab ID: 92526</b> 2<br>Site ID: | 258010 Collected: 02/23/21 10:45 Sample Type: | Received: | 03/08/21 09:00 I | Matrix: Water |      |
|-------------------------------|------------------------------------|-----------------------------------------------|-----------|------------------|---------------|------|
| Parameters                    | Method                             | Act ± Unc (MDC) Carr Trac                     | Units     | Analyzed         | CAS No.       | Qual |
|                               | Pace Analytical S                  | ervices - Greensburg                          |           |                  |               |      |
| Radium-226                    | EPA 9315                           | 0.209U ± 0.222 (0.442)<br>C:94% T:NA          | pCi/L     | 04/02/21 09:57   | 13982-63-3    |      |
|                               | Pace Analytical S                  | ervices - Greensburg                          |           |                  |               |      |
| Radium-228                    | EPA 9320                           | 0.378U ± 0.313 (0.628)<br>C:75% T:103%        | pCi/L     | 03/31/21 11:16   | 15262-20-1    |      |
|                               | Pace Analytical S                  | ervices - Greensburg                          |           |                  |               |      |
| Total Radium                  | Total Radium<br>Calculation        | 0.587U ± 0.535 (1.07)                         | pCi/L     | 04/02/21 15:26   | 7440-14-4     |      |



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Sample: BB04077 MW-16<br>PWS: | <b>Lab ID:</b> 92526258<br>Site ID: | Collected: 02/23/21 11:40<br>Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|-------------------------------|-------------------------------------|-------------------------------------------|-----------|----------------|---------------|------|
| Parameters                    | Method                              | Act ± Unc (MDC) Carr Trac                 | Units     | Analyzed       | CAS No.       | Qual |
|                               | Pace Analytical Serv                | ices - Greensburg                         |           |                |               |      |
| Radium-226                    |                                     | -0.308U ± 0.246 (0.765)<br>C:96% T:NA     | pCi/L     | 04/02/21 09:58 | 3 13982-63-3  |      |
|                               | Pace Analytical Serv                | ices - Greensburg                         |           |                |               |      |
| Radium-228                    |                                     | 0.546U ± 0.405 (0.798)<br>C:72% T:88%     | pCi/L     | 03/31/21 11:16 | 5 15262-20-1  |      |
|                               | Pace Analytical Serv                | ices - Greensburg                         |           |                |               |      |
| Total Radium                  | Total Radium<br>Calculation         | 0.546U ± 0.651 (1.56)                     | pCi/L     | 04/02/21 15:26 | 6 7440-14-4   |      |



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Sample: BB04078 MW-16 DUP<br>PWS: | <b>Lab ID: 92526</b><br>Site ID: | 2258012 Collected: 02/23/21 11:40 Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|-----------------------------------|----------------------------------|------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                        | Method                           | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed       | CAS No.       | Qual |
|                                   | Pace Analytical S                | Services - Greensburg                          |           |                |               |      |
| Radium-226                        | EPA 9315                         | 0.348U ± 0.253 (0.435)<br>C:95% T:NA           | pCi/L     | 04/02/21 09:58 | 13982-63-3    |      |
|                                   | Pace Analytical S                | Services - Greensburg                          |           |                |               |      |
| Radium-228                        | EPA 9320                         | 0.261U ± 0.373 (0.801)<br>C:74% T:88%          | pCi/L     | 03/31/21 11:16 | 15262-20-1    |      |
|                                   | Pace Analytical S                | Services - Greensburg                          |           |                |               |      |
| Total Radium                      | Total Radium<br>Calculation      | 0.609U ± 0.626 (1.24)                          | pCi/L     | 04/02/21 15:26 | 7440-14-4     |      |



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Sample: BB04079 MW-17R<br>PWS: | <b>Lab ID: 925262</b><br>Site ID: | 258013 Collected: 02/23/21 12:53<br>Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|--------------------------------|-----------------------------------|--------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                     | Method                            | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed       | CAS No.       | Qual |
|                                | Pace Analytical Se                | ervices - Greensburg                             |           |                |               |      |
| Radium-226                     | EPA 9315                          | 0.177U ± 0.231 (0.495)<br>C:99% T:NA             | pCi/L     | 04/02/21 09:58 | 3 13982-63-3  |      |
|                                | Pace Analytical So                | ervices - Greensburg                             |           |                |               |      |
| Radium-228                     | EPA 9320                          | 0.263U ± 0.317 (0.666)<br>C:72% T:86%            | pCi/L     | 03/31/21 11:16 | 5 15262-20-1  |      |
|                                | Pace Analytical So                | ervices - Greensburg                             |           |                |               |      |
| Total Radium                   | Total Radium<br>Calculation       | 0.440U ± 0.548 (1.16)                            | pCi/L     | 04/02/21 15:26 | 6 7440-14-4   |      |



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Sample: BB04080 MW-18 PWS: | <b>Lab ID: 92526</b><br>Site ID: | 2258014 Collected: 02/23/21 14:00<br>Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|----------------------------|----------------------------------|---------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                           | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical S                | Services - Greensburg                             |           | •              | •             |      |
| Radium-226                 | EPA 9315                         | 0.494U ± 0.414 (0.831)<br>C:84% T:NA              | pCi/L     | 04/02/21 09:58 | 8 13982-63-3  |      |
|                            | Pace Analytical S                | Services - Greensburg                             |           |                |               |      |
| Radium-228                 | EPA 9320                         | 0.254U ± 0.283 (0.590)<br>C:75% T:96%             | pCi/L     | 03/31/21 11:16 | 6 15262-20-1  |      |
|                            | Pace Analytical S                | Services - Greensburg                             |           |                |               |      |
| Total Radium               | Total Radium Calculation         | 0.748U ± 0.697 (1.42)                             | pCi/L     | 04/02/21 15:26 | 6 7440-14-4   |      |



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Sample: BB04081 MW-12V<br>PWS: | <b>Lab ID: 9252625</b><br>Site ID: | 8015 Collected: 02/24/21 08:38 Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|--------------------------------|------------------------------------|---------------------------------------------|-----------|----------------|---------------|------|
| Parameters                     | Method                             | Act ± Unc (MDC) Carr Trac                   | Units     | Analyzed       | CAS No.       | Qual |
|                                | Pace Analytical Ser                | vices - Greensburg                          |           |                |               |      |
| Radium-226                     | EPA 9315                           | 0.865 ± 0.404 (0.587)<br>C:91% T:NA         | pCi/L     | 04/02/21 09:58 | 3 13982-63-3  |      |
|                                | Pace Analytical Ser                | vices - Greensburg                          |           |                |               |      |
| Radium-228                     | EPA 9320                           | -0.0367U ± 0.259 (0.619)<br>C:77% T:91%     | pCi/L     | 03/31/21 11:16 | 15262-20-1    |      |
|                                | Pace Analytical Ser                | vices - Greensburg                          |           |                |               |      |
| Total Radium                   | Total Radium<br>Calculation        | 0.865U ± 0.663 (1.21)                       | pCi/L     | 04/02/21 15:26 | 7440-14-4     |      |



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Sample: BB04082 MW-12<br>PWS: | <b>Lab ID: 925262</b><br>Site ID: | <b>58016</b> Collected: 02/24/21 09:48 Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|-------------------------------|-----------------------------------|-----------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                    | Method                            | Act ± Unc (MDC) Carr Trac                           | Units     | Analyzed       | CAS No.       | Qual |
|                               | Pace Analytical Se                | ervices - Greensburg                                |           |                |               |      |
| Radium-226                    | EPA 9315                          | 0.260U ± 0.266 (0.526)<br>C:84% T:NA                | pCi/L     | 04/02/21 09:47 | 7 13982-63-3  |      |
|                               | Pace Analytical Se                | ervices - Greensburg                                |           |                |               |      |
| Radium-228                    | EPA 9320                          | 0.975 ± 0.427 (0.697)<br>C:80% T:82%                | pCi/L     | 03/31/21 11:16 | 5 15262-20-1  |      |
|                               | Pace Analytical Se                | ervices - Greensburg                                |           |                |               |      |
| Total Radium                  | Total Radium Calculation          | 1.24 ± 0.693 (1.22)                                 | pCi/L     | 04/02/21 15:26 | 7440-14-4     |      |



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Sample: BB04083 FB-1<br>PWS: | <b>Lab ID: 925262</b><br>Site ID: | 58017 Collected: 02/24/21 10:20 Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|------------------------------|-----------------------------------|----------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                            | Act ± Unc (MDC) Carr Trac                    | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Se                | ervices - Greensburg                         |           |                |               |      |
| Radium-226                   | EPA 9315                          | 0.189U ± 0.343 (0.781)<br>C:90% T:NA         | pCi/L     | 04/02/21 09:47 | 7 13982-63-3  |      |
|                              | Pace Analytical Se                | ervices - Greensburg                         |           |                |               |      |
| Radium-228                   | EPA 9320                          | 0.253U ± 0.338 (0.723)<br>C:75% T:90%        | pCi/L     | 03/31/21 11:16 | 5 15262-20-1  |      |
|                              | Pace Analytical Se                | ervices - Greensburg                         |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation       | 0.442U ± 0.681 (1.50)                        | pCi/L     | 04/02/21 15:26 | 7440-14-4     |      |



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Sample: BB04158 MW-5<br>PWS: | Lab ID: 9252<br>Site ID:    | <b>6258018</b> Collected: 02/23/21 11:58 Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|------------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                   | EPA 9315                    | 0.129U ± 0.233 (0.531)<br>C:88% T:NA                  | pCi/L     | 04/02/21 09:47 | 7 13982-63-3  |      |
|                              | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                   | EPA 9320                    | 0.581U ± 0.324 (0.590)<br>C:80% T:102%                | pCi/L     | 03/31/21 11:17 | 7 15262-20-1  |      |
|                              | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation | 0.710U ± 0.557 (1.12)                                 | pCi/L     | 04/02/21 15:26 | 6 7440-14-4   |      |



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Sample: BB04159 MW-10 PWS: | <b>Lab ID: 925262</b><br>Site ID: | <b>Collected:</b> 02/23/21 13:40 Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|----------------------------|-----------------------------------|-----------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                            | Act ± Unc (MDC) Carr Trac                     | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical Se                | ervices - Greensburg                          |           |                |               |      |
| Radium-226                 | EPA 9315                          | 0.164U ± 0.245 (0.541)<br>C:90% T:NA          | pCi/L     | 04/02/21 09:47 | 7 13982-63-3  |      |
|                            | Pace Analytical Se                | ervices - Greensburg                          |           |                |               |      |
| Radium-228                 | EPA 9320                          | 0.165U ± 0.350 (0.773)<br>C:80% T:81%         | pCi/L     | 03/31/21 11:17 | 7 15262-20-1  |      |
|                            | Pace Analytical Se                | ervices - Greensburg                          |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation       | 0.329U ± 0.595 (1.31)                         | pCi/L     | 04/02/21 16:11 | 7440-14-4     |      |



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Sample: BB04160 MW-20 PWS: | <b>Lab ID: 925262</b><br>Site ID: | 58020 Collected: 02/23/21 14:50<br>Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|----------------------------|-----------------------------------|-------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                            | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical Se                | rvices - Greensburg                             |           |                |               |      |
| Radium-226                 | EPA 9315                          | 0.464U ± 0.312 (0.547)<br>C:96% T:NA            | pCi/L     | 04/02/21 09:47 | 7 13982-63-3  |      |
|                            | Pace Analytical Se                | rvices - Greensburg                             |           |                |               |      |
| Radium-228                 | EPA 9320                          | 0.727 ± 0.385 (0.680)<br>C:81% T:85%            | pCi/L     | 03/31/21 11:17 | 7 15262-20-1  |      |
|                            | Pace Analytical Se                | rvices - Greensburg                             |           |                |               |      |
| Total Radium               | Total Radium Calculation          | 1.19U ± 0.697 (1.23)                            | pCi/L     | 04/02/21 16:11 | 7440-14-4     |      |



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Sample: BB04161 FB-2<br>PWS: | <b>Lab ID: 92526258</b><br>Site ID: | Collected: 02/23/21 15:10<br>Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|------------------------------|-------------------------------------|-------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                              | Act ± Unc (MDC) Carr Trac                 | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Serv                | rices - Greensburg                        |           |                |               |      |
| Radium-226                   | EPA 9315                            | 0.0821U ± 0.220 (0.527)<br>C:95% T:NA     | pCi/L     | 04/02/21 09:48 | 3 13982-63-3  |      |
|                              | Pace Analytical Serv                | rices - Greensburg                        |           |                |               |      |
| Radium-228                   | EPA 9320                            | 0.295U ± 0.363 (0.768)<br>C:73% T:82%     | pCi/L     | 03/22/21 13:00 | 6 15262-20-1  |      |
|                              | Pace Analytical Serv                | rices - Greensburg                        |           |                |               |      |
| Total Radium                 | Total Radium Calculation            | 0.377U ± 0.583 (1.30)                     | pCi/L     | 04/05/21 09:03 | 3 7440-14-4   |      |



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Sample: BB04162 MW-11<br>PWS: | <b>Lab ID: 9252625</b> Site ID: | 58022 Collected: 02/24/21 10:13<br>Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|-------------------------------|---------------------------------|-------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                    | Method                          | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed       | CAS No.       | Qual |
|                               | Pace Analytical Se              | rvices - Greensburg                             |           |                |               |      |
| Radium-226                    | EPA 9315                        | 0.261U ± 0.293 (0.610)<br>C:96% T:NA            | pCi/L     | 04/02/21 09:48 | 3 13982-63-3  |      |
|                               | Pace Analytical Se              | rvices - Greensburg                             |           |                |               |      |
| Radium-228                    | EPA 9320                        | 0.608U ± 0.383 (0.706)<br>C:71% T:83%           | pCi/L     | 03/22/21 13:06 | 5 15262-20-1  |      |
|                               | Pace Analytical Se              | rvices - Greensburg                             |           |                |               |      |
| Total Radium                  | Total Radium Calculation        | 0.869U ± 0.676 (1.32)                           | pCi/L     | 04/05/21 09:03 | 3 7440-14-4   |      |



Project: GORGAS LANDFILL WMWGORLF\_1309

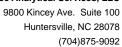
Pace Project No.: 92526258

| <b>Sample: BB04163 MW-19</b> PWS: | <b>Lab ID: 9252625</b><br>Site ID: | 58023 Collected: 02/24/21 12:40<br>Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|-----------------------------------|------------------------------------|-------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                        | Method                             | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed       | CAS No.       | Qual |
|                                   | Pace Analytical Se                 | rvices - Greensburg                             |           |                |               |      |
| Radium-226                        | EPA 9315                           | 0.295U ± 0.254 (0.475)<br>C:97% T:NA            | pCi/L     | 04/02/21 09:43 | 3 13982-63-3  |      |
|                                   | Pace Analytical Se                 | rvices - Greensburg                             |           |                |               |      |
| Radium-228                        | EPA 9320                           | 0.525U ± 0.391 (0.761)<br>C:66% T:90%           | pCi/L     | 03/22/21 13:06 | 5 15262-20-1  |      |
|                                   | Pace Analytical Se                 | rvices - Greensburg                             |           |                |               |      |
| Total Radium                      | Total Radium Calculation           | 0.820U ± 0.645 (1.24)                           | pCi/L     | 04/05/21 09:03 | 3 7440-14-4   |      |



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258


| Sample: BB04164 MW-19 DUP PWS: | <b>Lab ID: 925262</b><br>Site ID: | 258024 Collected: 02/24/21 12:40 Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|--------------------------------|-----------------------------------|-----------------------------------------------|-----------|----------------|---------------|------|
| Parameters                     | Method                            | Act ± Unc (MDC) Carr Trac                     | Units     | Analyzed       | CAS No.       | Qual |
|                                | Pace Analytical So                | ervices - Greensburg                          |           |                |               |      |
| Radium-226                     | EPA 9315                          | 0.103U ± 0.246 (0.581)<br>C:97% T:NA          | pCi/L     | 04/02/21 09:43 | 13982-63-3    |      |
|                                | Pace Analytical So                | ervices - Greensburg                          |           |                |               |      |
| Radium-228                     | EPA 9320                          | 0.578U ± 0.379 (0.717)<br>C:68% T:95%         | pCi/L     | 03/22/21 13:06 | 15262-20-1    |      |
|                                | Pace Analytical So                | ervices - Greensburg                          |           |                |               |      |
| Total Radium                   | Total Radium Calculation          | 0.681U ± 0.625 (1.30)                         | pCi/L     | 04/05/21 09:03 | 7440-14-4     |      |



Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

| Sample: BB04165 EB-1<br>PWS: | <b>Lab ID:</b> 9252625<br>Site ID: | 8025 Collected: 02/24/21 13:30 Sample Type: | Received: | 03/08/21 09:00 | Matrix: Water |      |
|------------------------------|------------------------------------|---------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                             | Act ± Unc (MDC) Carr Trac                   | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Ser                | vices - Greensburg                          |           |                |               |      |
| Radium-226                   | EPA 9315                           | 0.362U ± 0.235 (0.400)<br>C:100% T:NA       | pCi/L     | 04/02/21 13:56 | 3 13982-63-3  |      |
|                              | Pace Analytical Ser                | vices - Greensburg                          |           |                |               |      |
| Radium-228                   | EPA 9320                           | 0.294U ± 0.384 (0.818)<br>C:69% T:82%       | pCi/L     | 03/22/21 13:07 | 7 15262-20-1  |      |
|                              | Pace Analytical Ser                | vices - Greensburg                          |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation        | 0.656U ± 0.619 (1.22)                       | pCi/L     | 04/05/21 09:03 | 3 7440-14-4   |      |





Project: GORGAS LANDFILL WMWGORLF\_1309

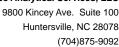
Pace Project No.: 92526258

QC Batch: 438036 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92526258021, 92526258022, 92526258023, 92526258024, 92526258025


METHOD BLANK: 2114421 Matrix: Water

Associated Lab Samples: 92526258021, 92526258022, 92526258023, 92526258024, 92526258025

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.660 ± 0.339 (0.509) C:100% T:NA
 pCi/L
 04/02/21 09:47

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

QC Batch: 437939 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

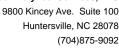
Associated Lab Samples: 92526258001, 92526258002, 92526258003, 92526258004, 92526258005, 92526258006, 92526258007,

92526258008, 92526258009, 92526258010, 92526258011, 92526258012, 92526258013, 92526258014,

92526258015, 92526258016, 92526258017, 92526258018, 92526258019, 92526258020

METHOD BLANK: 2114111 Matrix: Water

Associated Lab Samples: 92526258001, 92526258002, 92526258003, 92526258004, 92526258005, 92526258006, 92526258007,


92526258008, 92526258009, 92526258010, 92526258011, 92526258012, 92526258013, 92526258014,

92526258015, 92526258016, 92526258017, 92526258018, 92526258019, 92526258020

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.202 ± 0.272 (0.582) C:78% T:NA
 pCi/L
 04/02/21 09:56

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

QC Batch: 437954 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

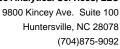
Associated Lab Samples: 92526258001, 92526258002, 92526258003, 92526258004, 92526258005, 92526258006, 92526258007,

92526258008, 92526258009, 92526258010, 92526258011, 92526258012, 92526258013, 92526258014,

92526258015, 92526258016, 92526258017, 92526258018, 92526258019, 92526258020

METHOD BLANK: 2114137 Matrix: Water

Associated Lab Samples: 92526258001, 92526258002, 92526258003, 92526258004, 92526258005, 92526258006, 92526258007,


92526258008, 92526258009, 92526258010, 92526258011, 92526258012, 92526258013, 92526258014,

92526258015, 92526258016, 92526258017, 92526258018, 92526258019, 92526258020

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.108 ± 0.317 (0.711) C:76% T:87%
 pCi/L
 03/31/21 11:20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

QC Batch: 437961 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92526258021, 92526258022, 92526258023, 92526258024, 92526258025

METHOD BLANK: 2114144 Matrix: Water

Associated Lab Samples: 92526258021, 92526258022, 92526258023, 92526258024, 92526258025

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 0.271 ± 0.377 (0.808) C:72% T:79% pCi/L 03/22/21 13:07

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

#### **QUALIFIERS**

Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

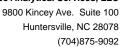
A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 04/05/2021 01:42 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)


(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.





# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

Date: 04/05/2021 01:42 PM

| Lab ID      | Sample ID         | QC Batch Method | QC Batch | Analytical Method | Analytica<br>Batch |
|-------------|-------------------|-----------------|----------|-------------------|--------------------|
| 92526258001 | BB04035 MW-6      | EPA 9315        | 437939   | _                 |                    |
| 2526258002  | BB04035 MW-6 MS   | EPA 9315        | 437939   |                   |                    |
| 2526258003  | BB04035 MW-6 MSD  | EPA 9315        | 437939   |                   |                    |
| 2526258004  | BB04036 MW-7      | EPA 9315        | 437939   |                   |                    |
| 2526258005  | BB04037 MW-8      | EPA 9315        | 437939   |                   |                    |
| 2526258006  | BB04074 MW-13     | EPA 9315        | 437939   |                   |                    |
| 2526258007  | BB04075 MW-14     | EPA 9315        | 437939   |                   |                    |
| 2526258008  | BB04075 MW-14 MS  | EPA 9315        | 437939   |                   |                    |
| 2526258009  | BB04075 MW-14 MSD | EPA 9315        | 437939   |                   |                    |
| 2526258010  | BB04076 MW-15     | EPA 9315        | 437939   |                   |                    |
| 2526258011  | BB04077 MW-16     | EPA 9315        | 437939   |                   |                    |
| 2526258012  | BB04078 MW-16 DUP | EPA 9315        | 437939   |                   |                    |
| 2526258013  | BB04079 MW-17R    | EPA 9315        | 437939   |                   |                    |
| 2526258014  | BB04080 MW-18     | EPA 9315        | 437939   |                   |                    |
| 2526258015  | BB04081 MW-12V    | EPA 9315        | 437939   |                   |                    |
| 2526258016  | BB04082 MW-12     | EPA 9315        | 437939   |                   |                    |
| 2526258017  | BB04083 FB-1      | EPA 9315        | 437939   |                   |                    |
| 2526258018  | BB04158 MW-5      | EPA 9315        | 437939   |                   |                    |
| 2526258019  | BB04159 MW-10     | EPA 9315        | 437939   |                   |                    |
| 2526258020  | BB04160 MW-20     | EPA 9315        | 437939   |                   |                    |
| 2526258021  | BB04161 FB-2      | EPA 9315        | 438036   |                   |                    |
| 2526258022  | BB04162 MW-11     | EPA 9315        | 438036   |                   |                    |
| 2526258023  | BB04163 MW-19     | EPA 9315        | 438036   |                   |                    |
| 2526258024  | BB04164 MW-19 DUP | EPA 9315        | 438036   |                   |                    |
| 2526258025  | BB04165 EB-1      | EPA 9315        | 438036   |                   |                    |
| 2526258001  | BB04035 MW-6      | EPA 9320        | 437954   |                   |                    |
| 2526258002  | BB04035 MW-6 MS   | EPA 9320        | 437954   |                   |                    |
| 2526258003  | BB04035 MW-6 MSD  | EPA 9320        | 437954   |                   |                    |
| 2526258004  | BB04036 MW-7      | EPA 9320        | 437954   |                   |                    |
| 2526258005  | BB04037 MW-8      | EPA 9320        | 437954   |                   |                    |
| 2526258006  | BB04074 MW-13     | EPA 9320        | 437954   |                   |                    |
| 2526258007  | BB04075 MW-14     | EPA 9320        | 437954   |                   |                    |
| 2526258008  | BB04075 MW-14 MS  | EPA 9320        | 437954   |                   |                    |
| 2526258009  | BB04075 MW-14 MSD | EPA 9320        | 437954   |                   |                    |
| 2526258010  | BB04076 MW-15     | EPA 9320        | 437954   |                   |                    |
| 2526258011  | BB04077 MW-16     | EPA 9320        | 437954   |                   |                    |
| 2526258012  | BB04078 MW-16 DUP | EPA 9320        | 437954   |                   |                    |
| 2526258013  | BB04079 MW-17R    | EPA 9320        | 437954   |                   |                    |
| 2526258014  | BB04080 MW-18     | EPA 9320        | 437954   |                   |                    |
| 2526258015  | BB04081 MW-12V    | EPA 9320        | 437954   |                   |                    |
| 2526258016  | BB04082 MW-12     | EPA 9320        | 437954   |                   |                    |
| 2526258017  | BB04083 FB-1      | EPA 9320        | 437954   |                   |                    |
| 2526258018  | BB04158 MW-5      | EPA 9320        | 437954   |                   |                    |
| 2526258019  | BB04159 MW-10     | EPA 9320        | 437954   |                   |                    |
| 2526258020  | BB04160 MW-20     | EPA 9320        | 437954   |                   |                    |
| 2526258021  | BB04161 FB-2      | EPA 9320        | 437961   |                   |                    |
| 2526258022  | BB04162 MW-11     | EPA 9320        | 437961   |                   |                    |



### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: GORGAS LANDFILL WMWGORLF\_1309

Pace Project No.: 92526258

Date: 04/05/2021 01:42 PM

| Lab ID      | Sample ID         | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-------------------|--------------------------|----------|-------------------|---------------------|
| 92526258023 | BB04163 MW-19     | EPA 9320                 | 437961   |                   |                     |
| 92526258024 | BB04164 MW-19 DUP | EPA 9320                 | 437961   |                   |                     |
| 92526258025 | BB04165 EB-1      | EPA 9320                 | 437961   |                   |                     |
| 92526258001 | BB04035 MW-6      | Total Radium Calculation | 441637   |                   |                     |
| 92526258004 | BB04036 MW-7      | Total Radium Calculation | 441637   |                   |                     |
| 92526258005 | BB04037 MW-8      | Total Radium Calculation | 441637   |                   |                     |
| 92526258006 | BB04074 MW-13     | Total Radium Calculation | 441637   |                   |                     |
| 92526258007 | BB04075 MW-14     | Total Radium Calculation | 441637   |                   |                     |
| 92526258010 | BB04076 MW-15     | Total Radium Calculation | 441637   |                   |                     |
| 2526258011  | BB04077 MW-16     | Total Radium Calculation | 441637   |                   |                     |
| 2526258012  | BB04078 MW-16 DUP | Total Radium Calculation | 441637   |                   |                     |
| 2526258013  | BB04079 MW-17R    | Total Radium Calculation | 441637   |                   |                     |
| 2526258014  | BB04080 MW-18     | Total Radium Calculation | 441637   |                   |                     |
| 2526258015  | BB04081 MW-12V    | Total Radium Calculation | 441637   |                   |                     |
| 92526258016 | BB04082 MW-12     | Total Radium Calculation | 441637   |                   |                     |
| 92526258017 | BB04083 FB-1      | Total Radium Calculation | 441637   |                   |                     |
| 92526258018 | BB04158 MW-5      | Total Radium Calculation | 441637   |                   |                     |
| 92526258019 | BB04159 MW-10     | Total Radium Calculation | 441656   |                   |                     |
| 92526258020 | BB04160 MW-20     | Total Radium Calculation | 441656   |                   |                     |
| 92526258021 | BB04161 FB-2      | Total Radium Calculation | 441779   |                   |                     |
| 92526258022 | BB04162 MW-11     | Total Radium Calculation | 441779   |                   |                     |
| 2526258023  | BB04163 MW-19     | Total Radium Calculation | 441779   |                   |                     |
| 92526258024 | BB04164 MW-19 DUP | Total Radium Calculation | 441779   |                   |                     |
| 92526258025 | BB04165 EB-1      | Total Radium Calculation | 441779   |                   |                     |

### **REPORT OF LABORATORY ANALYSIS**

Pittsburgh Lab Sample Condition Upon Receipt W0#:92526258 Phyler Compay .Pace Analytical Client Name: Courier: Fed Ex UPS USPS Client Commercial Pace Other 10 no no no Custody Seal on Cooler/Box Present: Seals intact: Type of Ice: Wet Blue None Thermometer Used °C Final Temp: Correction Factor: \_ **Observed Temp** Cooler Temperature Temp should be above freezing to 6°C pH paper Lot# Date and Initials of person examining contents: 1/1/2 N/A Yes No Comments: Chain of Custody Present: 2. Chain of Custody Filled Out: Chain of Custody Relinquished: Signature Sampler Name & Signature on COC: Sample Labels match COC: Matrix: -Includes date/time/ID Samples Arrived within Hold Time: Short Hold Time Analysis (<72hr remaining): 8. Rush Turn Around Time Requested: 9. Sufficient Volume: 10. Correct Containers Used: -Pace Containers Used: 11. Containers Intact: 12. Orthophosphate field filtered 13. Hex Cr Aqueous sample field filtered 14. Organic Samples checked for dechlorination: 15. Filtered volume received for Dissolved tests All containers have been checked for preservation. 16. exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, Non-aqueous matrix Initial when M All containers meet method preservation Date/time of preservation completed requirements. Lot # of added preservative 17. Headspace in VOA Vials ( >6mm): 18. Trip Blank Present: Trip Blank Custody Seals Present Initial when Rad Samples Screened < 0.5 mrem/hr completed: Client Notification/ Resolution: Contacted By: Person Contacted: Comments/ Resolution:

A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

\*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

### CHAIN-OF-CUSTODY / Analytical Request Document

|                                              |                            |          | September              |                               | 12 | 11 | 10 | 9 | 00        | 7         | o       | 5         | 34     | 3         | 2             |           | ITEM#                                                                                         | requested but bate.            | Dogwooded         | Phone:                | 1                | Address:                               | Company:              | Section A<br>Required C                  |   |
|----------------------------------------------|----------------------------|----------|------------------------|-------------------------------|----|----|----|---|-----------|-----------|---------|-----------|--------|-----------|---------------|-----------|-----------------------------------------------------------------------------------------------|--------------------------------|-------------------|-----------------------|------------------|----------------------------------------|-----------------------|------------------------------------------|---|
|                                              |                            |          |                        | ADDITIONAL COMMENTS           |    |    |    |   |           |           |         |           |        | B804037   | BB04036       | BB04035   | SAMPLE ID One Character per box. (A-Z, 0-3 /, -) Sample lds must be unique                    | Due Daie. 20 Days              | Die Date: 38 dave | 205-664-6197 Fax      | Calera, AL 35040 | 744 Highway 87 GSC Bldg #8             | Alabama Power Company | Section A  Required Client Information:  |   |
|                                              |                            |          | į.                     |                               |    |    |    |   |           |           |         |           |        | 8-WM      | MW-7          | MW-6      | MATRIX Drinking Water DW Water WW Product WW Product P Soll/Solid OL Wife WR Arp OT Tresue TS |                                | Project Number    | Project Name:         |                  | Сору То:                               |                       | Section B  Required Project Information: |   |
|                                              |                            |          | Laura Midkiff/ APC GTL | æ                             | L  | _  |    |   | _         | L         | L       | _         | L      | GW G      | GWG           | gw/g      | MATRIX CODE (see valid codes to left)                                                         |                                | 1                 | ame:                  | Purchase Order#: |                                        |                       | 3<br>Project I                           |   |
|                                              |                            |          | ff APC                 | NOUIS                         |    |    |    |   |           |           |         |           |        | ō.        | 6             | ଜ         | SAMPLE TYPE (G=GRAB C=COMP)                                                                   | Ì                              |                   | ဂ္ဂ<br>ဂ္ဂ            |                  | oke C                                  | Laura Midkiff         | nform                                    |   |
| ,                                            | 1.765                      |          | GTL                    | RELINQUISHED BY / AFFILIATION | _  |    | _  |   | L         |           |         |           | _      |           |               |           | START                                                                                         |                                | ×.                | Gorgas Landfill       | DC5757           | aton & R                               | Kiff<br>T             | ation:                                   |   |
| s P                                          | AMPL                       |          |                        | FFLU                          |    |    |    |   |           |           |         |           |        |           |               |           | COLL                                                                                          |                                | SWG<br>G          | -                     |                  | enee                                   |                       |                                          |   |
| PRINT Name of SAMPLER: SIGNATURE of SAMPLER: | SAMPLER NAME AND SIGNATURE |          |                        | NOTE                          |    |    |    |   |           |           |         |           |        | 2/23/2021 | 2/23/2021     | 2/23/2021 | COLLECTED                                                                                     |                                | 7<br>T            |                       | 4                | Brooke Caton & Renee Jernigan          |                       |                                          |   |
| of SAI                                       | AND S                      |          | 2/26/2021              | b                             | T  |    | T  | T | T         |           |         |           | T      | 12:35     | 11:35         | 10:45     | Time                                                                                          | ľ                              | 1309              |                       |                  |                                        |                       |                                          |   |
|                                              | SAL<br>T                   |          | 2021                   | DATE                          | Ļ  | ╀  | ╀  | ╀ | +         | $\vdash$  | ╁       | ╁         | ╁      | ╀         | +             | ├         | SAMPLE TEMP AT COLLECTION                                                                     |                                |                   |                       |                  |                                        |                       |                                          |   |
| ", ויי                                       | [2]                        | $\dashv$ | 13                     |                               | 十  | +  | +  | t | 十         | T         | t       | $\dagger$ | 十      | 1-        | -             | ω         | # OF CONTAINERS                                                                               | Ī                              | Pace              | Pace                  | Pace             | address: 744 Highway 8                 | Attention:            | Invoice In                               |   |
|                                              |                            |          | 13:55                  | TIME                          |    | 士  | 上  | T | I         |           |         |           |        |           |               |           | Unpreserved                                                                                   | ۱                              | Pace Profile #:   | Pace Project Manager: | Pace Quote:      | Deltay I                               | tion:                 | Invoice Information:                     | ) |
|                                              |                            |          |                        |                               |    |    |    | L | _         | _         | 1       | $\perp$   | $\bot$ | ×         | ×             | ×         | H2SO4                                                                                         | ۱                              | e#                | ct Ma                 | ie               | 7                                      | <u></u>               | оппа                                     |   |
|                                              |                            |          | 号                      |                               | L  | +  | +  | + | +-        | ╀         | ╀       | ╀         | ╀      | +         | -             | -         | HNO3                                                                                          |                                |                   | nagei                 | 1                |                                        | ura                   | tion:                                    |   |
|                                              |                            |          |                        |                               | H  | +  | +  | ╁ | ╁         | ╁         | 十       | 十         | +      | 十         | 十             | 十         | HOO3 HCI NaOH Na2S2O3 Preserved Na2S2O3                                                       |                                |                   | .,,                   | 9                | aban                                   | Laura Midkitt         |                                          |   |
|                                              |                            |          | TUT                    | ĝ                             | -  | +  | 十  | t | $\dagger$ | $\dagger$ | T       | $\dagger$ | +      |           |               |           | Na2S2O3 (%                                                                                    |                                |                   | Kev                   | 앐                | a la                                   |                       |                                          |   |
|                                              |                            |          |                        | PIE                           | L  |    |    |   | I         |           |         |           | I      | I         | L             | _         | Methanol                                                                                      |                                |                   | H.                    | ~1               | 714                                    |                       |                                          |   |
|                                              |                            |          | 7                      | EPTED BY I AFFILIATION        | _  |    |    |   | $\perp$   |           | <u></u> | $\perp$   | L      |           |               |           | Other Analyses Test Y/N                                                                       |                                |                   | Kevin Herring         | 9                | GSC Rida #8                            | 3                     |                                          |   |
| 4                                            |                            |          | -                      | F.                            | H  | T  |    | Т | Т         | Т         | Т       | Т         | Т      | ×         | ×             | I×        | EPA 9315                                                                                      | 300 B                          |                   | _                     | 1                | 対                                      |                       |                                          |   |
| D                                            |                            |          | 5                      | 1                             |    | +  | +  | + | $\dagger$ | +         | T       | t         | 1      | ×         | ┸             | ┸         | EPA 9320                                                                                      | Req                            |                   |                       |                  | ~                                      | Ì                     |                                          |   |
| DATE Signed:                                 |                            | -        | 15                     | ž                             |    |    |    |   | I         | T         |         |           | L      | ľ         | ×             | ×         | Total Radium Sum  Matrix Spike/Matrix Splke Dt                                                | ques                           |                   |                       |                  |                                        |                       |                                          |   |
| med:                                         |                            |          | 1                      |                               | _  | 1  | +  | + | -         | +         | +       | +         | ╀      | +         | ╀             | -         | Mainx SpikerMainx Spike De                                                                    | uested Analysis Filtered (Y/N) | H                 |                       | П                | 8                                      | _   .                 | 1                                        |   |
|                                              |                            |          | V                      | 3                             | +  | +  | ╁  | + | +         | 十         | +       | +         | +      | +         | 十             | 十         |                                                                                               | nalyst                         |                   | XXXXX                 |                  | 200                                    |                       |                                          |   |
|                                              |                            |          | 300                    | DAIR                          |    | 十  | +  | T |           |           |         |           |        |           |               |           |                                                                                               | 5 Fifte                        |                   |                       |                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  |                       |                                          |   |
|                                              |                            |          | 2                      | , 1                           |    |    |    |   | I         |           |         |           | _      | _         | 1             | _         |                                                                                               | par.                           |                   |                       |                  | 100                                    |                       |                                          |   |
|                                              |                            |          | 5                      | <b>\</b>                      | -  | 4  | +  | + | +         | +         | +       | +         | +      | +         | +             | ╁         |                                                                                               | S.                             |                   |                       |                  | 144                                    |                       |                                          |   |
|                                              |                            | $\Box$   | 6                      |                               | ŀ  | +  | +  | + | +         | 十         | ╬       | +         | +      | +         | +             | $\dagger$ |                                                                                               | 1000                           |                   | Sta                   |                  | Regu                                   |                       | v                                        | ٦ |
|                                              |                            | ++       | -                      | · 88                          |    | +  | -  | + | +         | +         | +       | 1         | +      | 士         | 1             |           |                                                                                               |                                | P                 | 100                   | H                | laton                                  |                       | Page                                     |   |
| TEMP                                         | n C                        |          | 7                      |                               | -  |    |    |   |           |           |         | _         | _      |           |               |           | Residual Chlorine (Y/N)                                                                       |                                | ľ                 | State / Location      |                  | Regulatory Agency                      |                       | Ι.                                       |   |
| Receive                                      | ed on                      |          |                        | - Indian                      |    |    | T  | T | T         | T         |         |           |        |           |               |           |                                                                                               |                                |                   | T.                    |                  | ξÝ                                     |                       |                                          |   |
| (Y/N)                                        |                            |          | 1                      | `                             | n  |    |    |   |           |           |         |           |        |           |               |           |                                                                                               |                                |                   | 26,25%                |                  | <b>建建设</b>                             |                       |                                          |   |
| Custod<br>Sealed                             |                            |          | 7                      | -   3                         |    |    |    |   |           |           |         |           |        |           |               |           |                                                                                               |                                |                   | Service Control       |                  | \$50,000<br>\$10,000                   |                       | ರ್ಷ                                      |   |
| Cooler<br>(Y/N)_                             |                            |          |                        |                               | 3  |    |    |   |           |           |         |           |        |           |               |           |                                                                                               |                                |                   | 2000                  |                  | 38.83 CA                               |                       |                                          |   |
| Sample                                       | es                         |          | 1                      | 1                             | 0  |    | 1  |   |           |           |         |           |        |           |               |           |                                                                                               |                                |                   | 0.00000               |                  | ************************************** |                       | ω                                        |   |
| (Y/N)                                        |                            |          |                        | 1                             |    |    |    |   |           |           |         | $\perp$   |        |           | ا<br>ج<br>ج ج | 1         | 3                                                                                             | 413                            | L                 |                       | L                | #                                      |                       |                                          |   |

|                                      |                                       |          |   |                        |                               | 12       | 1         | 10 4      | 000       | 7         | o         | Ů,        | 4         | 3         | 2         |           | ITEM#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | Requested Due Date: | Phone:                | l s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | Address:                 | 1 ₩                          |                                                                                                                                            |
|--------------------------------------|---------------------------------------|----------|---|------------------------|-------------------------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |                                       |          |   |                        | ADDITIONAL COMMENTS           |          |           | BB04082   | BB04081   | BB04080   | BB04079   | BB04078   | BB04077   | BB04076   | BB04075   | BB04074   | SAMPLE ID One Character per box. (A-Z, 0-9 i, -) Sample lds must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | ນe Date: 28 days    | 205-664-6197 Fax      | lbmidkif@southernco.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Calera, At 35040                  | Alabama Power Company    | Required Client Information: |                                                                                                                                            |
|                                      |                                       |          |   | Laura                  |                               |          |           | MVV-12    | MW-12V    | MVV-18    | MW-17R    | MW-16 DUP | MW-16     | 9t-W      | MW-14     | MW-13     | MATRIX DINISING Water DW Water Water Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product CM Product |                                   |                     | Project Name:         | Purchase Order #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | top) iv.                          |                          |                              | ,                                                                                                                                          |
|                                      |                                       |          |   | Laura Midkiff/ APC GTL | RELINO                        |          |           | G GWG     | GWG       | GWG       | GWG       | GWG       | GWG       | GW/G      | GW G      | GWG       | MATRIX CODE (see valid codes to<br>SAMPLE TYPE (G=GRAB C=CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                 |                     |                       | rder#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,00                              | Laura                    | roject In                    |                                                                                                                                            |
|                                      |                                       |          |   | PC GTL                 | UISHED                        | $\dashv$ |           |           | +         |           |           |           |           |           |           |           | D <sub>A</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | War y                             |                     | Gorgas Landfill       | APC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ie calo                           | Laura Midkiff            | formatio                     |                                                                                                                                            |
| (a) 7                                | S S S S S S S S S S S S S S S S S S S |          |   |                        | RELINQUISHED BY ! AFFILIATION |          | 1         |           | $\dagger$ | -         |           |           |           |           |           |           | ART ART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | WWW                 | _andfill              | APC57570-0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | יו מ אמות                         | 0                        | 2.                           |                                                                                                                                            |
| SIGNATURE of SAMPLER:                | SAMPLER NAME AND SIGNATURE            |          |   |                        | ATTON                         |          |           | 2/24/2021 | 2/24/2021 | 2/23/2021 | 2/23/2021 | 2/23/2021 | 2/23/2021 | 2/23/2021 | 2/23/2021 | 2/23/2021 | COLLECTED  END  BOTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | WMWGORLF 1309       |                       | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DIOONE CALOIT & NEI HEE JEI JIGAI | - Tomico                 |                              | CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. |
| of SAMPL                             | ND SIGN                               |          |   | 2/26/2021              | DATE                          | $\top$   |           | 10-20     |           | 14:00     | 12:53     |           | 11:40     |           |           | 8:33      | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | 309                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                          |                              | N-OF.                                                                                                                                      |
| 8 8                                  | ATURE                                 |          |   |                        | m                             | 1        | 1         |           | -         | 1         | _         | -1        | 1         | 1         | ω         |           | SAMPLE TEMP AT COLLECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | P                   | Ţ                     | 701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PIC                               | ) <u>&gt;</u>            | 5 V                          | stody CC                                                                                                                                   |
|                                      |                                       |          |   | 13:55                  | TRME                          | $\dashv$ | +         | +         | +         | -         | _         | Н         |           | Ш         | Н         | Н         | # OF CONTAINERS Unpreserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                 | Pace Profile #:     | Pace Project Manager. | Pace Quote:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dipa                              | Attention: Laura Midkiff | invoice information:         | STC                                                                                                                                        |
|                                      |                                       |          |   | ا ا                    | î                             |          |           |           | 1         |           |           |           |           |           | Ţ         | V         | H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | ofile#:             | oject N               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ly Nait                           | 3                        | Inform                       | EGA.                                                                                                                                       |
|                                      |                                       |          |   | N                      |                               | 4        | - ;       | ×         | ľ         | ×         | ×         | ×         | ×         | ×         | ×         | ×         | HNO3 Preservatives HCI RaOH Preservatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                     | ianage                | CCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | aura                     | ation:                       | L DO                                                                                                                                       |
|                                      |                                       |          |   | Merus                  |                               | +        | +         |           | _         | $\vdash$  |           |           |           |           |           |           | NaOH 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   | П                   |                       | SALIS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aban                              | Midk                     |                              | CUM                                                                                                                                        |
|                                      |                                       |          |   | 50                     | 8                             | _        | 1         |           |           | F         | Ĺ         |           |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                     | Kevir                 | CCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | , #                      |                              | ENT.                                                                                                                                       |
|                                      |                                       |          |   | کری                    | TED E                         | +        | +         | +         | +         | $\vdash$  | -         | $\vdash$  |           | $\dashv$  | _         |           | Methanol Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                     | in Herring            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wer Co.                           |                          |                              | <u>eal</u>                                                                                                                                 |
|                                      |                                       |          |   | C                      | ACCEPTED BY! AFFILIATION      |          |           |           |           |           |           |           |           |           |           |           | Analyses Test Y/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                                 |                     | Zi Zi                 | GOC BING #0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000                               |                          |                              | Reva                                                                                                                                       |
|                                      |                                       |          |   | Curs                   | II I                          |          | - 1       | × ×       | ×         | ×         | ×         | ×         | ×         | ×         | ×         | ×         | EPA 9315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                     |                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                 |                          |                              | que<br>nt fie                                                                                                                              |
| DATE Signed:                         |                                       |          | " | 57                     | NO                            | $\dashv$ |           | ××        |           | ×         | ×         | ×         | ×         | ×         |           | ×         | EPA 9320<br>Total Radium Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Req                               | $\  \ $             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                          |                              | lds n                                                                                                                                      |
| Signe                                |                                       |          |   |                        |                               | +        | $\dagger$ | +         | +         |           |           | Н         |           |           | ×         |           | Matrix Spike/Matrix Splke Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | este                              |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\perp$                           |                          |                              | Doc<br>1                                                                                                                                   |
| **                                   |                                       |          |   |                        |                               |          |           |           | L         |           |           |           |           |           | $\Box$    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Requested Analysis Filtered (YIN) | П                   |                       | ON THE PARTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T                                 |                          |                              | 8 <b>%</b>                                                                                                                                 |
|                                      |                                       |          |   | 3                      | Į.                            | $\dashv$ | -         | +         | +         | $\vdash$  | _         | -         | _         |           | $\dashv$  | $\dashv$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ysts i                            |                     | 100000                | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                   |                          |                              | nen<br>mple                                                                                                                                |
|                                      |                                       |          |   | -87ag                  | DATE                          | +        | +         | +         | 十         | +         |           | $\vdash$  |           | $\dashv$  | $\dashv$  | $\dashv$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | littere                           |                     |                       | 20/20/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                          |                              | iëd 🕶                                                                                                                                      |
|                                      |                                       | $\vdash$ |   | 2                      |                               | T        |           |           | 士         |           |           |           |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                     | 1000                  | - Seminar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                          |                              | <u>1</u>                                                                                                                                   |
| -                                    |                                       |          |   | 8                      | HWE.                          |          |           |           | F         | E         |           |           |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                     |                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                          |                              | ately                                                                                                                                      |
|                                      |                                       |          | - |                        |                               | $\dashv$ | +         | -         | +         | +         | -         | $\vdash$  | -         | $\dashv$  |           | $\vdash$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                     | Xate.                 | Syupa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                          | Page :                       |                                                                                                                                            |
| TEMP i                               | n C                                   |          |   | SE                     |                               |          |           |           | 1         |           | <u>L</u>  |           | نــا      |           |           | $\dashv$  | Residual Chlorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | ٤                   | State 1 Location      | regulatory Agents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                          | e :                          |                                                                                                                                            |
| Receive                              | d on                                  |          | 1 | ,                      | SAN                           | T        | T         | Τ         | T         | Π         |           |           |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                     | tion                  | Acres 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                          |                              |                                                                                                                                            |
| ce<br>(Y/N)                          |                                       |          | ' | 6                      | P                             |          |           |           |           |           |           |           |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | $\ \ $              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                          | 2                            |                                                                                                                                            |
| Custody<br>Sealed<br>Cooler<br>(Y/N) | i                                     |          |   | 1                      | SAMPLE CONDITIONS             |          |           |           |           |           |           |           |           |           |           |           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                     |                       | 400 m 800 m 800 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                          | ಧ                            |                                                                                                                                            |
| Sample                               | S                                     |          | 1 | ~                      | 1 3                           |          |           |           |           |           |           |           |           |           |           |           | 26.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                     |                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                          | ω                            |                                                                                                                                            |
| ntact<br>(Y/N)                       |                                       |          |   |                        |                               |          |           |           | $\bot$    | <u>L</u>  |           |           |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | Ц                   | 300                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                          |                              | ]                                                                                                                                          |
|                                      |                                       |          |   |                        | 200.000                       |          | <         | ?<br>2.   | ,0        | 0         | 0         | 0         | 00        | 3         | 20        | Q         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                          |                              | Page 43                                                                                                                                    |

|                                  |                            |     |                        |                                          | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 -       | 10        | 9         | 00        | 7         | 6         | 5         | *         | 3         | 2         |           | Requested Due Date:  ###################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | Address:                     | Company:                       | Section A                                |                                                                                             |
|----------------------------------|----------------------------|-----|------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------|--------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------|
|                                  |                            |     |                        | ADDITIONAL COMMENS                       | A CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR |           |           |           | BB04165   | BB04164   | BB04163   | BB04162   | 8804161   | BB04160   | BB04159   | BB04158   | ibmidkri(e)soutrernce.com 205-664-6197  Fax 205-664-6197  Fax Le Date: 28 days  SAMPLE ID  SAMPLE ID  One Character per box. (A-Z, 0-91, -)  Sample ids must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Calera, AL 35040  | 744 Highway 87 GSC Bldg #8   | Company: Alabama Power Company | art Information:                         |                                                                                             |
|                                  |                            |     | Lai                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |           | EB-1      | MW-19 DUP | MW-19     | MW-11     | FB-2      | MW-20     | MW-10     | MW-5      | Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.  Project Number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                              |                                | Section B  Required Project Information: |                                                                                             |
|                                  |                            |     | Laura Midkiff/ APC GTL |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +         | +         | ╀         | GWIG      | GWG       | gw/g      | GWG       | GWG       | GWG       | GW/G      | gwlg      | MATRIX CODE (see valid codes to left)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 1               | 1                            | Lau                            | Project                                  |                                                                                             |
|                                  |                            |     | f/ APC                 | 200                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #         | 1         |           | ត         | ଜ         | Ĝ         | G         | ດ         | G         | G         | 9         | SAMPLE TYPE (G=GRAB C=COMP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | oke C                        | Laura Midkiff                  | informs:                                 |                                                                                             |
|                                  |                            |     | SIL                    | Ē                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |           |           |           |           |           |           |           |           |           | APCS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | aton a                       | 益                              | tion:                                    |                                                                                             |
|                                  | S<br>S                     |     |                        | 6                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\top$    |           | T         | T         |           | Γ         |           |           |           | Г         |           | GOLLEC START - START TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | § Re⊓                        |                                |                                          |                                                                                             |
| PRIN                             | SAMPLER NAME AND SIGNATURE |     |                        | KELINGUSHEDE I JACTICA I JON             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +         | +         | +         | 2%        | 2/2       | 2/2       | 2/2       | 2/2       | 2/2       | 2/2       | 2/2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Brooke Caton & Renee Jemigan |                                |                                          | Τ'n                                                                                         |
| PRINT Name of SAMPLER:           | NAME                       |     |                        | Ca                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |           |           | 2/24/2021 | 2/24/2021 | 2/24/2021 | 2/24/2021 | 2/23/2021 | 2/23/2021 | 2/23/2021 | 2/23/2021 | DATE E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | miga                         |                                |                                          | The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately. |
| e of S                           | AND                        |     | 123                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ╅         | +         | +         | 1 13:30   | 1 12:40   | 1 12:40   | 1 10:13   | 1 15:10   | 1 14:50   | 13:40     | 11:58     | 1309 1309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | 5                            | ١                              |                                          | The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be complete              |
| AMPLE                            | SIGNA                      |     | 2/26/2021              | 3                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |           | 8         | 8         | 5         | 3         | ō         | ő         | 5         | ă         | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                              |                                |                                          | Custo                                                                                       |
| 9 7                              | IURE                       | _ _ |                        | 200                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +         | +         | +         | -         |           |           |           | -         | -^        | ->        | 1         | # OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ad                | ပ္ပ                          | Atte                           | in Sex                                   | ody is                                                                                      |
|                                  |                            |     | 13:55                  | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +         | +         | 十         | ┞         | $\vdash$  | $\vdash$  | _         | 一         |           |           | _         | # OF CONTAINERS  Unpreserved  H2SO4  HNO3  HCI  Page Project Ms  Preserved  Project Ms  Preserved  HROB Project Ms  Preserved  HROB Project Ms  Preserved  Project Ms  Preserved  Project Ms  Preserved  Project Ms  Preserved  Project Ms  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preserved  Preser | dress:            | Company Name: Alabama Po     | Attention:                     | Section C<br>Invoice Information:        | a                                                                                           |
|                                  |                            |     |                        |                                          | ñ  -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\dagger$ | +         | $\dagger$ |           |           |           |           |           |           |           |           | H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | Nam                          |                                | n C                                      | EGA                                                                                         |
|                                  |                            |     | -                      | Z                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           | I         | ×         | ×         | ×         | ×         | ×         | ×         | ×         | ×         | HNO3 Preservatives Key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 744 Highway 87    | ë.                           | Laura Midkiff                  | ation                                    | ב                                                                                           |
|                                  |                            |     | 1 (12) 1 23            | 2                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4         | +         | +         | ╀         | -         | -         | -         | -         | -         | -         | _         | HCI ee Vat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ξġ                | laba                         | Mic                            | ••                                       | č                                                                                           |
|                                  |                            |     |                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +         | +         | +         | ╁         | $\vdash$  | ╁         | $\vdash$  | $\vdash$  | $\vdash$  | -         |           | Na2S2O3 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | way 8             | ma F                         | Ĩ.                             |                                          | Ē                                                                                           |
|                                  |                            | -   | 3                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 十         | $\dagger$ | $\dagger$ | $\dagger$ |           |           |           |           |           |           |           | Methanol Si Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37 G              | owe                          |                                |                                          | <br><u>A</u>                                                                                |
|                                  |                            |     | 1/2                    | 4                                        | PTED BY AFFILIATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |           |           | L         |           |           |           |           |           |           | Methanol Other Analyses Test Y/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 GSC Bidg #8     | ဂ္ဂ                          |                                |                                          | rele                                                                                        |
|                                  |                            |     | [                      | _                                        | à L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _         |           | _         | Ι×        | Ι×        | ×         | ×         | I×        | Ι×        | ×         | ×         | Analyses Test Y/N a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | idg #             |                              |                                |                                          | vant                                                                                        |
| 2                                |                            |     | 1                      | 3                                        | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | +         | ╁         | ×         | ×         | ×         | ×         | ×         | ×         | ×         | ×         | EPA 9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                 |                              |                                |                                          | field                                                                                       |
| TES                              |                            |     |                        | 2                                        | 오  -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\dagger$ | $\top$    | +         | ×         | ×         | ×         | ×         | ×         | ×         | ×         | ×         | Total Radium Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                              |                                |                                          | 끮                                                                                           |
| DATE Signed:                     |                            |     |                        | 2000                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Box$    |           |           |           |           |           | L         | _         | _         | _         | L         | Total Radium Sum Matrix Spike/Matrix Spike Du  SS Filtered (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 138               | Н                            |                                |                                          | st be                                                                                       |
|                                  |                            |     | 1                      | <b>7</b> \                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4         | -         | +         | ┿         | ╀         | ╀         | ┞         | ╀         | ╀         | ╀         | -         | - Villand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | l                            |                                |                                          | 8                                                                                           |
|                                  |                            |     | 1 2                    | 122                                      | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +         | +         | +         | +         | ╁         | $\vdash$  | ╁         | $\vdash$  | 十         | +         | $\vdash$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |                                |                                          | plet                                                                                        |
|                                  |                            |     | 1 12                   | 31                                       | #  -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 十         |           | 十         | $\dagger$ | 1         | T         | T         |           | 上         |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11000             |                              |                                |                                          | 8                                                                                           |
|                                  |                            |     |                        | 2                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |           | I         | L         | L         |           |           |           | _         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |                                |                                          | cura                                                                                        |
|                                  |                            |     | 1                      | 3                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4         | +         |           | +         | +         | -         | $\vdash$  | +         | F         | +         | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reg               | 1                            | Ī                              |                                          | tely.                                                                                       |
| 1                                |                            | -   | ++                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +         | +         | +         | +         | +         | T         | T         | +         | $\vdash$  | T         | $\perp$   | Residual Chlorina (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Regulatory Agency |                              |                                | Page                                     |                                                                                             |
| EMP in                           | С                          |     |                        | 2                                        | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |           |           |           | _         |           |           |           |           |           | _         | Residual Chlorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y Ag              |                              |                                | ••                                       |                                                                                             |
| eceive                           | d on                       |     | 71                     |                                          | SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |           | T         | T         | T         | Γ         |           |           |           |           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ency              |                              |                                | ω                                        |                                                                                             |
| )<br>(/N)                        |                            |     | 1                      | 4                                        | F S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |           |           |           |           |           |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 要素を               |                              |                                |                                          |                                                                                             |
| ustody<br>ealed<br>ooler<br>(/N) |                            |     | 1                      | A CONTRACTOR                             | SAMPLE CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |           |           |           |           |           |           |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |                                | <u>오</u>                                 |                                                                                             |
| amples<br>tact                   | ì                          |     | 1                      |                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |           |           |           |           |           |           |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |                                | 3                                        |                                                                                             |
| Y/N)                             |                            |     | لللل                   | . 19                                     | 8866 <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |           |           | 5         | 5         | 5         | 2         | 2         | 3         | ; 5       | 3,5       | THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P |                   |                              | ,                              |                                          | Pa                                                                                          |

Face Analytical"

# Quality Control Sample Performance Assessment

Ra-226

CLA 3/12/2021

Analyst: Date:

Test

59196 DW

Worklist: Matrix:

2114111

MB Sample ID MB concentration M/B Counting Uncertainty.

Method Blank Assessment

0.270 1.46 NA Pass

MB MDC:

MB Status vs Numerical Indicator: MB Status vs. MDC:

Laboratory Control Sample Assessment

MB Numerical Performance Indicator:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

92526258007 92526258008 92526258009 0.20 0.20 23.997 0.200 24.017 0.288 0.288 0.245 25.026 1.652 1.652 1.652 1.653 1.653 1.099 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.007 1.007 1.007 1.007 1.007 1.007 1.007 1.007 1.007 1.007 1.007 1.007 1.007 1.007 1.007 19-033 24,040 92526258001 92526258002 92526258003 19-033
24,040
0.20
0.20
0.20
0.23
23,660
0.206
23,341
0.284
0.287
0.287
1.721
25,055
1.771
1.259
1.731
1.259
1.731
1.259
1.731
1.259
1.731
1.259 MS/MSD 1 2/23/2021 N'A N'A Pass Sample I.D. Sample MS I.D. Sample MSD I.D. Matrix Spike Duplicate Result Counting Uncertainty (pCl/L, g, F):

MS Numerical Performance Indicator: MS Status vs Numerical Indicator. MSD Status vs Numerical Indicator. Sample Collection Date: MS/MSD Decay Corrected Spike Concentration (pCi/mt.): Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL): MS Aliquot (L, g, F): MSD Aliquot (L, g, F): MS Spike Uncertainty (calculated): MSD Spike Uncertainty (calculated): Sample Result Sample Result Counting Uncertainty (pCirt., g. F): Sample Matrix Spike Result. Matrix Spike Result Counting Uncertainty (pCi/L, g, F) Sample Matrix Spike Duplicate Result MSD Numerical Performance Indicator MS Percent Recovery MSD Percent Recovery MS Target Conc.(pCi/L, g, F) MSD Target Conc. (pCi/L, g, F) Spike I.D. Sample Matrix Spike Control Assessment 0.10 0.205 11,709 0.141 13,008 1,244 2.03 111,10% N/A Pass 125% 75% 19-033 24.039

CS59196 4/2/2021 19-033 24.039

Count Date

Spike 1.D.

0.10 0.202 11.921

Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F): Uncertainty (Calculated):

Volume Used (mL):

Decay Corrected Spike Concentration (pCi/mL):

|      |      | Matrix Spike/Matrix Spike Duplicate Sample Assessment | ı |
|------|------|-------------------------------------------------------|---|
|      |      |                                                       |   |
| 75%  | 75%  | MS/MSD Lower % Recovery Limits:                       |   |
| 125% | 125% | MS/MSD Upper % Recovery Limits:                       |   |
| Pass | Pass | MSD Status vs Recovery:                               |   |
| Pass | Pass | MS Status vs Recovery:                                |   |
|      |      |                                                       |   |

Enter Duplicate other than LCS/LCSD in the space below

LCS59196

Sample I.D.: Duplicate Sample I.D.

1.259

Sample Result (DCIVL, g, F):
Sample Result Counting Uncertainty (pCiVL, g, F):
Sample Duplicate Result (pCiVL, g, F):
Sample Duplicate Result (pCIVL, g, F):

NO 0.306 0.30%

(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:

Duplicate Status vs Numerical Indicator

Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator: N/A Pass 25%

Duplicate Status vs RPD: % RPD Limit:

111.44%

Percent Recovery: Status vs Recovery:

Status vs Numerical Indicator

N/A Pass 125% 75%

Upper % Recovery Limits: Lower % Recovery Limits:

**Duplicate Sample Assessmen** 

0.143 13.284 1.259 2.11

Result (pCt/L, g, F):
LCS/LCSD Counting Uncertainty (pCt/L, g, F):
Numerical Performance Indicator:

sample IDs if

|   | Matrix Spike/Matrix Spike Duplicate Sample Assessment              |             |             |
|---|--------------------------------------------------------------------|-------------|-------------|
|   | Sample I.D.                                                        | 92526258001 | 92526258007 |
|   | Sample MS I.D.                                                     | 92526258002 | 92526258008 |
|   | Sample MSD I.D.                                                    | 92526258003 | 92526258009 |
|   | Sample Matrix Spike Result.                                        | 25.055      | 25.026      |
|   | Matrix Spike Result Counting Uncertainty (pCi/l., g, F):           | 1.721       | 1.652       |
|   | Sample Matrix Spike Duplicate Result:                              | 25.579      | 25.225      |
|   | Matrix Spike Duplicate Result Counting Uncertainty (pCi/l., g, F): | 1,731       | 1.683       |
| _ | Duplicate Numerical Performance Indicator:                         | -0.420      | -0.166      |
|   | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:           | 3.45%       | 0.72%       |
| 1 | MS/ MSD Duplicate Status vs Numerical Indicator:                   | ΝΆ          | N/A         |
|   | MS/ MSD Duplicate Status vs RPD:                                   | Pass        | Pass        |
|   | % RPD Limit.                                                       | 25%         | 25%         |
|   |                                                                    |             |             |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC,

Comments:

### Pace Analytical

# **Quality Control Sample Performance Assessment**

MS/MSD 2

MS/MSD 1

Sample Collection Date

Sample Matrix Spike Control Assessment

Sample I.D. Sample MS I.D. Sample MSD I.D. Spike I.D.:

MS/MSD Decay Corrected Spike Concentration (pCi/mL):
Spike Volume Used in MS (mL):

MS Aliquot (L. g. F): MS Target Conc.(pCi/L, g, F):

Spike Volume Used in MSD (mL)

Analyst Must Manually Enter All Fields Highlighted in Yellow.

| Ra-226<br>CLA<br>3/12/2021<br>59242  | <b>.</b> |
|--------------------------------------|----------|
| Test<br>Analyst<br>Date:<br>Worklist | Mau A.   |

| 3/12/2021<br>59242<br>DW     | 2114421      | 0.660             | 0.325                     | 0.509   | 3.98                                | A/A                               | See Comment*       |
|------------------------------|--------------|-------------------|---------------------------|---------|-------------------------------------|-----------------------------------|--------------------|
| Date:<br>Worklist<br>Matrix: | MB Sample ID | MB concentration: | M/B Counting Uncertainty: | MB MDC: | MB Numerical Performance Indicator: | MB Status vs Numerical Indicator; | MB Status vs. MDC: |

Method Blank Assessment

| ( | MSD Aliquot (L, g, F): | MSD Target Conc. (pCi/L, g, F): | MS Spike Uncertainty (calculated): | MSD Spike Uncertainty (calculated): | Sample Result: | Sample Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Result: | Matrix Spike Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | MS Numerical Performance Indicator: | MSD Numerical Performance Indicator: | MS Percent Recovery: | MSD Percent Recovery: | MS Status vs Numerical Indicator: | MSD Status vs Numerical Indicator; | MS Status vs Recovery: | MSD Status vs Recovery: | MS/MSD Upper % Recovery Limits: | MS/MSD Lower % Recovery Limits: |
|---|------------------------|---------------------------------|------------------------------------|-------------------------------------|----------------|---------------------------------------------------|-----------------------------|---------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------|-------------------------------------|--------------------------------------|----------------------|-----------------------|-----------------------------------|------------------------------------|------------------------|-------------------------|---------------------------------|---------------------------------|
|   |                        |                                 |                                    | ¥                                   | CSD59242       | 4/2/2021                                          | 19-033                      | 24.039                                                  | 0.10                                  | 0.207                                                             | 11.602                              | 0.139                                | 11.497               | 1.099                 | -0.18                             | 99.10%                             | N/A                    | Pass                    | 125%                            | 75%                             |

0.10 0.202 11.912 0.143 11.069 1.142 -1.43

Aliquot Volume (L. g, F): Target Conc. (pCVL, g, F): Uncertainty (Calculated):

Volume Used (mL):

Result (pC/I/L, g, F):
LCS/LCSD Counting Uncertainty (pC/I/L, g, F):
Numerical Performance Indicator;

ş

Percent Recovery:

Status vs Numerical Indicator

Status vs Recovery: Upper % Recovery Limits: Lower % Recovery Limits:

4/2/2021 19-033 24.039

Count Date Spike I.D.

Laboratory Control Sample Assessmer

Decay Corrected Spike Concentration (pCi/mL):

| Enter Duplicate sample IDs if other than LCS/LCSD in the space below. | Matrix Spike/Matrix Spike Duplicate Sample Assessment | Sample I.D. | S<br>Sample Mat | Matrix Spike Result Count | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | Duplicate Numerical Performance Indicator:  (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: | MS/ MSD Duplicate Status vs Numerical Indicator:<br>MS/ MSD Duplicate Status vs RPD: | RPD imit |
|-----------------------------------------------------------------------|-------------------------------------------------------|-------------|-----------------|---------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------|
|-----------------------------------------------------------------------|-------------------------------------------------------|-------------|-----------------|---------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------|

LCS59242 11.069 1.142 11.497 1.099 NO -0.530 6.43%

Sample Result (DC/II., g, F):
Sample Result Counting Uncertainty (pC/II., g, F):
Sample Duplicate Result (pC/II., g, F):
Sample Duplicate Result (pC/II., g, F):

Are sample and/or duplicate results below RL?

Duplicate Numerical Performance Indicator: Duplicate Status vs Numerical Indicator:

(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:

Sample I.D.: Duplicate Sample I.D.

Duplicate Sample Assessment

| ഗ        |
|----------|
| ₽        |
| ~        |
| Ĕ        |
| 3        |
| 훘        |
| ھ        |
| ည        |
| 60       |
| 읔        |
| es       |
| 0        |
| Ŕ        |
| 썢        |
| ¥        |
| ž        |
| ė        |
| ፭        |
| aď       |
| ŝ        |
| š        |
| હ        |
| Æ        |
| 8        |
| <u>•</u> |
| <u>8</u> |
| Ξ        |
| 8        |
| ā        |
| s not a  |
| .22      |
| 5        |
| .₩       |
| မ္မ      |
| ā        |
| 鱼        |
| <u>8</u> |
| 굨        |
| ō        |
| 5        |
| 5        |
| ച        |
| 릁        |
| Š        |
| #        |
| #        |

N/A Pass 25%

Duplicate Status vs RPD: % RPD Limit:

### Comments:

The method blank result is below the reporting limit for this analysis and is acceptable.

### Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

| www.pacelists.com       | Test<br>Analyst<br>Date:<br>Worklist<br>Matrix: | Ra-228<br>VAL<br>3/16/2021<br>59206<br>WT |
|-------------------------|-------------------------------------------------|-------------------------------------------|
| Method Blank Assessment | nt .                                            |                                           |
|                         | MB Sample ID                                    | 2114137                                   |
|                         | MB concentration:                               | 0.108                                     |
|                         | M/B 2 Sigma CSU:                                | 0.317                                     |
|                         | MB MDC:                                         | 0.711                                     |
|                         | MB Numerical Performance Indicator:             | 0.67                                      |
|                         | MB Status vs Numerical Indicator:               | Pass                                      |
|                         | MB Status vs MDC.                               | 7                                         |

| nk Assessment                       |         |
|-------------------------------------|---------|
| MB Sample ID                        | 2114137 |
| MB concentration:                   | 0.108   |
| M/B 2 Sigma CSU:                    | 0.317   |
| MB MDC:                             | 0.711   |
| MB Numerical Performance Indicator: | 0.67    |
| MB Status vs Numerical Indicator:   | Pass    |
| MB Status vs. MDC:                  | Pass    |

| LCSD (Y or N)? | Laboratory Control Sample Assessment |
|----------------|--------------------------------------|
|                |                                      |
| Pass           | MB Status vs. MDC:                   |
| Pass           | MB Status vs Numerical Indicator:    |
| 0.67           | MB Numerical Performance Indicator:  |
| 0.711          | MB MDC:                              |
| 0.317          | M/B 2 Sigma CSU:                     |
| 0.108          | MB concentration:                    |

Count Date:
Spike I.D.:
Decay Corrected Spike Concentration (pCl/mL):

Volume Used (mL): Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F):

1.CS59206 3/31/2021 21-003 38.256 0.10 0.831 4.606 0.226 5.169

Sample Result 2 Sigma CSU (pCi/L, g, F):
Sample Matrix Spike Result:
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):
Sample Matrix Spike Duplicate Result:
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):
MS Numerical Performance Indicator:
MS Numerical Performance Indicator:

MSD Spike Uncertainty (calculated):

Sample Result

0.404 8.860 1.768 0.892

92526258009
21-003
38.713
0.20
0.20
0.810
9.564
0.804
9.628
0.469
0.472
0.559
0.472
0.559
0.472
0.559
0.472
0.559
0.472
0.559
0.472
0.559
0.472
0.559
0.488
0.488
0.488
88.52%
10.676
2.105
-1.139
0.438
88.52%
105.07%
Pass
Pass
Pass
Pass
Pass
Pass
Pass

MSD Aliquot (L, g, F):
MSD Target Conc. (pCi/L, g, F):
MS Spike Uncertainty (calculated):

MS Target Conc.(pCi/L, g, F):

MSD Numerical Performance Indicator

MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:

MSD Percent Recovery

10.755 2.116 2.116 -1.711 0.291 82.97% 103.43% Pass Pass Pass Pass Pass Pass

MS Percent Recovery

LCSD59206

LCS/LCSD 2 Sigma CSU (pCi/L, g, F): Numerical Performance Indicator: Percent Recovery: Status vs Numerical Indicator:

Uncertainty (Calculated): Result (pCi/L, g, F):

Upper % Recovery Limits: Lower % Recovery Limits:

MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits:

92526258001 92526258002 92526258003

92526258007 92526258008 92526258009

8.860 1.768 10.755 2.116 -1.346 21.95%

9.025 1.795 10.676 2.105 -1.169 17.10% Pass Pass Pass 36%

MSD Status vs Recovery

MS Status vs Recovery

Status vs Recovery:

1.136 0.95 112.23% N/A Pass 135% 60%

| MS/MSD Decay Corrected Spike Concen<br>Spike Volume U<br>Spike Volume Us | S | Sample Matrix Spike Control Assessment<br>Sample |
|--------------------------------------------------------------------------|---|--------------------------------------------------|

92526258001 92526258002 92526258003

> 92526258007 92526258008 MS/MSD 2 2/23/2021

21-003 38.713

MS/MSD 1 2/23/2021

|                                                          | 1                | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |                                                            |
|----------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| % RPD Limit                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | % RPD Limit:                                               |
| MS/ MSD Duplicate Status vs RPD:                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Duplicate Status vs RPD:                                   |
| MS/ MSD Duplicate Status vs Numerical Indicator          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Duplicate Status vs Numerical Indicator:                   |
| (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Duplicate RPD:                                             |
| Duplicate Numerical Performance Indicator                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Duplicate Numerical Performance Indicator:                 |
| Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): |                  | See Below ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Are sample and/or duplicate results below RL? See Below ## |
| Sample Matrix Spike Duplicate Result                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):         |
| Matrix Spike Result 2 Sigma CSU (pCl/L, g, F):           | the space below. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Duplicate Result (pCi/L, g, F):                     |
| Sample Matrix Spike Result                               | LCS/LCSD in      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Result 2 Sigma CSU (pCi/L, g, F):                   |
| Sample MSD I.D.                                          | other than       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Result (pCi/L, g, F):                               |
| Sample MS I.D.                                           | sample IDs if    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Duplicate Sample I.D.                                      |
| Sample I.D.                                              | Enter Duplicate  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample I.D.:                                               |
| Matrix Spike/Matrix Spike Duplicate Sample Assessment    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Duplicate Sample Assessment                                |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC

Comments:

Mulla

### Face Analytical"

# **Quality Control Sample Performance Assessment**

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Ra-228 VAL 3/15/2021 59213 WT Test: Analyst: Date: Worklist: Matrix:

2114144 0.271 0.377 0.808 1.41 Pass Pass

MB concentration: M/B 2 Sigma CSU: MB MDC:

MB Sample ID

Method Blank Assessment

MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC;

Laboratory Control Sample Assessment

| Sample Matrix Spike Control Assessment                   | MS/MSD 1 | MS/MSD |
|----------------------------------------------------------|----------|--------|
| Sample Collection Date:                                  |          |        |
| Sample I.D.                                              |          |        |
| Sample MS L.D.                                           |          |        |
| Sample MSD I.D.                                          |          |        |
| Spike I.D.:                                              |          |        |
| MS/MSD Decay Corrected Spike Concentration (pCi/mt.):    |          |        |
| Spike Volume Used in MS (mL):                            |          |        |
| Spike Volume Used in MSD (ml.):                          |          |        |
| MS Aliquot (L, g, F):                                    |          |        |
| MS Target Conc.(pCi/L, g, F):                            |          |        |
| MSD Aliquot (L, g, F);                                   |          |        |
| MSD Target Conc. (pCi/L, g, F):                          |          |        |
| MS Spike Uncertainty (calculated);                       |          |        |
| MSD Spike Uncertainty (calculated):                      |          |        |
| Sample Result:                                           |          |        |
| Sample Result 2 Sigma CSU (pCi/L, g, F):                 |          |        |
| Sample Matrix Spike Result:                              |          |        |
| Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):           |          |        |
| Sample Matrix Spike Duplicate Result:                    |          |        |
| Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): |          |        |
| MS Numerical Performance Indicator:                      |          |        |
| MSD Numerical Performance Indicator:                     |          |        |
| MS Percent Recovery:                                     |          |        |
| MSD Percent Recovery:                                    |          |        |
| MS Status vs Numerical Indicator:                        |          |        |
| MSD Status vs Numerical Indicator:                       |          |        |
| MS Status vs Recovery:                                   |          |        |
| MSD Status vs Recovery:                                  |          |        |
| MS/MSD Upper % Recovery Limits:                          |          |        |
| MS/MSD Lower % Recovery Limits:                          |          |        |

| ol Sample Assessment                          | LCSD (Y or N)? | >-        |                       |
|-----------------------------------------------|----------------|-----------|-----------------------|
|                                               | LCS59213       | LCSD59213 |                       |
| Count Date:                                   | 3/22/2021      | 3/22/2021 | Sampl                 |
| Spike LD.:                                    | 20-030         | 20-030    |                       |
| Decay Corrected Spike Concentration (pCi/mL): | 36.085         | 36.085    | Matrix Spik           |
| Volume Used (mL):                             | 0.10           | 0.10      | S.                    |
| Aliquot Volume (L, g, F):                     | 0,805          | 0.824     | Matrix Spike Duplical |
| Target Conc. (pCi/L, g, F):                   | 4.484          | 4.377     | 2                     |
| Uncertainty (Calculated):                     | 0.220          | 0.214     | MS                    |
| Result (pCi/L, g, F):                         | 4.955          | 4.740     |                       |
| LCS/LCSD 2 Sigma CSU (pCi/L, g, F):           | 1.134          | 1.103     |                       |
| Numerical Performance Indicator:              | 0.80           | 0.63      |                       |
| Percent Recovery:                             | 110.50%        | 108.28%   |                       |
| Status vs Numerical Indicator:                | N/A            | N/A       |                       |
| Status vs Recovery:                           | Pass           | Pass      |                       |
| Upper % Recovery Limits:                      | 135%           | 135%      |                       |
| Lower % Recovery Limits:                      | %09            | %09       |                       |
|                                               |                |           |                       |

| Duplicate Sample Assessment                               |           |                  | Matrix Spike/Ma |
|-----------------------------------------------------------|-----------|------------------|-----------------|
|                                                           | 000       | i<br>L           |                 |
| Sample I.D.:                                              | LCS59213  | Enter Duplicate  |                 |
| Duplicate Sample I.D.                                     | LCSD59213 | sample IDs if    |                 |
| Sample Result (pCl/L, g, F):                              | 4.955     | other than       |                 |
| Sample Result 2 Sigma CSU (pCi/L, g, F):                  | 1.134     | LCS/LCSD in      |                 |
| Sample Duplicate Result (pCi/L, g, F):                    | 4.740     | the space below. |                 |
| Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):        | 1,103     |                  |                 |
| Are sample and/or duplicate results below RL?             | 2         |                  | Matrix          |
| Duplicate Numerical Performance Indicator:                | 0.266     |                  |                 |
| (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: | 2.03%     |                  | (Based on       |
| Duplicate Status vs Numerical Indicator:                  | Pass      |                  |                 |
| Duplicate Status vs RPD:                                  | Pass      |                  |                 |
| % RPD Limit:                                              | 36%       |                  |                 |
|                                                           |           |                  |                 |

|                                                       |             |                |                 |                             | -                                              |                                       |                                                          |                                            |                                                          |                                                  | _                                |              |
|-------------------------------------------------------|-------------|----------------|-----------------|-----------------------------|------------------------------------------------|---------------------------------------|----------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------|--------------|
|                                                       | .D.         | .O.            | .D.             | ii:                         | Ë                                              | ü                                     | <u>;;</u>                                                | tor:                                       | PD:                                                      | tor:                                             | PD:                              | mit:         |
| Matrix Spike/Matrix Spike Duplicate Sample Assessment | Sample I.D. | Sample MS I.D. | Sample MSD I.D. | Sample Matrix Spike Result: | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): | Duplicate Numerical Performance indicator: | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: | MS/ MSD Duplicate Status vs Numerical Indicator; | MS/ MSD Duplicate Status vs RPD: | % RPD Limit: |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Ra-228 NELAC DW2 Printed: 3/23/2021 10:21 AM

| WELL ID | READING TIME    | DESCRIPTION                   | VALUE   | UNIT  |
|---------|-----------------|-------------------------------|---------|-------|
| MW-1    | 2/22/2021 10:24 | Conductivity                  | 2346.35 | uS/cm |
| MW-1    | 2/22/2021 10:24 | DO                            | 1.16    | mg/L  |
| MW-1    | 2/22/2021 10:24 | Depth to Water Detail         | 92.76   | ft    |
| MW-1    | 2/22/2021 10:24 | Oxidation Reduction Potention | 154.15  | mv    |
| MW-1    | 2/22/2021 10:24 | рН                            | 5.01    | SU    |
| MW-1    | 2/22/2021 10:24 | Temperature                   | 18.91   | С     |
| MW-1    | 2/22/2021 10:24 | Turbidity                     | 1.02    | NTU   |
| MW-1    | 2/22/2021 10:29 | Conductivity                  | 2363.24 | uS/cm |
| MW-1    | 2/22/2021 10:29 | DO                            | 1.09    | mg/L  |
| MW-1    | 2/22/2021 10:29 | Depth to Water Detail         | 92.96   | ft    |
| MW-1    | 2/22/2021 10:29 | Oxidation Reduction Potention | 167.13  | mv    |
| MW-1    | 2/22/2021 10:29 | рН                            | 5.02    | SU    |
| MW-1    | 2/22/2021 10:29 | Temperature                   | 18.92   | С     |
| MW-1    | 2/22/2021 10:29 |                               | 0.51    | NTU   |
| MW-1    | 2/22/2021 10:34 | Conductivity                  | 2365.14 | uS/cm |
| MW-1    | 2/22/2021 10:34 | DO                            | 0.89    | mg/L  |
| MW-1    | 2/22/2021 10:34 | Depth to Water Detail         | 93.06   | ft    |
| MW-1    | 2/22/2021 10:34 | Oxidation Reduction Potention | 182.76  | mv    |
| MW-1    | 2/22/2021 10:34 | рН                            | 5.04    | SU    |
| MW-1    | 2/22/2021 10:34 | Temperature                   | 18.94   | С     |
| MW-1    | 2/22/2021 10:34 | Turbidity                     | 0.46    | NTU   |
| MW-1    | 2/22/2021 10:39 | Conductivity                  | 2365.94 | uS/cm |
| MW-1    | 2/22/2021 10:39 | DO                            | 0.83    | mg/L  |
| MW-1    | 2/22/2021 10:39 | Depth to Water Detail         | 93.06   | ft    |
| MW-1    | 2/22/2021 10:39 | Oxidation Reduction Potention | 191.62  | mv    |
| MW-1    | 2/22/2021 10:39 | рН                            | 5.06    | SU    |
| MW-1    | 2/22/2021 10:39 | Temperature                   | 18.96   | С     |
| MW-1    | 2/22/2021 10:39 | Turbidity                     | 0.28    | NTU   |
| MW-1    | 2/22/2021 10:44 | Conductivity                  | 2369.76 | uS/cm |
| MW-1    | 2/22/2021 10:44 | DO                            | 0.81    | mg/L  |
| MW-1    | 2/22/2021 10:44 | Depth to Water Detail         | 93.06   | ft    |
| MW-1    | 2/22/2021 10:44 | Oxidation Reduction Potention | 201.77  | mv    |
| MW-1    | 2/22/2021 10:44 | рН                            | 5.06    | SU    |
| MW-1    | 2/22/2021 10:44 | Temperature                   | 19.04   | С     |
| MW-1    | 2/22/2021 10:44 | Turbidity                     | 0.4     | NTU   |

| WELL ID | READING TIME    | DESCRIPTION                   | VALUE   | UNIT  |
|---------|-----------------|-------------------------------|---------|-------|
| MW-2    | 2/22/2021 11:29 | Conductivity                  | 1939.56 | uS/cm |
| MW-2    | 2/22/2021 11:29 | DO                            | 0.19    | mg/L  |
| MW-2    | 2/22/2021 11:29 | Depth to Water Detail         | 83.67   | ft    |
| MW-2    | 2/22/2021 11:29 | Oxidation Reduction Potention | 103.6   | mv    |
| MW-2    | 2/22/2021 11:29 | рН                            | 5.96    | SU    |
| MW-2    | 2/22/2021 11:29 | Temperature                   | 18.62   | C     |
| MW-2    | 2/22/2021 11:29 | Turbidity                     | 7.81    | NTU   |
| MW-2    | 2/22/2021 11:34 | Conductivity                  | 1939.67 | uS/cm |
| MW-2    | 2/22/2021 11:34 | DO                            |         | mg/L  |
| MW-2    | 2/22/2021 11:34 | Depth to Water Detail         | 83.67   | ft    |
| MW-2    | 2/22/2021 11:34 | Oxidation Reduction Potention | 89.47   | mv    |
| MW-2    | 2/22/2021 11:34 | 1                             | 5.99    | SU    |
| MW-2    | 2/22/2021 11:34 | Temperature                   | 18.76   | C     |
| MW-2    | 2/22/2021 11:34 | Turbidity                     | 2.96    | NTU   |
| MW-2    | 2/22/2021 11:39 | Conductivity                  | 1941.57 | uS/cm |
| MW-2    | 2/22/2021 11:39 | DO                            | 0.17    | mg/L  |
| MW-2    | 2/22/2021 11:39 | Depth to Water Detail         | 83.67   | ft    |
| MW-2    | 2/22/2021 11:39 | Oxidation Reduction Potention | 82.21   |       |
| MW-2    | 2/22/2021 11:39 | рН                            | 6.05    | SU    |
| MW-2    | 2/22/2021 11:39 | Temperature                   | 18.71   | C     |
| MW-2    | 2/22/2021 11:39 | Turbidity                     | 2.02    | NTU   |
| MW-2    | 2/22/2021 11:44 | Conductivity                  | 1939.81 | uS/cm |
| MW-2    | 2/22/2021 11:44 | DO                            | 0.17    | mg/L  |
| MW-2    | 2/22/2021 11:44 | Depth to Water Detail         | 83.67   | ft    |
| MW-2    | 2/22/2021 11:44 | Oxidation Reduction Potention | 86.94   | mv    |
| MW-2    | 2/22/2021 11:44 | рН                            | 6.1     | SU    |
| MW-2    | 2/22/2021 11:44 | Temperature                   | 18.7    | С     |
| MW-2    | 2/22/2021 11:44 | Turbidity                     | 1.49    | NTU   |

| WELL ID | READING TIME    | DESCRIPTION                   | VALUE   | UNIT  |
|---------|-----------------|-------------------------------|---------|-------|
| MW-3    | 2/22/2021 12:29 | Conductivity                  | 3231.87 | uS/cm |
| MW-3    | 2/22/2021 12:29 | DO                            | 7.83    | mg/L  |
| MW-3    | 2/22/2021 12:29 | Depth to Water Detail         | 106.14  | ft    |
| MW-3    | 2/22/2021 12:29 | Oxidation Reduction Potention | 152.47  | mv    |
| MW-3    | 2/22/2021 12:29 | рН                            | 5       | SU    |
| MW-3    | 2/22/2021 12:29 | Temperature                   | 19.62   | С     |
| MW-3    | 2/22/2021 12:29 | Turbidity                     | 3.46    | NTU   |
| MW-3    | 2/22/2021 12:34 | Conductivity                  | 4206.45 | uS/cm |
| MW-3    | 2/22/2021 12:34 | DO                            | 7.2     | mg/L  |
| MW-3    | 2/22/2021 12:34 | Depth to Water Detail         | 106.16  | ft    |
| MW-3    | 2/22/2021 12:34 | Oxidation Reduction Potention | 158.51  | mv    |
| MW-3    | 2/22/2021 12:34 | pН                            | 5.35    | SU    |
| MW-3    | 2/22/2021 12:34 | Temperature                   | 19.66   | С     |
| MW-3    | 2/22/2021 12:34 | Turbidity                     | 8.06    | NTU   |
| MW-3    | 2/22/2021 12:39 | Conductivity                  | 4437.9  | uS/cm |
| MW-3    | 2/22/2021 12:39 | DO                            | 7.05    | mg/L  |
| MW-3    | 2/22/2021 12:39 | Depth to Water Detail         | 106.21  | ft    |
| MW-3    | 2/22/2021 12:39 | Oxidation Reduction Potention | 158.91  | mv    |
| MW-3    | 2/22/2021 12:39 | рН                            | 5.52    | SU    |
| MW-3    | 2/22/2021 12:39 | Temperature                   | 19.94   | C     |
| MW-3    | 2/22/2021 12:39 | Turbidity                     | 6.8     | NTU   |
| MW-3    | 2/22/2021 12:44 | Conductivity                  | 4450.29 | uS/cm |
| MW-3    | 2/22/2021 12:44 |                               | 6.95    | mg/L  |
| MW-3    |                 | Depth to Water Detail         | 106.23  | ft    |
| MW-3    | 2/22/2021 12:44 | Oxidation Reduction Potention | 160.86  | mv    |
| MW-3    | 2/22/2021 12:44 | рН                            | 5.56    | SU    |
| MW-3    | 2/22/2021 12:44 | Temperature                   | 19.61   |       |
| MW-3    | 2/22/2021 12:44 | Turbidity                     | 6.17    | NTU   |
| MW-3    | 2/22/2021 12:49 | •                             | 4417.53 | uS/cm |
| MW-3    | 2/22/2021 12:49 | DO                            | 6.92    | mg/L  |
| MW-3    | 2/22/2021 12:49 | Depth to Water Detail         | 106.24  | ft    |
| MW-3    | 2/22/2021 12:49 | Oxidation Reduction Potention | 163.37  |       |
| MW-3    | 2/22/2021 12:49 | рН                            | 5.59    | SU    |
| MW-3    | 2/22/2021 12:49 | Temperature                   | 19.81   | С     |
| MW-3    | 2/22/2021 12:49 | Turbidity                     | 2.88    | NTU   |

| WELL ID | READING TIME    | DESCRIPTION                   | VALUE UNIT    |
|---------|-----------------|-------------------------------|---------------|
| MW-4    | 2/22/2021 13:39 | Conductivity                  | 3379.93 uS/cm |
| MW-4    | 2/22/2021 13:39 | DO                            | 1.76 mg/L     |
| MW-4    | 2/22/2021 13:39 | Depth to Water Detail         | 115.84 ft     |
| MW-4    | 2/22/2021 13:39 | Oxidation Reduction Potention | 153.42 mv     |
| MW-4    | 2/22/2021 13:39 | pН                            | 6.06 SU       |
| MW-4    | 2/22/2021 13:39 | Temperature                   | 19.91 C       |
| MW-4    | 2/22/2021 13:39 | Turbidity                     | 5.31 NTU      |
| MW-4    | 2/22/2021 13:44 | Conductivity                  | 3358.45 uS/cm |
| MW-4    | 2/22/2021 13:44 | DO                            | 2.41 mg/L     |
| MW-4    | 2/22/2021 13:44 | Depth to Water Detail         | 115.84 ft     |
| MW-4    | 2/22/2021 13:44 | Oxidation Reduction Potention | 150.01 mv     |
| MW-4    | 2/22/2021 13:44 | pН                            | 6.09 SU       |
| MW-4    | 2/22/2021 13:44 | Temperature                   | 19.85 C       |
| MW-4    | 2/22/2021 13:44 | Turbidity                     | 2.84 NTU      |
| MW-4    | 2/22/2021 13:49 | Conductivity                  | 3349.61 uS/cm |
| MW-4    | 2/22/2021 13:49 | DO                            | 3.14 mg/L     |
| MW-4    | 2/22/2021 13:49 | Depth to Water Detail         | 115.84 ft     |
| MW-4    | 2/22/2021 13:49 | Oxidation Reduction Potention | 149.42 mv     |
| MW-4    | 2/22/2021 13:49 | pН                            | 6.13 SU       |
| MW-4    | 2/22/2021 13:49 | Temperature                   | 19.9 C        |
| MW-4    | 2/22/2021 13:49 | Turbidity                     | 1.83 NTU      |
| MW-4    | 2/22/2021 13:54 | Conductivity                  | 3344.62 uS/cm |
| MW-4    | 2/22/2021 13:54 | DO                            | 3.37 mg/L     |
| MW-4    | 2/22/2021 13:54 | Depth to Water Detail         | 115.84 ft     |
| MW-4    | 2/22/2021 13:54 | Oxidation Reduction Potention | 149.86 mv     |
| MW-4    | 2/22/2021 13:54 | pН                            | 6.16 SU       |
| MW-4    | 2/22/2021 13:54 | Temperature                   | 19.96 C       |
| MW-4    | 2/22/2021 13:54 | Turbidity                     | 1.29 NTU      |
| MW-4    | 2/22/2021 13:59 | Conductivity                  | 3341.45 uS/cm |
| MW-4    | 2/22/2021 13:59 | DO                            | 3.52 mg/L     |
| MW-4    | 2/22/2021 13:59 | Depth to Water Detail         | 115.84 ft     |
| MW-4    | 2/22/2021 13:59 | Oxidation Reduction Potention | 151.68 mv     |
| MW-4    | 2/22/2021 13:59 | рН                            | 6.18 SU       |
| MW-4    | 2/22/2021 13:59 | Temperature                   | 19.91 C       |
| MW-4    | 2/22/2021 13:59 | Turbidity                     | 1.46 NTU      |
| MW-4    | 2/22/2021 14:04 | Conductivity                  | 3340.97 uS/cm |
| MW-4    | 2/22/2021 14:04 | DO                            | 3.59 mg/L     |
| MW-4    | 2/22/2021 14:04 | Depth to Water Detail         | 115.84 ft     |
| MW-4    | 2/22/2021 14:04 | Oxidation Reduction Potention | 151.86 mv     |
| MW-4    | 2/22/2021 14:04 | рН                            | 6.19 SU       |
| MW-4    | 2/22/2021 14:04 | Temperature                   | 19.93 C       |
| MW-4    | 2/22/2021 14:04 | Turbidity                     | 0.75 NTU      |

| WELL ID           | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|-------------------|----------------|-------------------------------|---------|-------|
| APCO-GS-CCB-MW-12 | 2/24/2021 9:25 | Conductivity                  | 3476.43 | uS/cm |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:25 | DO                            | 1.07    | mg/L  |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:25 | Depth to Water Detail         | 154.6   | ft    |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:25 | Oxidation Reduction Potention | 11.36   | mv    |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:25 | рН                            | 5.77    | SU    |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:25 | Temperature                   | 20.2    | С     |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:25 | Turbidity                     | 15.3    | NTU   |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:30 | Conductivity                  | 3477.08 | uS/cm |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:30 | DO                            | 0.52    | mg/L  |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:30 | Depth to Water Detail         | 154.6   | ft    |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:30 | Oxidation Reduction Potention | -5.36   | mv    |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:30 | pН                            | 5.84    | SU    |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:30 | Temperature                   | 20.25   | C     |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:30 | Turbidity                     | 10.2    | NTU   |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:35 | Conductivity                  | 3523.08 | uS/cm |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:35 | DO                            | 0.4     | mg/L  |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:35 | Depth to Water Detail         | 154.6   | ft    |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:35 | Oxidation Reduction Potention | -6.14   | mv    |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:35 | рН                            | 5.84    | SU    |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:35 | Temperature                   | 20.32   | C     |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:35 | Turbidity                     | 7.26    | NTU   |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:40 | Conductivity                  | 3553.92 | uS/cm |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:40 | DO                            | 0.38    | mg/L  |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:40 | Depth to Water Detail         | 154.6   | ft    |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:40 | Oxidation Reduction Potention | -5.02   | mv    |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:40 | pН                            | 5.83    | SU    |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:40 | Temperature                   | 20.18   |       |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:40 | Turbidity                     | 3.99    | NTU   |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:45 | Conductivity                  | 3570.82 | uS/cm |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:45 | DO                            | 0.36    | mg/L  |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:45 | Depth to Water Detail         | 154.6   | ft    |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:45 | Oxidation Reduction Potention | -4.11   | mv    |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:45 | pH                            | 5.83    | SU    |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:45 | Temperature                   | 20.29   | С     |
| APCO-GS-CCB-MW-12 | 2/24/2021 9:45 | Turbidity                     | 3.19    | NTU   |

| WELL ID            | READING TIME   | DESCRIPTION                   | VALUE UNIT    |
|--------------------|----------------|-------------------------------|---------------|
| APCO-GS-CCB-MW-12V | 2/24/2021 8:09 | Conductivity                  | 2607.38 uS/cm |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:09 | DO                            | 0.77 mg/L     |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:09 | Depth to Water Detail         | 155.69 ft     |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:09 | Oxidation Reduction Potention | -127.62 mv    |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:09 | рН                            | 6.79 SU       |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:09 | Temperature                   | 19.4 C        |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:09 | Turbidity                     | 2.18 NTU      |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:14 | Conductivity                  | 2604.15 uS/cm |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:14 | DO                            | 0.43 mg/L     |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:14 | Depth to Water Detail         | 155.96 ft     |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:14 | Oxidation Reduction Potention | -114.17 mv    |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:14 | рН                            | 6.79 SU       |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:14 | Temperature                   | 19.9 C        |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:14 | Turbidity                     | 1.6 NTU       |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:19 | Conductivity                  | 2603.58 uS/cm |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:19 | DO                            | 0.37 mg/L     |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:19 | Depth to Water Detail         | 156.29 ft     |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:19 | Oxidation Reduction Potention | -106.54 mv    |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:19 | pН                            | 6.81 SU       |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:19 | Temperature                   | 19.83 C       |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:19 | Turbidity                     | 1.4 NTU       |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:24 | Conductivity                  | 2605.02 uS/cm |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:24 | DO                            | 0.38 mg/L     |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:24 | Depth to Water Detail         | 156.47 ft     |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:24 | Oxidation Reduction Potention | -100.35 mv    |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:24 | pН                            | 6.82 SU       |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:24 | Temperature                   | 19.82 C       |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:24 | Turbidity                     | 0.22 NTU      |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:29 | Conductivity                  | 2604.51 uS/cm |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:29 | DO                            | 0.41 mg/L     |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:29 | Depth to Water Detail         | 156.61 ft     |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:29 | Oxidation Reduction Potention | -96.12 mv     |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:29 | рН                            | 6.83 SU       |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:29 | Temperature                   | 19.79 C       |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:29 | Turbidity                     | 0.19 NTU      |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:34 | Conductivity                  | 2603.6 uS/cm  |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:34 | DO                            | 0.45 mg/L     |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:34 | Depth to Water Detail         | 156.74 ft     |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:34 | Oxidation Reduction Potention | -93.09 mv     |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:34 | рН                            | 6.83 SU       |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:34 | Temperature                   | 20.02 C       |
| APCO-GS-CCB-MW-12V | 2/24/2021 8:34 | Turbidity                     | 0.11 NTU      |

| WELL ID           | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|-------------------|----------------|-------------------------------|---------|-------|
| APCO-GS-CCB-MW-13 | 2/23/2021 8:16 | Conductivity                  | 2437.29 | uS/cm |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:16 |                               | 0.81    | mg/L  |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:16 | Depth to Water Detail         | 94.56   | ft    |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:16 | Oxidation Reduction Potention | 171.95  | mv    |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:16 | рН                            | 6.52    | SU    |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:16 |                               | 17.71   |       |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:16 | Turbidity                     | 0.25    | NTU   |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:21 | Conductivity                  | 2348.41 | uS/cm |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:21 | DO                            | 0.37    | mg/L  |
| APCO-GS-CCB-MW-13 |                | Depth to Water Detail         | 94.56   | ft    |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:21 | Oxidation Reduction Potention | 104.87  | mv    |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:21 | рН                            | 6.54    | SU    |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:21 | Temperature                   | 17.95   | C     |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:21 | Turbidity                     | 0.27    | NTU   |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:26 | Conductivity                  | 2297.82 | uS/cm |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:26 | DO                            | 0.45    | mg/L  |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:26 | Depth to Water Detail         | 94.56   | ft    |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:26 | Oxidation Reduction Potention | 78.54   | mv    |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:26 | рН                            | 6.55    | SU    |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:26 | Temperature                   | 17.65   | C     |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:26 | Turbidity                     | 0.2     | NTU   |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:31 | Conductivity                  | 2250.95 | uS/cm |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:31 | DO                            | 0.54    | mg/L  |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:31 | Depth to Water Detail         | 94.56   | ft    |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:31 | Oxidation Reduction Potention | 73.29   | mv    |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:31 | •                             | 6.55    |       |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:31 | Temperature                   | 17.67   | С     |
| APCO-GS-CCB-MW-13 | 2/23/2021 8:31 | Turbidity                     | 0.21    | NTU   |

| WELL ID           | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|-------------------|----------------|-------------------------------|---------|-------|
| APCO-GS-CCB-MW-14 | 2/23/2021 9:17 | Conductivity                  | 3005.16 | uS/cm |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:17 | DO                            | 0.31    | mg/L  |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:17 | Depth to Water Detail         | 89.17   | ft    |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:17 | Oxidation Reduction Potention | 25.02   | mv    |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:17 | рН                            | 6.37    | SU    |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:17 | Temperature                   | 18.2    | С     |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:17 | Turbidity                     | 2.9     | NTU   |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:22 | Conductivity                  | 2922.04 | uS/cm |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:22 | DO                            | 0.24    | mg/L  |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:22 | Depth to Water Detail         | 89.17   | ft    |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:22 | Oxidation Reduction Potention | 22.11   | mv    |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:22 | рН                            | 6.37    | SU    |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:22 | Temperature                   | 18.22   | С     |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:22 | Turbidity                     | 5.17    | NTU   |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:27 | Conductivity                  | 3012.35 | uS/cm |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:27 | DO                            | 0.33    | mg/L  |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:27 | Depth to Water Detail         | 89.17   | ft    |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:27 | Oxidation Reduction Potention | 20.64   | mv    |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:27 | рН                            | 6.37    | SU    |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:27 | Temperature                   | 18.35   | С     |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:27 | Turbidity                     | 106     | NTU   |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:32 | Conductivity                  | 2992.5  | uS/cm |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:32 | DO                            | 0.53    | mg/L  |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:32 | Depth to Water Detail         | 89.17   | ft    |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:32 | Oxidation Reduction Potention | 20.02   | mv    |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:32 | рН                            | 6.38    | SU    |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:32 | Temperature                   | 18.28   | С     |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:32 | Turbidity                     | 20.1    | NTU   |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:37 | Conductivity                  | 2937.22 | uS/cm |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:37 | DO                            | 0.56    | mg/L  |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:37 | Depth to Water Detail         | 89.17   | ft    |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:37 | Oxidation Reduction Potention | 21.67   | mv    |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:37 | рН                            | 6.38    | SU    |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:37 | Temperature                   | 18.35   | С     |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:37 | Turbidity                     | 4.35    | NTU   |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:42 | Conductivity                  | 2931.33 | uS/cm |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:42 | DO                            |         | mg/L  |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:42 | Depth to Water Detail         | 89.17   | ft    |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:42 | Oxidation Reduction Potention | 23.26   | mv    |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:42 | рН                            | 6.38    | SU    |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:42 | Temperature                   | 18.54   | С     |
| APCO-GS-CCB-MW-14 | 2/23/2021 9:42 | Turbidity                     | 3.95    | NTU   |

| WELL ID           | READING TIME    | DESCRIPTION                   | VALUE   | UNIT  |
|-------------------|-----------------|-------------------------------|---------|-------|
| APCO-GS-CCB-MW-15 | 2/23/2021 10:27 | Conductivity                  | 2855.92 | uS/cm |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:27 | DO                            | 0.3     | mg/L  |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:27 | Depth to Water Detail         | 67.49   | ft    |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:27 | Oxidation Reduction Potention | 16.03   |       |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:27 | рН                            | 6.05    | SU    |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:27 |                               | 18.22   | C     |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:27 | Turbidity                     | 1.57    | NTU   |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:32 | Conductivity                  | 2832.76 | uS/cm |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:32 | DO                            | 0.41    | mg/L  |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:32 | Depth to Water Detail         | 67.49   | ft    |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:32 | Oxidation Reduction Potention | 18.69   | mv    |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:32 | рН                            | 6.05    | SU    |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:32 | Temperature                   | 18.26   | C     |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:32 | Turbidity                     | 3.13    | NTU   |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:37 | Conductivity                  | 2825.35 | uS/cm |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:37 | DO                            | 0.34    | mg/L  |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:37 | Depth to Water Detail         | 67.49   | ft    |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:37 | Oxidation Reduction Potention | 14.47   | mv    |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:37 | рН                            | 6.06    | SU    |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:37 | Temperature                   | 18.3    | C     |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:37 | Turbidity                     | 1.44    | NTU   |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:42 | Conductivity                  | 2816.88 | uS/cm |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:42 | DO                            | 0.22    | mg/L  |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:42 | Depth to Water Detail         | 67.49   | ft    |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:42 | Oxidation Reduction Potention | 11.45   | mv    |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:42 | рН                            | 6.07    | SU    |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:42 | Temperature                   | 18.39   | С     |
| APCO-GS-CCB-MW-15 | 2/23/2021 10:42 | Turbidity                     | 1.68    | NTU   |

| WELL ID           | READING TIME    | DESCRIPTION                   | VALUE   | UNIT  |
|-------------------|-----------------|-------------------------------|---------|-------|
| APCO-GS-CCB-MW-16 | 2/23/2021 11:22 | Conductivity                  | 2594.02 | uS/cm |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:22 |                               | 0.21    | mg/L  |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:22 | Depth to Water Detail         | 90.16   | ft    |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:22 | Oxidation Reduction Potention | -12.58  | mv    |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:22 | рН                            | 6.47    | SU    |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:22 | Temperature                   | 19.1    | С     |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:22 | Turbidity                     | 0.57    | NTU   |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:27 | Conductivity                  | 2549.67 | uS/cm |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:27 | DO                            | 0.15    | mg/L  |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:27 | Depth to Water Detail         | 90.16   | ft    |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:27 | Oxidation Reduction Potention | -9.12   | mv    |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:27 | рН                            | 6.46    | SU    |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:27 | Temperature                   | 19.08   | С     |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:27 | Turbidity                     | 0.54    | NTU   |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:32 | Conductivity                  | 2540.41 | uS/cm |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:32 | DO                            | 0.13    | mg/L  |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:32 | Depth to Water Detail         | 90.16   | ft    |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:32 | Oxidation Reduction Potention | -8.4    | mv    |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:32 | 1                             | 6.47    | SU    |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:32 | Temperature                   | 19.07   | С     |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:32 | Turbidity                     | 0.09    | NTU   |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:37 | Conductivity                  | 2563.12 | uS/cm |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:37 |                               |         | mg/L  |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:37 | Depth to Water Detail         | 90.16   | ft    |
| APCO-GS-CCB-MW-16 |                 | Oxidation Reduction Potention | -7.23   | mv    |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:37 | рН                            | 6.47    | SU    |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:37 | Temperature                   | 19.08   | С     |
| APCO-GS-CCB-MW-16 | 2/23/2021 11:37 | Turbidity                     | 0.08    | NTU   |

| WELL ID            | READING TIME    | DESCRIPTION                   | VALUE   | UNIT  |
|--------------------|-----------------|-------------------------------|---------|-------|
| APCO-GS-CCB-MW-17R | 2/23/2021 12:31 | Conductivity                  | 3445.9  | uS/cm |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:31 | DO                            | 1.54    | mg/L  |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:31 | Depth to Water Detail         | 126.27  | ft    |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:31 | Oxidation Reduction Potention | 33.22   | mv    |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:31 | 1                             | 5.7     | SU    |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:31 | Temperature                   | 21.29   | C     |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:31 | Turbidity                     | 1.92    | NTU   |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:36 | Conductivity                  | 3369.71 | uS/cm |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:36 | DO                            | 0.76    | mg/L  |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:36 | Depth to Water Detail         | 126.27  | ft    |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:36 | Oxidation Reduction Potention | 39.38   | mv    |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:36 | рН                            | 5.67    | SU    |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:36 | Temperature                   | 21.08   | C     |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:36 | Turbidity                     | 1.7     | NTU   |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:41 | Conductivity                  | 3299.42 | uS/cm |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:41 | DO                            | 0.59    | mg/L  |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:41 | Depth to Water Detail         | 126.27  | ft    |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:41 | Oxidation Reduction Potention | 36      | mv    |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:41 | 1                             | 5.74    | SU    |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:41 | Temperature                   | 21.16   | C     |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:41 | Turbidity                     | 0.53    | NTU   |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:46 | Conductivity                  | 3294.2  | uS/cm |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:46 | DO                            | 0.53    | mg/L  |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:46 | Depth to Water Detail         | 126.27  | ft    |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:46 | Oxidation Reduction Potention | 30.3    | mv    |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:46 | pН                            | 5.82    | SU    |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:46 | Temperature                   | 21.19   | C     |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:46 | Turbidity                     | 0.46    | NTU   |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:51 | Conductivity                  | 3239.73 | uS/cm |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:51 | DO                            | 0.53    | mg/L  |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:51 | Depth to Water Detail         | 126.27  | ft    |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:51 | Oxidation Reduction Potention | 24.3    | mv    |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:51 | рН                            | 5.91    | SU    |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:51 | Temperature                   | 21.27   | С     |
| APCO-GS-CCB-MW-17R | 2/23/2021 12:51 | Turbidity                     | 0.47    | NTU   |

| WELL ID           | READING TIME    | DESCRIPTION                   | VALUE   | UNIT  |
|-------------------|-----------------|-------------------------------|---------|-------|
| APCO-GS-CCB-MW-18 | 2/23/2021 13:43 | Conductivity                  | 2672.73 | uS/cm |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:43 |                               | 4.98    | mg/L  |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:43 | Depth to Water Detail         | 111.22  | ft    |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:43 | Oxidation Reduction Potention | 94.71   | mv    |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:43 | 1                             | 6.47    | SU    |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:43 | Temperature                   | 20.27   | C     |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:43 | Turbidity                     | 0.84    | NTU   |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:48 | Conductivity                  | 2628.04 | uS/cm |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:48 |                               | 4.45    | mg/L  |
| APCO-GS-CCB-MW-18 |                 | Depth to Water Detail         | 111.22  | ft    |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:48 | Oxidation Reduction Potention | 102.9   | mv    |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:48 | рН                            | 6.45    |       |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:48 | Temperature                   | 20.03   | C     |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:48 | Turbidity                     | 0.81    | NTU   |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:53 |                               | 2617.85 | uS/cm |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:53 |                               |         | mg/L  |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:53 | Depth to Water Detail         | 111.22  | ft    |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:53 | Oxidation Reduction Potention | 106.49  | mv    |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:53 | 1                             | 6.46    |       |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:53 | Temperature                   | 20.21   | C     |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:53 | Turbidity                     | 1.08    | NTU   |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:58 | Conductivity                  | 2615.49 | uS/cm |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:58 |                               |         | mg/L  |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:58 | Depth to Water Detail         | 111.22  | ft    |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:58 | Oxidation Reduction Potention | 110.4   | mv    |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:58 | <u> </u>                      | 6.47    | SU    |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:58 |                               | 20.34   | С     |
| APCO-GS-CCB-MW-18 | 2/23/2021 13:58 | Turbidity                     | 1.01    | NTU   |

| WELL ID          | READING TIME    | DESCRIPTION                   | VALUE   | UNIT  |
|------------------|-----------------|-------------------------------|---------|-------|
| APCO-GS-CCB-MW-5 | 2/23/2021 11:34 | Conductivity                  | 3690.45 | uS/cm |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:34 | DO                            | 2.7     | mg/L  |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:34 | Depth to Water Detail         | 125.83  | ft    |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:34 | Oxidation Reduction Potention | -30.08  |       |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:34 | рН                            | 6.52    | SU    |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:34 | Temperature                   | 19.86   | C     |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:34 | Turbidity                     | 3.06    | NTU   |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:39 | Conductivity                  | 3668.37 | uS/cm |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:39 | DO                            | 1.23    | mg/L  |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:39 | Depth to Water Detail         | 125.89  | ft    |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:39 | Oxidation Reduction Potention | -37.48  | mv    |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:39 | pН                            | 6.45    | SU    |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:39 | Temperature                   | 19.92   | С     |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:39 | Turbidity                     | 2.92    | NTU   |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:44 | Conductivity                  | 3661.12 | uS/cm |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:44 | DO                            | 0.92    | mg/L  |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:44 | Depth to Water Detail         | 125.89  | ft    |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:44 | Oxidation Reduction Potention | -37.49  | mv    |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:44 | pН                            | 6.45    | SU    |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:44 | Temperature                   | 19.96   | С     |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:44 | Turbidity                     | 3.4     | NTU   |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:49 | Conductivity                  | 3679.06 | uS/cm |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:49 | DO                            | 0.82    | mg/L  |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:49 | Depth to Water Detail         | 125.89  | ft    |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:49 | Oxidation Reduction Potention | -37.83  | mv    |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:49 | рН                            | 6.46    | SU    |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:49 | Temperature                   | 19.9    | С     |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:49 | Turbidity                     | 3.35    | NTU   |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:54 | Conductivity                  | 3701.43 | uS/cm |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:54 | DO                            | 0.78    | mg/L  |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:54 | Depth to Water Detail         | 125.89  |       |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:54 | Oxidation Reduction Potention | -34.6   | mv    |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:54 | рН                            | 6.47    | SU    |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:54 | Temperature                   | 19.94   | С     |
| APCO-GS-CCB-MW-5 | 2/23/2021 11:54 | Turbidity                     | 2.58    | NTU   |

| WELL ID           | READING TIME    | DESCRIPTION                   | VALUE UNIT    |
|-------------------|-----------------|-------------------------------|---------------|
| APCO-GS-CCB-MW-10 | 2/23/2021 13:12 | Conductivity                  | 1434.07 uS/cm |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:12 | DO                            | 1.09 mg/L     |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:12 | Depth to Water Detail         | 85.91 ft      |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:12 | Oxidation Reduction Potention | -26.39 mv     |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:12 | рН                            | 6.45 SU       |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:12 | Temperature                   | 19.47 C       |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:12 | Turbidity                     | 21.7 NTU      |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:17 | Conductivity                  | 1420.38 uS/cm |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:17 | DO                            | 0.55 mg/L     |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:17 | Depth to Water Detail         | 86.33 ft      |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:17 | Oxidation Reduction Potention | -36.13 mv     |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:17 | рН                            | 6.45 SU       |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:17 | Temperature                   | 19.52 C       |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:17 | Turbidity                     | 16.1 NTU      |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:22 | Conductivity                  | 1419.86 uS/cm |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:22 | DO                            | 0.44 mg/L     |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:22 | Depth to Water Detail         | 86.68 ft      |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:22 | Oxidation Reduction Potention | -38.67 mv     |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:22 | рН                            | 6.46 SU       |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:22 | Temperature                   | 19.56 C       |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:22 | Turbidity                     | 13.6 NTU      |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:27 | Conductivity                  | 1423.34 uS/cm |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:27 | DO                            | 0.4 mg/L      |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:27 | Depth to Water Detail         | 86.82 ft      |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:27 | Oxidation Reduction Potention | -37.75 mv     |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:27 | pН                            | 6.46 SU       |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:27 | Temperature                   | 19.6 C        |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:27 | Turbidity                     | 11.5 NTU      |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:32 | Conductivity                  | 1426.14 uS/cm |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:32 | DO                            | 0.38 mg/L     |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:32 | Depth to Water Detail         | 86.96 ft      |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:32 | Oxidation Reduction Potention | -36.83 mv     |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:32 | рН                            | 6.46 SU       |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:32 | Temperature                   | 19.52 C       |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:32 | Turbidity                     | 8.86 NTU      |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:37 | Conductivity                  | 1434.52 uS/cm |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:37 |                               | 0.36 mg/L     |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:37 | Depth to Water Detail         | 87.04 ft      |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:37 | Oxidation Reduction Potention | -36.83 mv     |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:37 | рН                            | 6.45 SU       |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:37 | Temperature                   | 19.52 C       |
| APCO-GS-CCB-MW-10 | 2/23/2021 13:37 | Turbidity                     | 6.45 NTU      |

| WELL ID           | READING TIME    | DESCRIPTION                   | VALUE   | UNIT  |
|-------------------|-----------------|-------------------------------|---------|-------|
| APCO-GS-CCB-MW-20 | 2/23/2021 14:31 | Conductivity                  | 2939.28 | uS/cm |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:31 |                               | 0.53    | mg/L  |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:31 | Depth to Water Detail         | 20.36   | ft    |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:31 | Oxidation Reduction Potention | -62.92  | mv    |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:31 | pН                            | 6.73    | SU    |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:31 | Temperature                   | 19.27   | С     |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:31 | Turbidity                     | 2.69    | NTU   |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:36 | Conductivity                  | 2935.23 | uS/cm |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:36 | DO                            | 0.49    | mg/L  |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:36 | Depth to Water Detail         | 20.61   | ft    |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:36 | Oxidation Reduction Potention | -63.63  | mv    |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:36 | рН                            | 6.74    | SU    |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:36 | Temperature                   | 19.27   | C     |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:36 | Turbidity                     | 1.52    | NTU   |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:41 | Conductivity                  | 2927.29 | uS/cm |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:41 | DO                            |         | mg/L  |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:41 | Depth to Water Detail         | 20.71   | ft    |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:41 | Oxidation Reduction Potention | -63.66  | mv    |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:41 | рН                            | 6.74    | SU    |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:41 | Temperature                   | 19.17   | C     |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:41 | Turbidity                     | 0.88    | NTU   |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:46 | Conductivity                  | 2908.99 | uS/cm |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:46 |                               |         | mg/L  |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:46 | Depth to Water Detail         | 20.83   | ft    |
| APCO-GS-CCB-MW-20 |                 | Oxidation Reduction Potention | -63.31  | mv    |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:46 | рН                            | 6.75    | SU    |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:46 | Temperature                   | 19.18   | С     |
| APCO-GS-CCB-MW-20 | 2/23/2021 14:46 | Turbidity                     | 0.7     | NTU   |

| WELL ID           | READING TIME    | DESCRIPTION                   | VALUE UNIT    |
|-------------------|-----------------|-------------------------------|---------------|
| APCO-GS-CCB-MW-11 | 2/24/2021 9:45  | Conductivity                  | 2870.16 uS/cm |
| APCO-GS-CCB-MW-11 | 2/24/2021 9:45  | DO                            | 0.32 mg/L     |
| APCO-GS-CCB-MW-11 | 2/24/2021 9:45  | Depth to Water Detail         | 106.76 ft     |
| APCO-GS-CCB-MW-11 |                 | Oxidation Reduction Potention | -62.87 mv     |
| APCO-GS-CCB-MW-11 | 2/24/2021 9:45  | рН                            | 6.58 SU       |
| APCO-GS-CCB-MW-11 | 2/24/2021 9:45  | Temperature                   | 19.32 C       |
| APCO-GS-CCB-MW-11 | 2/24/2021 9:45  | _                             | 0.36 NTU      |
| APCO-GS-CCB-MW-11 | 2/24/2021 9:50  | Conductivity                  | 2872.56 uS/cm |
| APCO-GS-CCB-MW-11 | 2/24/2021 9:50  | DO                            | 0.29 mg/L     |
| APCO-GS-CCB-MW-11 | 2/24/2021 9:50  | Depth to Water Detail         | 108.65 ft     |
| APCO-GS-CCB-MW-11 | 2/24/2021 9:50  | Oxidation Reduction Potention | -67.58 mv     |
| APCO-GS-CCB-MW-11 | 2/24/2021 9:50  | рН                            | 6.62 SU       |
| APCO-GS-CCB-MW-11 | 2/24/2021 9:50  | Temperature                   | 19.32 C       |
| APCO-GS-CCB-MW-11 | 2/24/2021 9:50  |                               | 0.25 NTU      |
| APCO-GS-CCB-MW-11 | 2/24/2021 9:55  | Conductivity                  | 2865.46 uS/cm |
| APCO-GS-CCB-MW-11 | 2/24/2021 9:55  | DO                            | 0.58 mg/L     |
| APCO-GS-CCB-MW-11 | 2/24/2021 9:55  | Depth to Water Detail         | 108.82 ft     |
| APCO-GS-CCB-MW-11 |                 | Oxidation Reduction Potention | -69.43 mv     |
| APCO-GS-CCB-MW-11 | 2/24/2021 9:55  | рН                            | 6.65 SU       |
| APCO-GS-CCB-MW-11 | 2/24/2021 9:55  | Temperature                   | 18.15 C       |
| APCO-GS-CCB-MW-11 | 2/24/2021 9:55  | Turbidity                     | 0.25 NTU      |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:00 | Conductivity                  | 2864.75 uS/cm |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:00 | DO                            | 0.77 mg/L     |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:00 | Depth to Water Detail         | 108.88 ft     |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:00 | Oxidation Reduction Potention | -70.16 mv     |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:00 | рН                            | 6.66 SU       |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:00 | Temperature                   | 17.97 C       |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:00 | Turbidity                     | 0.16 NTU      |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:05 | Conductivity                  | 2850.53 uS/cm |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:05 | DO                            | 0.81 mg/L     |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:05 | Depth to Water Detail         | 109.02 ft     |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:05 | Oxidation Reduction Potention | -71.59 mv     |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:05 | pН                            | 6.66 SU       |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:05 | Temperature                   | 18.17 C       |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:05 | Turbidity                     | 0.17 NTU      |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:10 | Conductivity                  | 2839.08 uS/cm |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:10 | DO                            | 0.81 mg/L     |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:10 | Depth to Water Detail         | 109.09 ft     |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:10 | Oxidation Reduction Potention | -72.59 mv     |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:10 | pH                            | 6.67 SU       |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:10 | Temperature                   | 18.25 C       |
| APCO-GS-CCB-MW-11 | 2/24/2021 10:10 | Turbidity                     | 0.59 NTU      |

| WELL ID           | READING TIME    | DESCRIPTION                   | VALUE   | UNIT  |
|-------------------|-----------------|-------------------------------|---------|-------|
| APCO-GS-CCB-MW-19 | 2/24/2021 11:56 |                               | 3157.62 | uS/cm |
| APCO-GS-CCB-MW-19 | 2/24/2021 11:56 | DO                            | 1.66    | mg/L  |
| APCO-GS-CCB-MW-19 | 2/24/2021 11:56 | Depth to Water Detail         | 78.66   |       |
| APCO-GS-CCB-MW-19 |                 | Oxidation Reduction Potention | 18.23   | mv    |
| APCO-GS-CCB-MW-19 | 2/24/2021 11:56 | рН                            | 6.29    | SU    |
| APCO-GS-CCB-MW-19 | 2/24/2021 11:56 | Temperature                   | 20.34   | С     |
| APCO-GS-CCB-MW-19 | 2/24/2021 11:56 | Turbidity                     | 24.7    | NTU   |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:01 | Conductivity                  | 3153.43 | uS/cm |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:01 | DO                            | 1.94    | mg/L  |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:01 | Depth to Water Detail         | 78.66   | ft    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:01 | Oxidation Reduction Potention | 20.1    | mv    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:01 | рН                            | 6.3     | SU    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:01 | Temperature                   | 20.35   | С     |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:01 | Turbidity                     | 13.7    | NTU   |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:06 | Conductivity                  | 3158.95 | uS/cm |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:06 | DO                            | 1.81    | mg/L  |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:06 | Depth to Water Detail         | 78.66   | ft    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:06 | Oxidation Reduction Potention | 21.86   | mv    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:06 | рН                            | 6.28    | SU    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:06 | Temperature                   | 20.3    | С     |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:06 | Turbidity                     | 120     | NTU   |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:11 | Conductivity                  | 3165.28 | uS/cm |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:11 | DO                            | 1.96    | mg/L  |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:11 | Depth to Water Detail         | 78.66   | ft    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:11 | Oxidation Reduction Potention | 23.14   | mv    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:11 | рН                            | 6.28    | SU    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:11 | Temperature                   | 20.29   | С     |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:11 | Turbidity                     | 74.3    | NTU   |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:16 |                               | 3204.62 | uS/cm |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:16 | DO                            | 2.03    | mg/L  |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:16 | Depth to Water Detail         | 78.66   | ft    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:16 | Oxidation Reduction Potention | 25.7    | mv    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:16 | рН                            | 6.27    | SU    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:16 | Temperature                   | 20.17   | C     |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:16 | Turbidity                     | 28      | NTU   |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:21 | Conductivity                  | 3177.6  | uS/cm |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:21 | DO                            | 1.73    | mg/L  |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:21 | Depth to Water Detail         | 78.66   | ft    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:21 | Oxidation Reduction Potention | 29.04   | mv    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:21 | рН                            | 6.27    | SU    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:21 | Temperature                   | 20.24   | С     |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:21 | Turbidity                     | 13.4    | NTU   |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:26 | Conductivity                  | 3184.94 | uS/cm |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:26 | DO                            | 1.82    | mg/L  |

| WELL ID           | READING TIME    | DESCRIPTION                   | VALUE   | UNIT  |
|-------------------|-----------------|-------------------------------|---------|-------|
| APCO-GS-CCB-MW-19 | 2/24/2021 12:26 | Depth to Water Detail         | 78.66   | ft    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:26 | Oxidation Reduction Potention | 30.51   | mv    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:26 | рН                            | 6.27    | SU    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:26 | Temperature                   | 20.31   | C     |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:26 | Turbidity                     | 11.31   | NTU   |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:31 | Conductivity                  | 3184.04 | uS/cm |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:31 | DO                            | 1.94    | mg/L  |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:31 | Depth to Water Detail         | 78.66   | ft    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:31 | Oxidation Reduction Potention | 32.91   | mv    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:31 | рН                            | 6.27    | SU    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:31 | Temperature                   | 20.12   | С     |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:31 | Turbidity                     | 7.95    | NTU   |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:36 | Conductivity                  | 3183.22 | uS/cm |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:36 | DO                            | 1.82    | mg/L  |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:36 | Depth to Water Detail         | 78.66   | ft    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:36 | Oxidation Reduction Potention | 32.35   | mv    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:36 | рН                            | 6.26    | SU    |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:36 | Temperature                   | 20.14   | С     |
| APCO-GS-CCB-MW-19 | 2/24/2021 12:36 | Turbidity                     | 5.12    | NTU   |

| WELL ID          | READING TIME    | DESCRIPTION                   | VALUE   | UNIT  |
|------------------|-----------------|-------------------------------|---------|-------|
| APCO-GS-CCB-MW-6 | 2/23/2021 10:22 | Conductivity                  | 3217.23 | uS/cm |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:22 | DO                            | 0.45    | mg/L  |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:22 | Depth to Water Detail         | 100.95  | ft    |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:22 | Oxidation Reduction Potention | 115.76  | mv    |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:22 | рН                            | 6.11    | SU    |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:22 | Temperature                   | 19.97   | С     |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:22 | Turbidity                     | 18.3    | NTU   |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:27 | Conductivity                  | 3205.08 | uS/cm |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:27 | DO                            | 0.35    | mg/L  |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:27 | Depth to Water Detail         | 101.1   | ft    |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:27 | Oxidation Reduction Potention | 97.76   | mv    |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:27 | рН                            | 6.13    | SU    |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:27 | Temperature                   | 19.82   | C     |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:27 | Turbidity                     | 12.1    | NTU   |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:32 | Conductivity                  | 3187.96 | uS/cm |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:32 | DO                            | 0.32    | mg/L  |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:32 | Depth to Water Detail         | 101.1   | ft    |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:32 | Oxidation Reduction Potention | 85.35   | mv    |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:32 | рН                            | 6.14    | SU    |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:32 | Temperature                   | 19.91   | C     |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:32 | Turbidity                     | 6.32    | NTU   |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:37 | Conductivity                  | 3188.62 | uS/cm |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:37 | DO                            | 0.31    | mg/L  |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:37 | Depth to Water Detail         | 101.1   | ft    |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:37 | Oxidation Reduction Potention | 77.24   | mv    |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:37 | рН                            | 6.14    | SU    |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:37 | Temperature                   | 19.92   | C     |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:37 | Turbidity                     | 3.11    | NTU   |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:42 | Conductivity                  | 3176.73 |       |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:42 | DO                            | 0.32    | mg/L  |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:42 | Depth to Water Detail         | 101.1   | ft    |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:42 | Oxidation Reduction Potention | 70.5    | mv    |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:42 | рН                            | 6.13    | SU    |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:42 | Temperature                   | 19.94   | С     |
| APCO-GS-CCB-MW-6 | 2/23/2021 10:42 | Turbidity                     | 2.5     | NTU   |

| WELL ID          | READING TIME    | DESCRIPTION                   | VALUE   | UNIT  |
|------------------|-----------------|-------------------------------|---------|-------|
| APCO-GS-CCB-MW-7 | 2/23/2021 11:17 | Conductivity                  | 2651.24 | uS/cm |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:17 |                               | 0.13    | mg/L  |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:17 | Depth to Water Detail         | 56.75   | ft    |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:17 | Oxidation Reduction Potention | 67.48   | mv    |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:17 | рН                            | 6.66    | SU    |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:17 | Temperature                   | 18.9    | С     |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:17 | Turbidity                     | 1.55    | NTU   |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:22 | Conductivity                  | 2585.63 | uS/cm |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:22 | DO                            | 0.1     | mg/L  |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:22 | Depth to Water Detail         | 56.75   | ft    |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:22 | Oxidation Reduction Potention | 62.68   | mv    |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:22 | рН                            | 6.68    | SU    |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:22 | Temperature                   | 18.94   | С     |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:22 | Turbidity                     | 0.95    | NTU   |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:27 | Conductivity                  | 2545.57 | uS/cm |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:27 | DO                            | 0.09    | mg/L  |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:27 | Depth to Water Detail         | 56.75   | ft    |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:27 | Oxidation Reduction Potention | 58.74   | mv    |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:27 | 1                             | 6.69    | SU    |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:27 | Temperature                   | 18.9    | С     |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:27 | Turbidity                     | 0.53    | NTU   |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:32 | Conductivity                  | 2508.19 | uS/cm |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:32 | DO                            | 0.09    | mg/L  |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:32 | Depth to Water Detail         | 56.75   | ft    |
| APCO-GS-CCB-MW-7 |                 | Oxidation Reduction Potention | 55.76   | mv    |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:32 | рН                            | 6.7     | SU    |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:32 | Temperature                   | 18.98   | С     |
| APCO-GS-CCB-MW-7 | 2/23/2021 11:32 | Turbidity                     | 0.46    | NTU   |

| WELL ID          | READING TIME    | DESCRIPTION                   | VALUE   | UNIT  |
|------------------|-----------------|-------------------------------|---------|-------|
| APCO-GS-CCB-MW-8 | 2/23/2021 12:06 | Conductivity                  | 2725.22 | uS/cm |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:06 | DO                            | 1.28    | mg/L  |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:06 | Depth to Water Detail         | 64.35   | ft    |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:06 | Oxidation Reduction Potention | 66.73   | mv    |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:06 | рН                            | 6.74    | SU    |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:06 | Temperature                   | 20.63   | С     |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:06 | Turbidity                     | 10.72   | NTU   |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:11 | Conductivity                  | 2725.5  | uS/cm |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:11 | DO                            | 0.74    | mg/L  |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:11 | Depth to Water Detail         | 65.02   | ft    |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:11 | Oxidation Reduction Potention | 62.12   | mv    |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:11 | рН                            | 6.73    | SU    |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:11 | Temperature                   | 20.7    | С     |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:11 | Turbidity                     | 9.16    | NTU   |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:16 | Conductivity                  | 2726.67 | uS/cm |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:16 | DO                            | 0.6     | mg/L  |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:16 | Depth to Water Detail         | 65.28   | ft    |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:16 | Oxidation Reduction Potention | 59.09   | mv    |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:16 | рН                            | 6.73    | SU    |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:16 | Temperature                   | 20.72   | С     |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:16 | Turbidity                     | 6.61    | NTU   |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:21 | Conductivity                  | 2709.44 | uS/cm |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:21 | DO                            | 0.52    | mg/L  |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:21 | Depth to Water Detail         | 65.28   | ft    |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:21 | Oxidation Reduction Potention | 56.51   | mv    |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:21 | рН                            | 6.73    | SU    |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:21 | Temperature                   | 20.82   | С     |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:21 | Turbidity                     | 4.35    | NTU   |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:26 | Conductivity                  | 2722.01 | uS/cm |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:26 | DO                            | 0.48    | mg/L  |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:26 | Depth to Water Detail         | 65.4    | ft    |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:26 | Oxidation Reduction Potention | 54.28   | mv    |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:26 | рН                            | 6.73    | SU    |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:26 | Temperature                   | 20.81   | C     |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:26 | Turbidity                     | 2.9     | NTU   |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:31 | Conductivity                  | 2732.18 |       |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:31 | DO                            |         | mg/L  |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:31 | Depth to Water Detail         | 65.48   | ft    |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:31 | Oxidation Reduction Potention | 52.49   |       |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:31 | рН                            | 6.73    | SU    |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:31 | Temperature                   | 20.88   |       |
| APCO-GS-CCB-MW-8 | 2/23/2021 12:31 | Turbidity                     | 3.03    | NTU   |

### 2nd Semi-Annual Monitoring Event

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040 205-664-6001

### Analytical Report



Sample Group: WMWGORPU\_1328

Project/Site: Gorgas Pooled Upgradient

Parrish, AL 35580

For: Southern Company Services

3535 Colonnade Parkway Birmingham, AL 35243

Attention: Dustin Brooks & Greg Dyer

Released By: Laura Midkiff

lbmidkif@southernco.com

(205) 664-6197



Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040 (205) 664-6001

August 04, 2021

Dear Dustin Brooks,

Enclosed are the analytical results for sample(s) received by the laboratory on July 13, 2021. All results reported herein conform to the laboratory's most current Quality Assurance Manual. Results marked with an asterisk conform to the most current applicable TNI/NELAC requirements. Exceptions will be noted in the body of the report.

Laboratory certification ID: E571114

Issued By: State of Florida, Department of Health

Expiration: June 30, 2022

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

**Quality Control:** 

Laura Midkiff On Endadam Power Company, ou = Environmental Affairs, email=bmidkiff@southernoo.com, c=US Date: 2021.08.04.10.24.40.4500

T. Durant Supervision:

Maske

Digitally signed by T. Durant Maske DN: cn=T. Durant Maske, o=Alabama Power Company, ou=Environmental Affairs, email=tdmaske@southernco.com, c=US—Date: 2021.08.06 18:29:15-05'00'





### **REPORT OF LABORATORY ANALYSIS**

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.



### Case Narrative

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



### **Total Metals ICP**

### Gorgas Pooled Upgradient

### WMWGORPU\_1328

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB12485   | 703422   | WMWGORPU_1328 |
| BB12486   | 703422   | WMWGORPU_1328 |
| BB12487   | 703422   | WMWGORPU_1328 |
| BB12488   | 703422   | WMWGORPU_1328 |
| BB12489   | 703422   | WMWGORPU_1328 |
| BB12490   | 703422   | WMWGORPU_1328 |
| BB12491   | 703422   | WMWGORPU_1328 |

- 4. All of the above samples were analyzed by EPA 200.7 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

### **General Quality Control Procedures:**

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- All calibration curve requirements were within acceptance criteria.
- All sample internal standard criteria were met.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.

### Case Narrative

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



• It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| <u>Analyte</u>      | <b>Dilution Factor</b>                                                                         |
|---------------------|------------------------------------------------------------------------------------------------|
| Calcium & Magnesium | 10.15                                                                                          |
| Calcium & Magnesium | 10.15                                                                                          |
| Calcium & Magnesium | 10.15                                                                                          |
| Calcium & Sodium    | 10.15                                                                                          |
| Calcium             | 10.15                                                                                          |
| Magnesium           | 101.5                                                                                          |
| Magnesium           | 101.5                                                                                          |
|                     | Calcium & Magnesium Calcium & Magnesium Calcium & Magnesium Calcium & Sodium Calcium Magnesium |

8. The raw data results are shown with dilution factors included.

### Case Narrative

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



### **Dissolved Metals ICP**

### Gorgas Pooled Upgradient

### WMWGORPU 1328

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB12485   | 703488   | WMWGORPU_1328 |
| BB12486   | 703488   | WMWGORPU_1328 |
| BB12487   | 703488   | WMWGORPU_1328 |
| BB12488   | 703488   | WMWGORPU_1328 |
| BB12489   | 703488   | WMWGORPU_1328 |

- 4. All of the above samples were analyzed and prepared by EPA 200.7 for dissolved analysis.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

### **General Quality Control Procedures:**

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- Due to no filtered method blank (MB) or laboratory control sample (LCS) submitted with the sample set, an unfiltered MB and LCS were analyzed with the samples in each batch.
- All laboratory control sample criteria were met.
- The method blank associated with each batch passed all acceptance criteria for all requested analytes.
- All calibration curve requirements were within acceptance criteria.
- All sample internal standard criteria were met.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were analyzed with each ICP batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were analyzed with each ICP batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution factor.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **Total Metals ICPMS**

### **Gorgas Pooled Upgradient**

### WMWGORPU 1328

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB12485   | 703415   | WMWGORPU_1328 |
| BB12486   | 703415   | WMWGORPU_1328 |
| BB12487   | 703415   | WMWGORPU_1328 |
| BB12488   | 703415   | WMWGORPU_1328 |
| BB12489   | 703415   | WMWGORPU_1328 |
| BB12490   | 703415   | WMWGORPU_1328 |
| BB12491   | 703415   | WMWGORPU_1328 |

- 4. All of the above samples were analyzed by EPA 200.8 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u> | <b>Dilution Factor</b> |
|-----------|----------------|------------------------|
| BB12485   | Manganese      | 10.15                  |
| BB12486   | Manganese      | 10.15                  |
| BB12487   | Manganese      | 5.075                  |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **Dissolved Metals ICPMS**

#### Gorgas Pooled Upgradient

### WMWGORPU 1328

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB12485   | 703029   | WMWGORPU_1328 |
| BB12486   | 703029   | WMWGORPU_1328 |
| BB12487   | 703029   | WMWGORPU_1328 |
| BB12488   | 703029   | WMWGORPU_1328 |
| BB12489   | 703029   | WMWGORPU_1328 |

- 4. All of the above samples were analyzed and prepared by EPA 200.8 for dissolved analysis.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

### **General Quality Control Procedures:**

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- Due to no filtered method blank (MB) or laboratory control sample (LCS) submitted with the sample set, an unfiltered MB and LCS were analyzed with the samples in each batch.
- All laboratory control sample criteria were met.
- The method blank associated with each preparation batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were analyzed with each ICPMS batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were analyzed with each ICPMS batch. All acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| <u>Sample ID</u> | <u>Analyte</u> | <u>Dilution Factor</u> |
|------------------|----------------|------------------------|
| BB12485          | Manganese      | 10.15                  |
| BB12486          | Manganese      | 10.15                  |
| BB12487          | Manganese      | 10.15                  |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### Mercury

### **Gorgas Pooled Upgradient**

### WMWGORPU 1328

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB12485   | 702684   | WMWGORPU_1328 |
| BB12486   | 702684   | WMWGORPU_1328 |
| BB12487   | 702684   | WMWGORPU_1328 |
| BB12488   | 702684   | WMWGORPU_1328 |
| BB12489   | 702684   | WMWGORPU_1328 |
| BB12490   | 702684   | WMWGORPU_1328 |
| BB12491   | 702684   | WMWGORPU 1328 |

- 4. All of the above samples were analyzed and prepared by EPA 245.1.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the method detection limit for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch was below the limit of quantitation for the requested analyte.
- All calibration met criteria for the requested analyte.
- All response signals were satisfactory.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



**TDS** 

### **Gorgas Pooled Upgradient**

### WMWGORPU 1328

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB12485   | 702701   | WMWGORPU_1328 |
| BB12486   | 702701   | WMWGORPU_1328 |
| BB12487   | 702701   | WMWGORPU_1328 |
| BB12488   | 702701   | WMWGORPU_1328 |
| BB12489   | 702701   | WMWGORPU_1328 |
| BB12490   | 702701   | WMWGORPU_1328 |
| BB12491   | 702701   | WMWGORPU_1328 |

- 4. All of the above samples were analyzed by Standard Method 2540C.
- 5. All samples were analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

### **General Quality Control Procedures:**

- A Method Blank was analyzed with each batch. All criteria were met.
- All final weights of samples, standards, and blanks agreed within 0.5mg of the previous weight.
- A sample duplicate was analyzed with each batch. RPD/2 was less than 5%.
- A laboratory control sample was analyzed with each batch. All criteria were met.
- Samples were between 2.5mg and 200mg residue.
- All samples with residue <2.5mg had the maximum volume of 150mL filtered. Affected samples are as follows:</li>
  - o BB12490
  - o BB12491

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **Anions**

### Gorgas Pooled Upgradient

### WMWGORPU 1328

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | <u>Batch ID</u>        | Project ID    |
|-----------|------------------------|---------------|
| BB12485   | 702708, 702964, 702707 | WMWGORPU_1328 |
| BB12486   | 702708, 702964, 702707 | WMWGORPU_1328 |
| BB12487   | 702708, 702964, 702707 | WMWGORPU_1328 |
| BB12488   | 702708, 702964, 702707 | WMWGORPU_1328 |
| BB12489   | 702708, 702964, 702707 | WMWGORPU_1328 |
| BB12490   | 702708, 702964, 702707 | WMWGORPU_1328 |
| BB12491   | 702708, 702964, 702707 | WMWGORPU_1328 |

- 4. All of the above samples were analyzed and prepared by SM4500 Cl E, SM4500 F G, and SM4500 SO4 E.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- All calibration met criteria for the requested analyte.
- Prior to sample analysis, an initial calibration verification (ICV), and all criteria were met.
- Prior to sample analysis, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical
  sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range,
  any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any
  qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of
  review.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike was analyzed with each batch. Acceptance criteria for accuracy were met.
- A sample duplicate was analyzed with each batch. Acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u> | <b>Dilution Factor</b> |
|-----------|----------------|------------------------|
| BB12485   | Sulfate        | 50                     |
| BB12486   | Sulfate        | 50                     |
| BB12487   | Sulfate        | 32                     |
| BB12488   | Sulfate        | 100                    |
| BB12489   | Sulfate        | 100                    |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



### Alkalinity

### Gorgas Pooled Upgradient

### WMWGORPU 1328

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID        | Project ID    |
|-----------|-----------------|---------------|
| BB12485   | 703193 & 703194 | WMWGORPU_1328 |
| BB12486   | 703193 & 703194 | WMWGORPU_1328 |
| BB12487   | 703193 & 703194 | WMWGORPU_1328 |
| BB12488   | 703193 & 703194 | WMWGORPU_1328 |
| BB12489   | 703193 & 703194 | WMWGORPU_1328 |

- 4. All of the above samples were analyzed by Standard Method 2320B.
- 5. All samples were analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

### **General Quality Control Procedures:**

- An initial pH check was analyzed with each batch. The acceptance criteria were met.
- A final pH check was analyzed with each batch. The acceptance criteria were met.
- An alkalinity laboratory control sample was analyzed with each batch. Range criteria of within 10% of true value was met.
- An alkalinity sample duplicate was analyzed with each batch. Precision criteria less than 10 RPD was met.

# Certificate Of Analysis



Description: Gorgas Pooled Upgradient - MW-1Location Code:WMWGORPUCollected:7/12/21 10:45

Customer ID:

**Submittal Date:** 7/13/21 09:15

Laboratory ID Number: BB12485

| Name                                                                   | Prepared      | Analyzed     | Vio Spec DF | Results      | Units         | MDL      | RL         | Q |
|------------------------------------------------------------------------|---------------|--------------|-------------|--------------|---------------|----------|------------|---|
| Inalytical Method: EPA 200.7 Analyst: ABB Preparation Method: EPA 1638 |               |              |             |              |               |          |            |   |
| * Boron, Total                                                         | 7/21/21 12:22 | 7/22/21 16:1 | 5 1.015     | Not Detected | mg/L          | 0.030000 | 0.1015     | U |
| * Calcium, Total                                                       | 7/21/21 12:22 | 7/23/21 11:1 | 5 10.15     | 149          | mg/L          | 0.70035  | 4.06       |   |
| * Iron, Total                                                          | 7/21/21 12:22 | 7/22/21 16:1 | 5 1.015     | Not Detected | mg/L          | 0.008120 | 0.0406     | U |
| * Lithium, Total                                                       | 7/21/21 12:22 | 7/22/21 16:1 | 5 1.015     | 0.0266       | mg/L          | 0.007105 | 0.01999956 | j |
| * Magnesium, Total                                                     | 7/21/21 12:22 | 7/23/21 11:1 | 5 10.15     | 283          | mg/L          | 0.21315  | 4.06       |   |
| * Sodium, Total                                                        | 7/21/21 12:22 | 7/22/21 16:1 | 5 1.015     | 38.4         | mg/L          | 0.03045  | 0.406      |   |
| Analytical Method: EPA 200.7                                           | Anal          | yst: ABB     |             |              |               |          |            |   |
| * Iron, Dissolved                                                      | 7/27/21 09:49 | 7/27/21 10:5 | 7 1.015     | Not Detected | mg/L          | 0.008120 | 0.0406     | U |
| Analytical Method: EPA 200.8                                           | Anal          | yst: DLJ     |             | Preparati    | ion Method: I | EPA 1638 |            |   |
| * Antimony, Total                                                      | 7/15/21 15:15 | 7/16/21 15:1 | 8 1.015     | Not Detected | mg/L          | 0.000508 | 0.001015   | U |
| * Arsenic, Total                                                       | 7/15/21 15:15 | 7/16/21 15:1 | 8 1.015     | 0.000363     | mg/L          | 0.000068 | 0.000203   |   |
| * Barium, Total                                                        | 7/15/21 15:15 | 7/16/21 15:1 | 8 1.015     | 0.00991      | mg/L          | 0.000102 | 0.000203   |   |
| * Beryllium, Total                                                     | 7/15/21 15:15 | 7/16/21 15:1 | 8 1.015     | Not Detected | mg/L          | 0.000406 | 0.001015   | U |
| * Cadmium, Total                                                       | 7/15/21 15:15 | 7/16/21 15:1 | 8 1.015     | 0.00193      | mg/L          | 0.000068 | 0.000203   |   |
| * Chromium, Total                                                      | 7/15/21 15:15 | 7/16/21 15:1 | 8 1.015     | 0.000487     | mg/L          | 0.000203 | 0.001015   | J |
| * Cobalt, Total                                                        | 7/15/21 15:15 | 7/16/21 15:1 | 8 1.015     | 0.0556       | mg/L          | 0.000068 | 0.000203   |   |
| * Lead, Total                                                          | 7/15/21 15:15 | 7/16/21 15:1 | 8 1.015     | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Molybdenum, Total                                                    | 7/15/21 15:15 | 7/16/21 15:1 | 8 1.015     | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Potassium, Total                                                     | 7/15/21 15:15 | 7/16/21 15:1 | 8 1.015     | 7.30         | mg/L          | 0.169505 | 0.5075     |   |
| * Manganese, Total                                                     | 7/15/21 15:15 | 7/22/21 10:5 | 10.15       | 10.2         | mg/L          | 0.000680 | 0.00203    |   |
| * Selenium, Total                                                      | 7/15/21 15:15 | 7/16/21 15:1 | 8 1.015     | 0.00280      | mg/L          | 0.000508 | 0.001015   |   |
| * Thallium, Total                                                      | 7/15/21 15:15 | 7/16/21 15:1 | 8 1.015     | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8                                           | Anal          | yst: ABB     |             |              |               |          |            |   |
| * Manganese, Dissolved                                                 | 7/16/21 08:37 | 7/20/21 14:1 | 7 10.15     | 10.7         | mg/L          | 0.000680 | 0.00203    |   |
| Analytical Method: EPA 245.1                                           | Anal          | yst: CRB     |             |              |               |          |            |   |
| * Mercury, Total by CVAA                                               | 7/14/21 10:02 | •            | 3 1         | Not Detected | mg/L          | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B                                           | Anal          | yst: JAG     |             |              |               |          |            |   |
| Alkalinity, Total as CaCO3                                             | 7/21/21 09:10 | •            | 1           | 22.0         | mg/L          |          | 0.1        |   |
| Analytical Method: SM 2540C                                            | Anal          | yst: CNJ     |             |              |               |          |            |   |
| * Solids, Dissolved                                                    | 7/14/21 12:18 | •            | 1 1         | 2210         | mg/L          |          | 125        |   |

MDL's and RL's are adjusted for sample dilution, as applicable

# Certificate Of Analysis



Description: Gorgas Pooled Upgradient - MW-1

Location Code:

WMWGORPU

Collected:

Customer ID: Submittal Date: 7/12/21 10:45 7/13/21 09:15

Laboratory ID Number: BB12485

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |          |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 7/21/21 09:10 | 7/21/21 09:4 | 40       | 1  | 22.0    | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 7/21/21 09:10 | 7/21/21 09:4 | 40       | 1  | 0.00    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Chloride                            | 7/14/21 11:57 | 7/14/21 11:  | 57       | 1  | 2.19    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Fluoride                            | 7/15/21 10:17 | 7/15/21 10:  | 17       | 1  | 0.125   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Sulfate                             | 7/14/21 10:33 | 7/14/21 10:3 | 33       | 50 | 1560    | mg/L  | 25.00 | 50  |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD    |          |    |         |       |       |     |    |
| Conductivity                          | 7/12/21 10:41 | 7/12/21 10:4 | 41       |    | 2271.93 | uS/cm |       |     | FA |
| рН                                    | 7/12/21 10:41 | 7/12/21 10:4 | 41       |    | 5.13    | SU    |       |     | FA |
| Temperature                           | 7/12/21 10:41 | 7/12/21 10:4 | 41       |    | 19.83   | С     |       |     | FA |
| Turbidity                             | 7/12/21 10:41 | 7/12/21 10:4 | 41       |    | 0.22    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORPU **Sample Date:** 7/12/21 10:45

Customer ID:

**Delivery Date:** 7/13/21 09:15

Description: Gorgas Pooled Upgradient - MW-1

Laboratory ID Number: BB12485

|         |                        |       |            | MB       | ·     | ·       | ·       |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| 3B12491 | Molybdenum, Total      | mg/L  | 0.0000261  | 0.000147 | 0.100 | 0.0984  | 0.103   | 0.100    | 0.0850 to 0.115    | 98.4 | 70.0 to 130 | 4.57  | 20.0          |
| 3B12491 | Mercury, Total by CVAA | mg/L  | 5.390E-05  | 0.000500 | 0.004 | 0.00402 | 0.00398 | 0.00396  | 0.00340 to 0.00460 | 100  | 70.0 to 130 | 1.00  | 20.0          |
| 3B12491 | Beryllium, Total       | mg/L  | 0.0000533  | 0.000880 | 0.100 | 0.103   | 0.102   | 0.101    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 0.976 | 20.0          |
| 3B12491 | Sodium, Total          | mg/L  | 0.00119    | 0.0660   | 5.00  | 4.95    | 4.92    | 4.98     | 4.25 to 5.75       | 99.0 | 70.0 to 130 | 0.608 | 20.0          |
| 3B12491 | Cobalt, Total          | mg/L  | -0.0000691 | 0.000147 | 0.100 | 0.0949  | 0.0984  | 0.0969   | 0.0850 to 0.115    | 94.9 | 70.0 to 130 | 3.62  | 20.0          |
| 3B12491 | Manganese, Total       | mg/L  | -0.000003  | 0.000147 | 0.100 | 0.101   | 0.104   | 0.103    | 0.0850 to 0.115    | 101  | 70.0 to 130 | 2.93  | 20.0          |
| 3B12491 | Lithium, Total         | mg/L  | -8.650E-05 | 0.0154   | 0.200 | 0.197   | 0.195   | 0.199    | 0.170 to 0.230     | 98.5 | 70.0 to 130 | 1.02  | 20.0          |
| 3B12491 | Lead, Total            | mg/L  | 0.0000018  | 0.000147 | 0.100 | 0.113   | 0.113   | 0.107    | 0.0850 to 0.115    | 113  | 70.0 to 130 | 0.00  | 20.0          |
| 3B12491 | Boron, Total           | mg/L  | 0.000567   | 0.0650   | 1.00  | 0.980   | 0.977   | 0.995    | 0.850 to 1.15      | 98.0 | 70.0 to 130 | 0.307 | 20.0          |
| 3B12491 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0930  | 0.0983  | 0.0943   | 0.0850 to 0.115    | 93.0 | 70.0 to 130 | 5.54  | 20.0          |
| 3B12491 | Selenium, Total        | mg/L  | -0.0000651 | 0.00100  | 0.100 | 0.102   | 0.105   | 0.104    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 2.90  | 20.0          |
| 3B12489 | Iron, Dissolved        | mg/L  | -0.000219  | 0.0176   | 0.2   | 0.193   | 0.189   | 0.197    | 0.170 to 0.230     | 96.5 | 70.0 to 130 | 2.09  | 20.0          |
| 3B12491 | Barium, Total          | mg/L  | -0.0000459 | 0.000200 | 0.100 | 0.101   | 0.104   | 0.0999   | 0.0850 to 0.115    | 101  | 70.0 to 130 | 2.93  | 20.0          |
| 3B12491 | Calcium, Total         | mg/L  | 0.00896    | 0.152    | 5.00  | 5.03    | 5.02    | 5.05     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.199 | 20.0          |
| 3B12491 | Iron, Total            | mg/L  | 2.630E-05  | 0.0176   | 0.2   | 0.199   | 0.198   | 0.201    | 0.170 to 0.230     | 99.5 | 70.0 to 130 | 0.504 | 20.0          |
| 3B12491 | Potassium, Total       | mg/L  | 0.00426    | 0.367    | 10.0  | 9.90    | 10.2    | 10.2     | 8.50 to 11.5       | 99.0 | 70.0 to 130 | 2.99  | 20.0          |
| 3B12491 | Magnesium, Total       | mg/L  | -0.00929   | 0.0462   | 5.00  | 5.00    | 5.00    | 5.01     | 4.25 to 5.75       | 100  | 70.0 to 130 | 0.00  | 20.0          |
| 3B12491 | Chromium, Total        | mg/L  | 0.0000775  | 0.000440 | 0.100 | 0.0977  | 0.101   | 0.0999   | 0.0850 to 0.115    | 97.7 | 70.0 to 130 | 3.32  | 20.0          |
| 3B12491 | Thallium, Total        | mg/L  | -0.000124  | 0.000147 | 0.100 | 0.115   | 0.115   | 0.112    | 0.0850 to 0.115    | 115  | 70.0 to 130 | 0.00  | 20.0          |
| 3B12491 | Arsenic, Total         | mg/L  | 0.0000344  | 0.000147 | 0.100 | 0.107   | 0.104   | 0.105    | 0.0850 to 0.115    | 107  | 70.0 to 130 | 2.84  | 20.0          |
| 3B12491 | Antimony, Total        | mg/L  | 0.000134   | 0.00100  | 0.100 | 0.0966  | 0.0989  | 0.0960   | 0.0850 to 0.115    | 96.6 | 70.0 to 130 | 2.35  | 20.0          |
| 3B12489 | Manganese, Dissolved   | mg/L  | -0.0000252 | 0.000147 | 0.100 | 0.0976  | 0.100   | 0.0996   | 0.0850 to 0.115    | 97.4 | 70.0 to 130 | 2.43  | 20.0          |

# **Batch QC Summary**



Customer Account: WMWGORPU

Sample Date:

7/12/21 10:45

**Customer ID:** 

Delivery Date:

7/13/21 09:15

Description: Gorgas Pooled Upgradient - MW-1

Laboratory ID Number: BB12485

|         |                            |       |         | MB    |       |      | Sample    |          | Standard     |     | Rec         |       | Prec          |
|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|-----|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | l Limit      | Rec | Limit       | Prec  | <u>Li</u> mit |
| BB12491 | Fluoride                   | mg/L  | 0.0195  | 0.100 | 2.50  | 2.58 | 0.0245    | 2.55     | 2.25 to 2.75 | 103 | 80.0 to 120 | 0.00  | 20.0          |
| BB12491 | Sulfate                    | mg/L  | -0.557  | 1.00  | 20.0  | 20.0 | -0.380    | 19.4     | 18.0 to 22.0 | 100 | 80.0 to 120 | 0.00  | 20.0          |
| BB12491 | Chloride                   | mg/L  | -0.0691 | 1.00  | 10.0  | 11.3 | 0.232     | 10.0     | 9.00 to 11.0 | 113 | 80.0 to 120 | 0.00  | 20.0          |
| BB12489 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 192       | 53.9     | 45.0 to 55.0 |     |             | 1.04  | 10.0          |
| BB12489 | Solids, Dissolved          | mg/L  | -4.00   | 25.0  |       |      | 3040      | 47.0     | 40.0 to 60.0 |     |             | 0.662 | 5.00          |

# Certificate Of Analysis



Description: Gorgas Pooled Upgradient - MW-1 DUPLocation Code:WMWGORPUCollected:7/12/21 10:45

Customer ID:

**Submittal Date:** 7/13/21 09:15

Laboratory ID Number: BB12486

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF    | Results      | Units        | MDL      | RL         | Q |
|---------------------------------------|---------------|--------------|----------|-------|--------------|--------------|----------|------------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: ABB     |          |       | Preparati    | on Method: E | PA 1638  |            |   |
| * Boron, Total                        | 7/21/21 12:22 | 7/22/21 16:1 | 19 ′     | 1.015 | Not Detected | mg/L         | 0.030000 | 0.1015     | U |
| * Calcium, Total                      | 7/21/21 12:22 | 7/23/21 11:1 | 18       | 10.15 | 152          | mg/L         | 0.70035  | 4.06       |   |
| * Iron, Total                         | 7/21/21 12:22 | 7/22/21 16:1 | 19       | 1.015 | Not Detected | mg/L         | 0.008120 | 0.0406     | U |
| * Lithium, Total                      | 7/21/21 12:22 | 7/22/21 16:1 | 19 ′     | 1.015 | 0.0267       | mg/L         | 0.007105 | 0.01999956 |   |
| * Magnesium, Total                    | 7/21/21 12:22 | 7/23/21 11:1 | 18       | 10.15 | 290          | mg/L         | 0.21315  | 4.06       |   |
| * Sodium, Total                       | 7/21/21 12:22 | 7/22/21 16:1 | 19 ′     | 1.015 | 38.6         | mg/L         | 0.03045  | 0.406      |   |
| Analytical Method: EPA 200.7          | Anal          | yst: ABB     |          |       |              |              |          |            |   |
| * Iron, Dissolved                     | 7/27/21 09:49 | 7/27/21 11:0 | 01 ′     | 1.015 | Not Detected | mg/L         | 0.008120 | 0.0406     | U |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |          |       | Preparati    | on Method: E | PA 1638  |            |   |
| * Antimony, Total                     | 7/15/21 15:15 | 7/16/21 15:2 | 22 ′     | 1.015 | Not Detected | mg/L         | 0.000508 | 0.001015   | U |
| * Arsenic, Total                      | 7/15/21 15:15 | 7/16/21 15:2 | 22 ′     | 1.015 | 0.000300     | mg/L         | 0.000068 | 0.000203   |   |
| * Barium, Total                       | 7/15/21 15:15 | 7/16/21 15:2 | 22 ′     | 1.015 | 0.00984      | mg/L         | 0.000102 | 0.000203   |   |
| * Beryllium, Total                    | 7/15/21 15:15 | 7/16/21 15:2 | 22 ′     | 1.015 | Not Detected | mg/L         | 0.000406 | 0.001015   | U |
| * Cadmium, Total                      | 7/15/21 15:15 | 7/16/21 15:2 | 22 ′     | 1.015 | 0.00185      | mg/L         | 0.000068 | 0.000203   |   |
| * Chromium, Total                     | 7/15/21 15:15 | 7/16/21 15:2 | 22 ′     | 1.015 | 0.000389     | mg/L         | 0.000203 | 0.001015   | J |
| * Cobalt, Total                       | 7/15/21 15:15 | 7/16/21 15:2 | 22 ′     | 1.015 | 0.0549       | mg/L         | 0.000068 | 0.000203   |   |
| * Lead, Total                         | 7/15/21 15:15 | 7/16/21 15:2 | 22 ′     | 1.015 | Not Detected | mg/L         | 0.000068 | 0.000203   | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 7/15/21 15:15 | 7/16/21 15:2 | 22 ′     | 1.015 | Not Detected | mg/L         | 0.000068 | 0.000203   | U |
| * Potassium, Total                    | 7/15/21 15:15 | 7/16/21 15:2 | 22 ′     | 1.015 | 7.25         | mg/L         | 0.169505 | 0.5075     |   |
| * Manganese, Total                    | 7/15/21 15:15 | 7/22/21 10:5 | 55 ′     | 10.15 | 10.1         | mg/L         | 0.000680 | 0.00203    |   |
| * Selenium, Total                     | 7/15/21 15:15 | 7/16/21 15:2 | 22       | 1.015 | 0.00245      | mg/L         | 0.000508 | 0.001015   |   |
| * Thallium, Total                     | 7/15/21 15:15 | 7/16/21 15:2 | 22       | 1.015 | Not Detected | mg/L         | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8          | Anal          | yst: ABB     |          |       |              |              |          |            |   |
| * Manganese, Dissolved                | 7/16/21 08:37 | 7/20/21 14:2 | 20       | 10.15 | 9.90         | mg/L         | 0.000680 | 0.00203    |   |
| Analytical Method: EPA 245.1          |               | yst: CRB     |          |       |              |              |          |            |   |
| Mercury, Total by CVAA                | 7/14/21 10:02 |              | 16 ´     | 1     | Not Detected | mg/L         | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B          |               | vst: JAG     |          |       |              |              |          |            |   |
| Alkalinity, Total as CaCO3            | 7/21/21 09:10 | 7/21/21 09:4 | 40       | 1     | 24.2         | mg/L         |          | 0.1        |   |
| Analytical Method: SM 2540C           |               | yst: CNJ     |          |       |              | -            |          |            |   |
| * Solids, Dissolved                   | 7/14/21 12:18 | •            | 11 ·     | 1     | 2210         | mg/L         |          | 125        |   |

MDL's and RL's are adjusted for sample dilution, as applicable

Laboratory ID Number: BB12486

# Certificate Of Analysis



Description: Gorgas Pooled Upgradient - MW-1 DUP

**Location Code:** 

**WMWGORPU** 7/12/21 10:45

Collected: **Customer ID:** 

Submittal Date:

7/13/21 09:15

| Name                              | Prepared     | Analyzed       | Vio Spec DF | Results | Units | MDL  | RL  | Q |
|-----------------------------------|--------------|----------------|-------------|---------|-------|------|-----|---|
| Analytical Method: SM 4500CO2 D   | Ar           | nalyst: JAG    |             |         |       |      |     |   |
| Bicarbonate Alkalinity, (calc.)   | 7/21/21 09:1 | 0 7/21/21 09:4 | 40 1        | 24.2    | mg/L  |      |     |   |
| Carbonate Alkalinity, (calc.)     | 7/21/21 09:1 | 0 7/21/21 09:4 | 40 1        | 0.00    | mg/L  |      |     |   |
| Analytical Method: SM4500Cl E     | Ar           | nalyst: JCC    |             |         |       |      |     |   |
| * Chloride                        | 7/14/21 11:5 | 8 7/14/21 11:  | 58 1        | 2.25    | mg/L  | 0.50 | 1   |   |
| Analytical Method: SM4500F G 2017 | Ar           | nalyst: JCC    |             |         |       |      |     |   |
| * Fluoride                        | 7/15/21 10:1 | 8 7/15/21 10:  | 18 1        | 0.112   | mg/L  | 0.06 | 0.1 |   |

| Carbonate Alkalinity, (calc.)         | 7/21/21 09:10 7/21/21 09:40 | 1  | 0.00    | mg/L  |       |     |    |
|---------------------------------------|-----------------------------|----|---------|-------|-------|-----|----|
| Analytical Method: SM4500Cl E         | Analyst: JCC                |    |         |       |       |     |    |
| * Chloride                            | 7/14/21 11:58 7/14/21 11:58 | 1  | 2.25    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Analyst: JCC                |    |         |       |       |     |    |
| * Fluoride                            | 7/15/21 10:18 7/15/21 10:18 | 1  | 0.112   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Analyst: JCC                |    |         |       |       |     |    |
| * Sulfate                             | 7/14/21 10:34 7/14/21 10:34 | 50 | 1500    | mg/L  | 25.00 | 50  |    |
| Analytical Method: Field Measurements | Analyst: TJD                |    |         |       |       |     |    |
| Conductivity                          | 7/12/21 10:41 7/12/21 10:41 |    | 2271.93 | uS/cm |       |     | FA |
| рН                                    | 7/12/21 10:41 7/12/21 10:41 |    | 5.13    | SU    |       |     | FA |
| Temperature                           | 7/12/21 10:41 7/12/21 10:41 |    | 19.83   | С     |       |     | FA |
| Turbidity                             | 7/12/21 10:41 7/12/21 10:41 |    | 0.22    | NTU   |       |     | FA |
|                                       |                             |    |         |       |       |     |    |
|                                       |                             |    |         |       |       |     |    |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORPU **Sample Date:** 7/12/21 10:45

Customer ID:

Delivery Date:

7/13/21 09:15

**Description**: Gorgas Pooled Upgradient - MW-1 DUP

Laboratory ID Number: BB12486

|        |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Prec          |
|--------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| B12491 | Molybdenum, Total      | mg/L  | 0.0000261  | 0.000147 | 0.100 | 0.0984  | 0.103   | 0.100    | 0.0850 to 0.115    | 98.4 | 70.0 to 130 | 4.57  | 20.0          |
| B12491 | Mercury, Total by CVAA | mg/L  | 5.390E-05  | 0.000500 | 0.004 | 0.00402 | 0.00398 | 0.00396  | 0.00340 to 0.00460 | 100  | 70.0 to 130 | 1.00  | 20.0          |
| B12491 | Beryllium, Total       | mg/L  | 0.0000533  | 0.000880 | 0.100 | 0.103   | 0.102   | 0.101    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 0.976 | 20.0          |
| B12491 | Sodium, Total          | mg/L  | 0.00119    | 0.0660   | 5.00  | 4.95    | 4.92    | 4.98     | 4.25 to 5.75       | 99.0 | 70.0 to 130 | 0.608 | 20.0          |
| B12491 | Lithium, Total         | mg/L  | -8.650E-05 | 0.0154   | 0.200 | 0.197   | 0.195   | 0.199    | 0.170 to 0.230     | 98.5 | 70.0 to 130 | 1.02  | 20.0          |
| B12491 | Lead, Total            | mg/L  | 0.0000018  | 0.000147 | 0.100 | 0.113   | 0.113   | 0.107    | 0.0850 to 0.115    | 113  | 70.0 to 130 | 0.00  | 20.0          |
| B12491 | Cobalt, Total          | mg/L  | -0.0000691 | 0.000147 | 0.100 | 0.0949  | 0.0984  | 0.0969   | 0.0850 to 0.115    | 94.9 | 70.0 to 130 | 3.62  | 20.0          |
| B12491 | Manganese, Total       | mg/L  | -0.000003  | 0.000147 | 0.100 | 0.101   | 0.104   | 0.103    | 0.0850 to 0.115    | 101  | 70.0 to 130 | 2.93  | 20.0          |
| B12491 | Iron, Total            | mg/L  | 2.630E-05  | 0.0176   | 0.2   | 0.199   | 0.198   | 0.201    | 0.170 to 0.230     | 99.5 | 70.0 to 130 | 0.504 | 20.0          |
| B12491 | Potassium, Total       | mg/L  | 0.00426    | 0.367    | 10.0  | 9.90    | 10.2    | 10.2     | 8.50 to 11.5       | 99.0 | 70.0 to 130 | 2.99  | 20.0          |
| B12491 | Boron, Total           | mg/L  | 0.000567   | 0.0650   | 1.00  | 0.980   | 0.977   | 0.995    | 0.850 to 1.15      | 98.0 | 70.0 to 130 | 0.307 | 20.0          |
| B12491 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0930  | 0.0983  | 0.0943   | 0.0850 to 0.115    | 93.0 | 70.0 to 130 | 5.54  | 20.0          |
| B12491 | Magnesium, Total       | mg/L  | -0.00929   | 0.0462   | 5.00  | 5.00    | 5.00    | 5.01     | 4.25 to 5.75       | 100  | 70.0 to 130 | 0.00  | 20.0          |
| B12491 | Chromium, Total        | mg/L  | 0.0000775  | 0.000440 | 0.100 | 0.0977  | 0.101   | 0.0999   | 0.0850 to 0.115    | 97.7 | 70.0 to 130 | 3.32  | 20.0          |
| B12491 | Thallium, Total        | mg/L  | -0.000124  | 0.000147 | 0.100 | 0.115   | 0.115   | 0.112    | 0.0850 to 0.115    | 115  | 70.0 to 130 | 0.00  | 20.0          |
| B12491 | Arsenic, Total         | mg/L  | 0.0000344  | 0.000147 | 0.100 | 0.107   | 0.104   | 0.105    | 0.0850 to 0.115    | 107  | 70.0 to 130 | 2.84  | 20.0          |
| B12491 | Antimony, Total        | mg/L  | 0.000134   | 0.00100  | 0.100 | 0.0966  | 0.0989  | 0.0960   | 0.0850 to 0.115    | 96.6 | 70.0 to 130 | 2.35  | 20.0          |
| B12489 | Manganese, Dissolved   | mg/L  | -0.0000252 | 0.000147 | 0.100 | 0.0976  | 0.100   | 0.0996   | 0.0850 to 0.115    | 97.4 | 70.0 to 130 | 2.43  | 20.0          |
| B12491 | Selenium, Total        | mg/L  | -0.0000651 | 0.00100  | 0.100 | 0.102   | 0.105   | 0.104    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 2.90  | 20.0          |
| B12489 | Iron, Dissolved        | mg/L  | -0.000219  | 0.0176   | 0.2   | 0.193   | 0.189   | 0.197    | 0.170 to 0.230     | 96.5 | 70.0 to 130 | 2.09  | 20.0          |
| B12491 | Barium, Total          | mg/L  | -0.0000459 | 0.000200 | 0.100 | 0.101   | 0.104   | 0.0999   | 0.0850 to 0.115    | 101  | 70.0 to 130 | 2.93  | 20.0          |
| B12491 | Calcium, Total         | mg/L  | 0.00896    | 0.152    | 5.00  | 5.03    | 5.02    | 5.05     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.199 | 20.0          |

# **Batch QC Summary**



Customer Account: WMWGORPU

Sample Date:

7/12/21 10:45

**Customer ID:** 

**Delivery Date:** 

7/13/21 09:15

Description: Gorgas Pooled Upgradient - MW-1 DUP

Laboratory ID Number: BB12486

|         |                            |       |         | MB    |       |      | Sample    |          | Standard     |     | Rec         |       | Prec          |
|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|-----|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec | Limit       | Prec  | <u>Li</u> mit |
| BB12489 | Solids, Dissolved          | mg/L  | -4.00   | 25.0  |       |      | 3040      | 47.0     | 40.0 to 60.0 |     |             | 0.662 | 5.00          |
| BB12491 | Fluoride                   | mg/L  | 0.0195  | 0.100 | 2.50  | 2.58 | 0.0245    | 2.55     | 2.25 to 2.75 | 103 | 80.0 to 120 | 0.00  | 20.0          |
| BB12491 | Sulfate                    | mg/L  | -0.557  | 1.00  | 20.0  | 20.0 | -0.380    | 19.4     | 18.0 to 22.0 | 100 | 80.0 to 120 | 0.00  | 20.0          |
| BB12491 | Chloride                   | mg/L  | -0.0691 | 1.00  | 10.0  | 11.3 | 0.232     | 10.0     | 9.00 to 11.0 | 113 | 80.0 to 120 | 0.00  | 20.0          |
| BB12489 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 192       | 53.9     | 45.0 to 55.0 |     |             | 1.04  | 10.0          |
|         |                            |       |         |       |       |      |           |          |              |     |             |       |               |

# Certificate Of Analysis



Description: Gorgas Pooled Upgradient - MW-2Location Code:WMWGORPUCollected:7/12/21 11:48

Customer ID:

**Submittal Date:** 7/13/21 09:15

Laboratory ID Number: BB12487

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results     | Units         | MDL      | RL         | Q |
|------------------------------|---------------|--------------|-------------|-------------|---------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             | Prepar      | ation Method: | EPA 1638 |            |   |
| * Boron, Total               | 7/21/21 12:22 | 7/22/21 16:2 | 22 1.015    | Not Detecte | ed mg/L       | 0.030000 | 0.1015     | U |
| * Calcium, Total             | 7/21/21 12:22 | 7/23/21 11:2 | 22 10.15    | 5 159       | mg/L          | 0.70035  | 4.06       |   |
| * Iron, Total                | 7/21/21 12:22 | 7/22/21 16:2 | 22 1.015    | 5 1.34      | mg/L          | 0.008120 | 0.0406     |   |
| * Lithium, Total             | 7/21/21 12:22 | 7/22/21 16:2 | 22 1.015    | 5 0.0495    | mg/L          | 0.007105 | 0.01999956 | 6 |
| * Magnesium, Total           | 7/21/21 12:22 | 7/23/21 11:2 | 22 10.15    | 5 174       | mg/L          | 0.21315  | 4.06       |   |
| * Sodium, Total              | 7/21/21 12:22 | 7/22/21 16:2 | 22 1.015    | 5 20.9      | mg/L          | 0.03045  | 0.406      |   |
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             |             |               |          |            |   |
| * Iron, Dissolved            | 7/27/21 09:49 | 7/27/21 11:0 | 1.015       | 5 1.15      | mg/L          | 0.008120 | 0.0406     |   |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             | Prepar      | ation Method: | EPA 1638 |            |   |
| * Antimony, Total            | 7/15/21 15:15 | 7/16/21 15:2 | 25 1.015    | Not Detecte | ed mg/L       | 0.000508 | 0.001015   | U |
| * Arsenic, Total             | 7/15/21 15:15 | 7/16/21 15:2 | 25 1.015    | 0.000364    | mg/L          | 0.000068 | 0.000203   |   |
| * Barium, Total              | 7/15/21 15:15 | 7/16/21 15:2 | 25 1.015    | 5 0.0130    | mg/L          | 0.000102 | 0.000203   |   |
| * Beryllium, Total           | 7/15/21 15:15 | 7/16/21 15:2 | 25 1.015    | Not Detecte | ed mg/L       | 0.000406 | 0.001015   | U |
| * Cadmium, Total             | 7/15/21 15:15 | 7/16/21 15:2 | 25 1.015    | 0.0000827   | mg/L          | 0.000068 | 0.000203   | J |
| * Chromium, Total            | 7/15/21 15:15 | 7/16/21 15:2 | 25 1.015    | 0.000251    | mg/L          | 0.000203 | 0.001015   | J |
| * Cobalt, Total              | 7/15/21 15:15 | 7/16/21 15:2 | 25 1.015    | 0.0155      | mg/L          | 0.000068 | 0.000203   |   |
| * Lead, Total                | 7/15/21 15:15 | 7/16/21 15:2 | 25 1.015    | Not Detecte | ed mg/L       | 0.000068 | 0.000203   | U |
| * Molybdenum, Total          | 7/15/21 15:15 | 7/16/21 15:2 | 25 1.015    | Not Detecte | ed mg/L       | 0.000068 | 0.000203   | U |
| * Potassium, Total           | 7/15/21 15:15 | 7/16/21 15:2 | 25 1.015    | 5 5.86      | mg/L          | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 7/15/21 15:15 | 7/22/21 10:5 | 5.075       | 5 4.80      | mg/L          | 0.000340 | 0.001015   |   |
| * Selenium, Total            | 7/15/21 15:15 | 7/16/21 15:2 | 25 1.015    | Not Detecte | ed mg/L       | 0.000508 | 0.001015   | U |
| * Thallium, Total            | 7/15/21 15:15 | 7/16/21 15:2 | 25 1.015    | Not Detecte | ed mg/L       | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Anal          | yst: ABB     |             |             |               |          |            |   |
| * Manganese, Dissolved       | 7/16/21 08:37 | 7/20/21 14:2 | 24 10.15    | 5 4.49      | mg/L          | 0.000680 | 0.00203    |   |
| Analytical Method: EPA 245.1 | Anal          | yst: CRB     |             |             |               |          |            |   |
| * Mercury, Total by CVAA     | 7/14/21 10:02 | 7/14/21 13:4 | 8 1         | Not Detecte | ed mg/L       | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |             |               |          |            |   |
| Alkalinity, Total as CaCO3   | 7/21/21 09:10 |              | 1           | 346         | mg/L          |          | 0.1        |   |
| Analytical Method: SM 2540C  | Anal          | yst: CNJ     |             |             |               |          |            |   |
| * Solids, Dissolved          | 7/14/21 12:18 | 7/15/21 13:4 | 1 1         | 1390        | mg/L          |          | 75.8       |   |

MDL's and RL's are adjusted for sample dilution, as applicable

# Certificate Of Analysis



**Description:** Gorgas Pooled Upgradient - MW-2

**Location Code:** 

**WMWGORPU** 

Collected:

**Customer ID:** 

7/12/21 11:48

Submittal Date: 7/13/21 09:15

| Laboratory ID Number: BB12487         |               |              |             | Subn    | nillai Dale: | 7/13/21 09 | .15 |    |
|---------------------------------------|---------------|--------------|-------------|---------|--------------|------------|-----|----|
| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results | Units        | MDL        | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |             |         |              |            |     |    |
| Bicarbonate Alkalinity, (calc.)       | 7/21/21 09:10 | 7/21/21 09:4 | 0 1         | 346     | mg/L         |            |     |    |
| Carbonate Alkalinity, (calc.)         | 7/21/21 09:10 | 7/21/21 09:4 | 0 1         | 0.07    | mg/L         |            |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |             |         |              |            |     |    |
| * Chloride                            | 7/14/21 11:59 | 7/14/21 11:5 | 9 1         | 2.36    | mg/L         | 0.50       | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |             |         |              |            |     |    |
| * Fluoride                            | 7/15/21 10:19 | 7/15/21 10:1 | 9 1         | 0.196   | mg/L         | 0.06       | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |             |         |              |            |     |    |
| * Sulfate                             | 7/14/21 10:36 | 7/14/21 10:3 | 6 32        | 763     | mg/L         | 16.00      | 32  |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD    |             |         |              |            |     |    |
| Conductivity                          | 7/12/21 11:45 | 7/12/21 11:4 | 5           | 1676.05 | uS/cm        |            |     | FA |
| рН                                    | 7/12/21 11:45 | 7/12/21 11:4 | 5           | 6.16    | SU           |            |     | FA |
| Temperature                           | 7/12/21 11:45 | 7/12/21 11:4 | 5           | 19.38   | С            |            |     | FA |
| Turbidity                             | 7/12/21 11:45 | 7/12/21 11:4 | 5           | 1.43    | NTU          |            |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORPU **Sample Date:** 7/12/21 11:48

Customer ID:

**Delivery Date:** 7/13/21 09:15

**Description**: Gorgas Pooled Upgradient - MW-2

Laboratory ID Number: BB12487

|        |                        |       |            | MB       | <u> </u> |         |         |          | Standard           |      | Rec         |       | Prec          |
|--------|------------------------|-------|------------|----------|----------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample | Analysis               | Units | MB         | Limit    | Spike    | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| B12491 | Lithium, Total         | mg/L  | -8.650E-05 | 0.0154   | 0.200    | 0.197   | 0.195   | 0.199    | 0.170 to 0.230     | 98.5 | 70.0 to 130 | 1.02  | 20.0          |
| B12491 | Lead, Total            | mg/L  | 0.0000018  | 0.000147 | 0.100    | 0.113   | 0.113   | 0.107    | 0.0850 to 0.115    | 113  | 70.0 to 130 | 0.00  | 20.0          |
| B12491 | Molybdenum, Total      | mg/L  | 0.0000261  | 0.000147 | 0.100    | 0.0984  | 0.103   | 0.100    | 0.0850 to 0.115    | 98.4 | 70.0 to 130 | 4.57  | 20.0          |
| B12491 | Mercury, Total by CVAA | mg/L  | 5.390E-05  | 0.000500 | 0.004    | 0.00402 | 0.00398 | 0.00396  | 0.00340 to 0.00460 | 100  | 70.0 to 130 | 1.00  | 20.0          |
| B12491 | Beryllium, Total       | mg/L  | 0.0000533  | 0.000880 | 0.100    | 0.103   | 0.102   | 0.101    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 0.976 | 20.0          |
| B12491 | Sodium, Total          | mg/L  | 0.00119    | 0.0660   | 5.00     | 4.95    | 4.92    | 4.98     | 4.25 to 5.75       | 99.0 | 70.0 to 130 | 0.608 | 20.0          |
| B12491 | Iron, Total            | mg/L  | 2.630E-05  | 0.0176   | 0.2      | 0.199   | 0.198   | 0.201    | 0.170 to 0.230     | 99.5 | 70.0 to 130 | 0.504 | 20.0          |
| B12491 | Potassium, Total       | mg/L  | 0.00426    | 0.367    | 10.0     | 9.90    | 10.2    | 10.2     | 8.50 to 11.5       | 99.0 | 70.0 to 130 | 2.99  | 20.0          |
| B12491 | Boron, Total           | mg/L  | 0.000567   | 0.0650   | 1.00     | 0.980   | 0.977   | 0.995    | 0.850 to 1.15      | 98.0 | 70.0 to 130 | 0.307 | 20.0          |
| B12491 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100    | 0.0930  | 0.0983  | 0.0943   | 0.0850 to 0.115    | 93.0 | 70.0 to 130 | 5.54  | 20.0          |
| B12491 | Cobalt, Total          | mg/L  | -0.0000691 | 0.000147 | 0.100    | 0.0949  | 0.0984  | 0.0969   | 0.0850 to 0.115    | 94.9 | 70.0 to 130 | 3.62  | 20.0          |
| B12491 | Manganese, Total       | mg/L  | -0.000003  | 0.000147 | 0.100    | 0.101   | 0.104   | 0.103    | 0.0850 to 0.115    | 101  | 70.0 to 130 | 2.93  | 20.0          |
| B12491 | Selenium, Total        | mg/L  | -0.0000651 | 0.00100  | 0.100    | 0.102   | 0.105   | 0.104    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 2.90  | 20.0          |
| B12489 | Iron, Dissolved        | mg/L  | -0.000219  | 0.0176   | 0.2      | 0.193   | 0.189   | 0.197    | 0.170 to 0.230     | 96.5 | 70.0 to 130 | 2.09  | 20.0          |
| B12491 | Barium, Total          | mg/L  | -0.0000459 | 0.000200 | 0.100    | 0.101   | 0.104   | 0.0999   | 0.0850 to 0.115    | 101  | 70.0 to 130 | 2.93  | 20.0          |
| B12491 | Calcium, Total         | mg/L  | 0.00896    | 0.152    | 5.00     | 5.03    | 5.02    | 5.05     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.199 | 20.0          |
| B12491 | Magnesium, Total       | mg/L  | -0.00929   | 0.0462   | 5.00     | 5.00    | 5.00    | 5.01     | 4.25 to 5.75       | 100  | 70.0 to 130 | 0.00  | 20.0          |
| B12491 | Chromium, Total        | mg/L  | 0.0000775  | 0.000440 | 0.100    | 0.0977  | 0.101   | 0.0999   | 0.0850 to 0.115    | 97.7 | 70.0 to 130 | 3.32  | 20.0          |
| B12491 | Thallium, Total        | mg/L  | -0.000124  | 0.000147 | 0.100    | 0.115   | 0.115   | 0.112    | 0.0850 to 0.115    | 115  | 70.0 to 130 | 0.00  | 20.0          |
| B12491 | Arsenic, Total         | mg/L  | 0.0000344  | 0.000147 | 0.100    | 0.107   | 0.104   | 0.105    | 0.0850 to 0.115    | 107  | 70.0 to 130 | 2.84  | 20.0          |
| B12491 | Antimony, Total        | mg/L  | 0.000134   | 0.00100  | 0.100    | 0.0966  | 0.0989  | 0.0960   | 0.0850 to 0.115    | 96.6 | 70.0 to 130 | 2.35  | 20.0          |
| B12489 | Manganese, Dissolved   | mg/L  | -0.0000252 | 0.000147 | 0.100    | 0.0976  | 0.100   | 0.0996   | 0.0850 to 0.115    | 97.4 | 70.0 to 130 | 2.43  | 20.0          |

# **Batch QC Summary**



Customer Account: WMWGORPU

Sample Date:

7/12/21 11:48

**Customer ID:** 

**Delivery Date:** 

7/13/21 09:15

Description: Gorgas Pooled Upgradient - MW-2

Laboratory ID Number: BB12487

|         |                            |       |         | MB    |       |      | Sample    |          | Standard     |     | Rec         |       | Prec          |
|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|-----|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec | Limit       | Prec  | <u>Li</u> mit |
| BB12489 | Solids, Dissolved          | mg/L  | -4.00   | 25.0  |       |      | 3040      | 47.0     | 40.0 to 60.0 |     |             | 0.662 | 5.00          |
| BB12491 | Fluoride                   | mg/L  | 0.0195  | 0.100 | 2.50  | 2.58 | 0.0245    | 2.55     | 2.25 to 2.75 | 103 | 80.0 to 120 | 0.00  | 20.0          |
| BB12491 | Sulfate                    | mg/L  | -0.557  | 1.00  | 20.0  | 20.0 | -0.380    | 19.4     | 18.0 to 22.0 | 100 | 80.0 to 120 | 0.00  | 20.0          |
| BB12491 | Chloride                   | mg/L  | -0.0691 | 1.00  | 10.0  | 11.3 | 0.232     | 10.0     | 9.00 to 11.0 | 113 | 80.0 to 120 | 0.00  | 20.0          |
| BB12489 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 192       | 53.9     | 45.0 to 55.0 |     |             | 1.04  | 10.0          |
|         |                            |       |         |       |       |      |           |          |              |     |             |       |               |

# Certificate Of Analysis



Description: Gorgas Pooled Upgradient - MW-3Location Code:WMWGORPUCollected:7/12/21 12:53

Customer ID:

Laboratory ID Number: BB12488 Submittal Date: 7/13/21 09:15

| Name                                  | Prepared      | Analyzed     | Vio Spec DF         | F Resu   | ılts        | Units        | MDL      | RL         | Q |
|---------------------------------------|---------------|--------------|---------------------|----------|-------------|--------------|----------|------------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: ABB     |                     |          | Preparation | on Method: E | EPA 1638 |            |   |
| * Boron, Total                        | 7/21/21 12:22 | 7/22/21 16:2 | .5 1.0°             | 15 Not I | Detected    | mg/L         | 0.030000 | 0.1015     | U |
| * Calcium, Total                      | 7/21/21 12:22 | 7/23/21 11:2 | .5 10. <sup>4</sup> | 15 252   |             | mg/L         | 0.70035  | 4.06       |   |
| * Iron, Total                         | 7/21/21 12:22 | 7/22/21 16:2 | .5 1.0°             | 15 0.26  | 9           | mg/L         | 0.008120 | 0.0406     |   |
| * Lithium, Total                      | 7/21/21 12:22 | 7/22/21 16:2 | .5 1.0°             | 15 0.08  | 08          | mg/L         | 0.007105 | 0.01999956 |   |
| * Magnesium, Total                    | 7/21/21 12:22 | 7/23/21 11:3 | 2 101               | .5 471   |             | mg/L         | 2.1315   | 40.6       |   |
| * Sodium, Total                       | 7/21/21 12:22 | 7/23/21 11:2 | 5 10.4              | 15 42.5  |             | mg/L         | 0.3045   | 4.06       |   |
| Analytical Method: EPA 200.7          | Anal          | yst: ABB     |                     |          |             |              |          |            |   |
| * Iron, Dissolved                     | 7/27/21 09:49 | 7/27/21 11:0 | 1.0°                | 15 0.10  | 4           | mg/L         | 0.008120 | 0.0406     |   |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |                     |          | Preparation | on Method: E | EPA 1638 |            |   |
| * Antimony, Total                     | 7/15/21 15:15 | 7/16/21 15:2 | 9 1.0               | 15 Not I | Detected    | mg/L         | 0.000508 | 0.001015   | U |
| * Arsenic, Total                      | 7/15/21 15:15 | 7/16/21 15:2 | 9 1.0               | 15 0.00  | 0376        | mg/L         | 0.000068 | 0.000203   |   |
| * Barium, Total                       | 7/15/21 15:15 | 7/16/21 15:2 | 9 1.0               | 15 0.00  | 857         | mg/L         | 0.000102 | 0.000203   |   |
| * Beryllium, Total                    | 7/15/21 15:15 | 7/16/21 15:2 | 9 1.0               | 15 Not I | Detected    | mg/L         | 0.000406 | 0.001015   | U |
| * Cadmium, Total                      | 7/15/21 15:15 | 7/16/21 15:2 | 9 1.0               | 15 0.00  | 0937        | mg/L         | 0.000068 | 0.000203   |   |
| * Chromium, Total                     | 7/15/21 15:15 | 7/16/21 15:2 | 9 1.0               | 15 0.00  | 0307        | mg/L         | 0.000203 | 0.001015   | J |
| * Cobalt, Total                       | 7/15/21 15:15 | 7/16/21 15:2 | 9 1.0               | 15 0.00  | 567         | mg/L         | 0.000068 | 0.000203   |   |
| * Lead, Total                         | 7/15/21 15:15 | 7/16/21 15:2 | 9 1.0               | 15 0.00  | 00842       | mg/L         | 0.000068 | 0.000203   | J |
| <ul> <li>Molybdenum, Total</li> </ul> | 7/15/21 15:15 | 7/16/21 15:2 | 9 1.0               | 15 Not I | Detected    | mg/L         | 0.000068 | 0.000203   | U |
| * Potassium, Total                    | 7/15/21 15:15 | 7/16/21 15:2 | 9 1.0               | 15 6.90  |             | mg/L         | 0.169505 | 0.5075     |   |
| * Manganese, Total                    | 7/15/21 15:15 | 7/16/21 15:2 | 9 1.0               | 15 0.16  | 0           | mg/L         | 0.000068 | 0.000203   |   |
| * Selenium, Total                     | 7/15/21 15:15 | 7/16/21 15:2 | 9 1.0               | 15 0.01  | 33          | mg/L         | 0.000508 | 0.001015   |   |
| * Thallium, Total                     | 7/15/21 15:15 | 7/16/21 15:2 | 9 1.0               | 15 Not [ | Detected    | mg/L         | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8          | Anal          | yst: ABB     |                     |          |             |              |          |            |   |
| * Manganese, Dissolved                | 7/16/21 08:37 | 7/16/21 14:4 | .5 1.0°             | 15 0.37  | 4           | mg/L         | 0.000068 | 0.000203   |   |
| Analytical Method: EPA 245.1          | Anal          | yst: CRB     |                     |          |             |              |          |            |   |
| * Mercury, Total by CVAA              | 7/14/21 10:02 | 7/14/21 13:5 | 0 1                 | Not I    | Detected    | mg/L         | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B          |               | yst: JAG     |                     |          |             |              |          |            |   |
| Alkalinity, Total as CaCO3            | 7/21/21 09:10 | 7/21/21 09:4 | .0 1                | 49.4     |             | mg/L         |          | 0.1        |   |
| Analytical Method: SM 2540C           |               | yst: CNJ     |                     |          |             |              |          |            |   |
| * Solids, Dissolved                   | 7/14/21 12:18 | •            | 1 1                 | 3510     | )           | mg/L         |          | 178.6      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

# Certificate Of Analysis



Description: Gorgas Pooled Upgradient - MW-3

**Location Code:** 

WMWGORPU

Collected:

Customer ID: Submittal Date:

7/12/21 12:53 7/13/21 09:15

Laboratory ID Number: BB12488

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF  | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|-----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Ana           | yst: JAG     |          |     |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 7/21/21 09:10 | 7/21/21 09:4 | 10       | 1   | 49.4    | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 7/21/21 09:10 | 7/21/21 09:4 | 10       | 1   | 0.00    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |          |     |         |       |       |     |    |
| * Chloride                            | 7/14/21 12:01 | 7/14/21 12:0 | )1       | 1   | 2.13    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |          |     |         |       |       |     |    |
| * Fluoride                            | 7/15/21 10:20 | 7/15/21 10:2 | 20       | 1   | 0.287   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |          |     |         |       |       |     |    |
| * Sulfate                             | 7/14/21 10:37 | 7/14/21 10:3 | 37       | 100 | 2380    | mg/L  | 50.00 | 100 |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD    |          |     |         |       |       |     |    |
| Conductivity                          | 7/12/21 12:49 | 7/12/21 12:4 | 19       |     | 3288.64 | uS/cm |       |     | FA |
| рН                                    | 7/12/21 12:49 | 7/12/21 12:4 | 9        |     | 5.86    | SU    |       |     | FA |
| Temperature                           | 7/12/21 12:49 | 7/12/21 12:4 | 9        |     | 25.58   | С     |       |     | FA |
| Turbidity                             | 7/12/21 12:49 | 7/12/21 12:4 | 19       |     | 1.31    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



Customer Account: WMWGORPU Sample Date:

**Customer ID:** 

7/12/21 12:53

**Delivery Date:** 7/13/21 09:15

Description: Gorgas Pooled Upgradient - MW-3

Laboratory ID Number: BB12488

|        |                        |       | ·          | MB       | ·     |         |         |          | Standard           |      | Rec         |       | Prec          |
|--------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| B12491 | Lithium, Total         | mg/L  | -8.650E-05 | 0.0154   | 0.200 | 0.197   | 0.195   | 0.199    | 0.170 to 0.230     | 98.5 | 70.0 to 130 | 1.02  | 20.0          |
| B12491 | Lead, Total            | mg/L  | 0.0000018  | 0.000147 | 0.100 | 0.113   | 0.113   | 0.107    | 0.0850 to 0.115    | 113  | 70.0 to 130 | 0.00  | 20.0          |
| B12491 | Molybdenum, Total      | mg/L  | 0.0000261  | 0.000147 | 0.100 | 0.0984  | 0.103   | 0.100    | 0.0850 to 0.115    | 98.4 | 70.0 to 130 | 4.57  | 20.0          |
| B12491 | Mercury, Total by CVAA | mg/L  | 5.390E-05  | 0.000500 | 0.004 | 0.00402 | 0.00398 | 0.00396  | 0.00340 to 0.00460 | 100  | 70.0 to 130 | 1.00  | 20.0          |
| B12491 | Beryllium, Total       | mg/L  | 0.0000533  | 0.000880 | 0.100 | 0.103   | 0.102   | 0.101    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 0.976 | 20.0          |
| B12491 | Sodium, Total          | mg/L  | 0.00119    | 0.0660   | 5.00  | 4.95    | 4.92    | 4.98     | 4.25 to 5.75       | 99.0 | 70.0 to 130 | 0.608 | 20.0          |
| B12491 | Cobalt, Total          | mg/L  | -0.0000691 | 0.000147 | 0.100 | 0.0949  | 0.0984  | 0.0969   | 0.0850 to 0.115    | 94.9 | 70.0 to 130 | 3.62  | 20.0          |
| B12491 | Manganese, Total       | mg/L  | -0.000003  | 0.000147 | 0.100 | 0.101   | 0.104   | 0.103    | 0.0850 to 0.115    | 101  | 70.0 to 130 | 2.93  | 20.0          |
| B12491 | Iron, Total            | mg/L  | 2.630E-05  | 0.0176   | 0.2   | 0.199   | 0.198   | 0.201    | 0.170 to 0.230     | 99.5 | 70.0 to 130 | 0.504 | 20.0          |
| B12491 | Potassium, Total       | mg/L  | 0.00426    | 0.367    | 10.0  | 9.90    | 10.2    | 10.2     | 8.50 to 11.5       | 99.0 | 70.0 to 130 | 2.99  | 20.0          |
| B12491 | Boron, Total           | mg/L  | 0.000567   | 0.0650   | 1.00  | 0.980   | 0.977   | 0.995    | 0.850 to 1.15      | 98.0 | 70.0 to 130 | 0.307 | 20.0          |
| B12491 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0930  | 0.0983  | 0.0943   | 0.0850 to 0.115    | 93.0 | 70.0 to 130 | 5.54  | 20.0          |
| B12491 | Selenium, Total        | mg/L  | -0.0000651 | 0.00100  | 0.100 | 0.102   | 0.105   | 0.104    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 2.90  | 20.0          |
| B12489 | Iron, Dissolved        | mg/L  | -0.000219  | 0.0176   | 0.2   | 0.193   | 0.189   | 0.197    | 0.170 to 0.230     | 96.5 | 70.0 to 130 | 2.09  | 20.0          |
| B12491 | Barium, Total          | mg/L  | -0.0000459 | 0.000200 | 0.100 | 0.101   | 0.104   | 0.0999   | 0.0850 to 0.115    | 101  | 70.0 to 130 | 2.93  | 20.0          |
| B12491 | Calcium, Total         | mg/L  | 0.00896    | 0.152    | 5.00  | 5.03    | 5.02    | 5.05     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.199 | 20.0          |
| B12491 | Magnesium, Total       | mg/L  | -0.00929   | 0.0462   | 5.00  | 5.00    | 5.00    | 5.01     | 4.25 to 5.75       | 100  | 70.0 to 130 | 0.00  | 20.0          |
| B12491 | Chromium, Total        | mg/L  | 0.0000775  | 0.000440 | 0.100 | 0.0977  | 0.101   | 0.0999   | 0.0850 to 0.115    | 97.7 | 70.0 to 130 | 3.32  | 20.0          |
| B12491 | Thallium, Total        | mg/L  | -0.000124  | 0.000147 | 0.100 | 0.115   | 0.115   | 0.112    | 0.0850 to 0.115    | 115  | 70.0 to 130 | 0.00  | 20.0          |
| B12491 | Arsenic, Total         | mg/L  | 0.0000344  | 0.000147 | 0.100 | 0.107   | 0.104   | 0.105    | 0.0850 to 0.115    | 107  | 70.0 to 130 | 2.84  | 20.0          |
| B12491 | Antimony, Total        | mg/L  | 0.000134   | 0.00100  | 0.100 | 0.0966  | 0.0989  | 0.0960   | 0.0850 to 0.115    | 96.6 | 70.0 to 130 | 2.35  | 20.0          |
| B12489 | Manganese, Dissolved   | mg/L  | -0.0000252 | 0.000147 | 0.100 | 0.0976  | 0.100   | 0.0996   | 0.0850 to 0.115    | 97.4 | 70.0 to 130 | 2.43  | 20.0          |

# **Batch QC Summary**



Customer Account: WMWGORPU

Sample Date:

7/12/21 12:53

**Customer ID:** 

**Delivery Date:** 

7/13/21 09:15

Description: Gorgas Pooled Upgradient - MW-3

Laboratory ID Number: BB12488

|         |                            |       |         | MB    |       |      | Sample    |          | Standard     |     | Rec         |       | Prec          |
|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|-----|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec | Limit       | Prec  | <u>Li</u> mit |
| BB12491 | Fluoride                   | mg/L  | 0.0195  | 0.100 | 2.50  | 2.58 | 0.0245    | 2.55     | 2.25 to 2.75 | 103 | 80.0 to 120 | 0.00  | 20.0          |
| BB12489 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 192       | 53.9     | 45.0 to 55.0 |     |             | 1.04  | 10.0          |
| BB12489 | Solids, Dissolved          | mg/L  | -4.00   | 25.0  |       |      | 3040      | 47.0     | 40.0 to 60.0 |     |             | 0.662 | 5.00          |
| BB12491 | Sulfate                    | mg/L  | -0.557  | 1.00  | 20.0  | 20.0 | -0.380    | 19.4     | 18.0 to 22.0 | 100 | 80.0 to 120 | 0.00  | 20.0          |
| BB12491 | Chloride                   | mg/L  | -0.0691 | 1.00  | 10.0  | 11.3 | 0.232     | 10.0     | 9.00 to 11.0 | 113 | 80.0 to 120 | 0.00  | 20.0          |

# Certificate Of Analysis



Description: Gorgas Pooled Upgradient - MW-4Location Code:WMWGORPUCollected:7/12/21 14:35

Customer ID:

**Submittal Date:** 7/13/21 09:15

Laboratory ID Number: BB12489

| Name                         | Prepared      | Analyzed     | Vio Spec DF  | Results    | Units              | MDL      | RL         | Q |
|------------------------------|---------------|--------------|--------------|------------|--------------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |              | Pre        | paration Method: I | EPA 1638 |            |   |
| * Boron, Total               | 7/21/21 12:22 | 7/22/21 16:2 | 29 1.01      | 5 0.0411   | mg/L               | 0.030000 | 0.1015     | J |
| * Calcium, Total             | 7/21/21 12:22 | 7/23/21 11:2 | 29 10.1      | 5 242      | mg/L               | 0.70035  | 4.06       |   |
| * Iron, Total                | 7/21/21 12:22 | 7/22/21 16:2 | 29 1.01      | 5 0.0132   | mg/L               | 0.008120 | 0.0406     | J |
| * Lithium, Total             | 7/21/21 12:22 | 7/22/21 16:2 | 29 1.01      | 5 0.0533   | mg/L               | 0.007105 | 0.01999956 | 6 |
| * Magnesium, Total           | 7/21/21 12:22 | 7/23/21 11:3 | 35 101.      | 5 389      | mg/L               | 2.1315   | 40.6       |   |
| * Sodium, Total              | 7/21/21 12:22 | 7/22/21 16:2 | 29 1.01      | 5 36.6     | mg/L               | 0.03045  | 0.406      |   |
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |              |            |                    |          |            |   |
| * Iron, Dissolved            | 7/27/21 09:49 | 7/27/21 11:  | 1.01         | 5 Not Dete | cted mg/L          | 0.008120 | 0.0406     | U |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |              | Pre        | paration Method: I | EPA 1638 |            |   |
| * Antimony, Total            | 7/15/21 15:15 | 7/16/21 15:3 | 32 1.01      | 5 Not Dete | cted mg/L          | 0.000508 | 0.001015   | U |
| * Arsenic, Total             | 7/15/21 15:15 | 7/16/21 15:3 | 32 1.01      | 5 0.000116 | 6 mg/L             | 0.000068 | 0.000203   | J |
| * Barium, Total              | 7/15/21 15:15 | 7/16/21 15:3 | 32 1.01      | 5 0.0108   | mg/L               | 0.000102 | 0.000203   |   |
| * Beryllium, Total           | 7/15/21 15:15 | 7/16/21 15:3 | 32 1.01      | 5 Not Dete | cted mg/L          | 0.000406 | 0.001015   | U |
| * Cadmium, Total             | 7/15/21 15:15 | 7/16/21 15:3 | 32 1.01      | 5 0.00008  | 19 mg/L            | 0.000068 | 0.000203   | J |
| * Chromium, Total            | 7/15/21 15:15 | 7/16/21 15:3 | 32 1.01      | 5 0.000302 | 2 mg/L             | 0.000203 | 0.001015   | J |
| * Cobalt, Total              | 7/15/21 15:15 | 7/16/21 15:3 | 32 1.01      | 5 Not Dete | cted mg/L          | 0.000068 | 0.000203   | U |
| * Lead, Total                | 7/15/21 15:15 | 7/16/21 15:3 | 32 1.01      | 5 Not Dete | cted mg/L          | 0.000068 | 0.000203   | U |
| * Molybdenum, Total          | 7/15/21 15:15 | 7/16/21 15:3 | 32 1.01      | 5 0.000138 | 3 mg/L             | 0.000068 | 0.000203   | J |
| * Potassium, Total           | 7/15/21 15:15 | 7/16/21 15:3 | 32 1.01      | 5 7.65     | mg/L               | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 7/15/21 15:15 | 7/16/21 15:3 | 32 1.01      | 5 0.000607 | 7 mg/L             | 0.000068 | 0.000203   |   |
| * Selenium, Total            | 7/15/21 15:15 | 7/16/21 15:3 | 32 1.01      | 5 0.00155  | mg/L               | 0.000508 | 0.001015   |   |
| * Thallium, Total            | 7/15/21 15:15 | 7/16/21 15:3 | 32 1.01      | 5 Not Dete | cted mg/L          | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Anal          | yst: ABB     |              |            |                    |          |            |   |
| * Manganese, Dissolved       | 7/16/21 08:37 | 7/16/21 14:4 | 1.01         | 5 0.000225 | 5 mg/L             | 0.000068 | 0.000203   |   |
| Analytical Method: EPA 245.1 | Anal          | yst: CRB     |              |            |                    |          |            |   |
| * Mercury, Total by CVAA     | 7/14/21 10:02 | 7/14/21 13:  | 53 1         | Not Dete   | cted mg/L          | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B | Anai          | yst: JAG     |              |            |                    |          |            |   |
| Alkalinity, Total as CaCO3   | 7/21/21 09:10 | •            | 10 1         | 194        | mg/L               |          | 0.1        |   |
| Analytical Method: SM 2540C  | Anai          | yst: CNJ     |              |            |                    |          |            |   |
| * Solids, Dissolved          | 7/14/21 12:18 | 7/15/21 13:4 | <b>1</b> 1 1 | 3000       | mg/L               |          | 147.1      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

# Certificate Of Analysis



Description: Gorgas Pooled Upgradient - MW-4

Location Code:

WMWGORPU

Collected:

Customer ID: Submittal Date: 7/12/21 14:35

7/13/21 09:15

| Laboratory ID Number: BB12489         |               |              |             | Subn    | ilitiai Date: | 7/13/21 09 | .15 |    |
|---------------------------------------|---------------|--------------|-------------|---------|---------------|------------|-----|----|
| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results | Units         | MDL        | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |             |         |               |            |     |    |
| Bicarbonate Alkalinity, (calc.)       | 7/21/21 09:10 | 7/21/21 09:4 | 0 1         | 194     | mg/L          |            |     |    |
| Carbonate Alkalinity, (calc.)         | 7/21/21 09:10 | 7/21/21 09:4 | 0 1         | 0.06    | mg/L          |            |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |             |         |               |            |     |    |
| * Chloride                            | 7/14/21 12:02 | 7/14/21 12:0 | 2 1         | 1.56    | mg/L          | 0.50       | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |             |         |               |            |     |    |
| * Fluoride                            | 7/15/21 10:22 | 7/15/21 10:2 | 2 1         | 0.350   | mg/L          | 0.06       | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |             |         |               |            |     |    |
| * Sulfate                             | 7/14/21 10:38 | 7/14/21 10:3 | 8 100       | 1930    | mg/L          | 50.00      | 100 |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD    |             |         |               |            |     |    |
| Conductivity                          | 7/12/21 14:31 | 7/12/21 14:3 | 1           | 2977.13 | uS/cm         |            |     | FA |
| рН                                    | 7/12/21 14:31 | 7/12/21 14:3 | 1           | 6.06    | SU            |            |     | FA |
| Temperature                           | 7/12/21 14:31 | 7/12/21 14:3 | 1           | 21.22   | С             |            |     | FA |
| Turbidity                             | 7/12/21 14:31 | 7/12/21 14:3 | 1           | 0.66    | NTU           |            |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORPU **Sample Date:** 7/12/21 14:35

**Customer ID:** 

**Delivery Date:** 7/13/21 09:15

Description: Gorgas Pooled Upgradient - MW-4

Laboratory ID Number: BB12489

|         |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB12491 | Molybdenum, Total      | mg/L  | 0.0000261  | 0.000147 | 0.100 | 0.0984  | 0.103   | 0.100    | 0.0850 to 0.115    | 98.4 | 70.0 to 130 | 4.57  | 20.0          |
| BB12491 | Mercury, Total by CVAA | mg/L  | 5.390E-05  | 0.000500 | 0.004 | 0.00402 | 0.00398 | 0.00396  | 0.00340 to 0.00460 | 100  | 70.0 to 130 | 1.00  | 20.0          |
| BB12491 | Beryllium, Total       | mg/L  | 0.0000533  | 0.000880 | 0.100 | 0.103   | 0.102   | 0.101    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 0.976 | 20.0          |
| BB12491 | Sodium, Total          | mg/L  | 0.00119    | 0.0660   | 5.00  | 4.95    | 4.92    | 4.98     | 4.25 to 5.75       | 99.0 | 70.0 to 130 | 0.608 | 20.0          |
| BB12491 | Iron, Total            | mg/L  | 2.630E-05  | 0.0176   | 0.2   | 0.199   | 0.198   | 0.201    | 0.170 to 0.230     | 99.5 | 70.0 to 130 | 0.504 | 20.0          |
| BB12491 | Potassium, Total       | mg/L  | 0.00426    | 0.367    | 10.0  | 9.90    | 10.2    | 10.2     | 8.50 to 11.5       | 99.0 | 70.0 to 130 | 2.99  | 20.0          |
| BB12491 | Cobalt, Total          | mg/L  | -0.0000691 | 0.000147 | 0.100 | 0.0949  | 0.0984  | 0.0969   | 0.0850 to 0.115    | 94.9 | 70.0 to 130 | 3.62  | 20.0          |
| BB12491 | Manganese, Total       | mg/L  | -0.000003  | 0.000147 | 0.100 | 0.101   | 0.104   | 0.103    | 0.0850 to 0.115    | 101  | 70.0 to 130 | 2.93  | 20.0          |
| BB12491 | Selenium, Total        | mg/L  | -0.0000651 | 0.00100  | 0.100 | 0.102   | 0.105   | 0.104    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 2.90  | 20.0          |
| BB12489 | Iron, Dissolved        | mg/L  | -0.000219  | 0.0176   | 0.2   | 0.193   | 0.189   | 0.197    | 0.170 to 0.230     | 96.5 | 70.0 to 130 | 2.09  | 20.0          |
| BB12491 | Barium, Total          | mg/L  | -0.0000459 | 0.000200 | 0.100 | 0.101   | 0.104   | 0.0999   | 0.0850 to 0.115    | 101  | 70.0 to 130 | 2.93  | 20.0          |
| BB12491 | Calcium, Total         | mg/L  | 0.00896    | 0.152    | 5.00  | 5.03    | 5.02    | 5.05     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.199 | 20.0          |
| BB12491 | Magnesium, Total       | mg/L  | -0.00929   | 0.0462   | 5.00  | 5.00    | 5.00    | 5.01     | 4.25 to 5.75       | 100  | 70.0 to 130 | 0.00  | 20.0          |
| BB12491 | Chromium, Total        | mg/L  | 0.0000775  | 0.000440 | 0.100 | 0.0977  | 0.101   | 0.0999   | 0.0850 to 0.115    | 97.7 | 70.0 to 130 | 3.32  | 20.0          |
| BB12491 | Thallium, Total        | mg/L  | -0.000124  | 0.000147 | 0.100 | 0.115   | 0.115   | 0.112    | 0.0850 to 0.115    | 115  | 70.0 to 130 | 0.00  | 20.0          |
| BB12491 | Arsenic, Total         | mg/L  | 0.0000344  | 0.000147 | 0.100 | 0.107   | 0.104   | 0.105    | 0.0850 to 0.115    | 107  | 70.0 to 130 | 2.84  | 20.0          |
| BB12491 | Antimony, Total        | mg/L  | 0.000134   | 0.00100  | 0.100 | 0.0966  | 0.0989  | 0.0960   | 0.0850 to 0.115    | 96.6 | 70.0 to 130 | 2.35  | 20.0          |
| BB12489 | Manganese, Dissolved   | mg/L  | -0.0000252 | 0.000147 | 0.100 | 0.0976  | 0.100   | 0.0996   | 0.0850 to 0.115    | 97.4 | 70.0 to 130 | 2.43  | 20.0          |
| BB12491 | Lithium, Total         | mg/L  | -8.650E-05 | 0.0154   | 0.200 | 0.197   | 0.195   | 0.199    | 0.170 to 0.230     | 98.5 | 70.0 to 130 | 1.02  | 20.0          |
| BB12491 | Lead, Total            | mg/L  | 0.0000018  | 0.000147 | 0.100 | 0.113   | 0.113   | 0.107    | 0.0850 to 0.115    | 113  | 70.0 to 130 | 0.00  | 20.0          |
| BB12491 | Boron, Total           | mg/L  | 0.000567   | 0.0650   | 1.00  | 0.980   | 0.977   | 0.995    | 0.850 to 1.15      | 98.0 | 70.0 to 130 | 0.307 | 20.0          |
| BB12491 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0930  | 0.0983  | 0.0943   | 0.0850 to 0.115    | 93.0 | 70.0 to 130 | 5.54  | 20.0          |

# **Batch QC Summary**



Customer Account: WMWGORPU

Sample Date:

7/12/21 14:35

**Customer ID:** 

Delivery Date:

7/13/21 09:15

Description: Gorgas Pooled Upgradient - MW-4

Laboratory ID Number: BB12489

|         |                            |       |         | MB    |       |      | Sample    |          | Standard     |     | Rec         |       | Prec          |
|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|-----|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | l Limit      | Rec | Limit       | Prec  | <u>Li</u> mit |
| BB12489 | Solids, Dissolved          | mg/L  | -4.00   | 25.0  |       |      | 3040      | 47.0     | 40.0 to 60.0 |     |             | 0.662 | 5.00          |
| BB12491 | Fluoride                   | mg/L  | 0.0195  | 0.100 | 2.50  | 2.58 | 0.0245    | 2.55     | 2.25 to 2.75 | 103 | 80.0 to 120 | 0.00  | 20.0          |
| BB12491 | Sulfate                    | mg/L  | -0.557  | 1.00  | 20.0  | 20.0 | -0.380    | 19.4     | 18.0 to 22.0 | 100 | 80.0 to 120 | 0.00  | 20.0          |
| BB12491 | Chloride                   | mg/L  | -0.0691 | 1.00  | 10.0  | 11.3 | 0.232     | 10.0     | 9.00 to 11.0 | 113 | 80.0 to 120 | 0.00  | 20.0          |
| BB12489 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 192       | 53.9     | 45.0 to 55.0 |     |             | 1.04  | 10.0          |

# **Certificate Of Analysis**



**Location Code: WMWGORPUEB** Description: Gorgas Pooled Upgradient Equipment Blank-1 7/12/21 15:00

Collected:

**Customer ID:** 

**Submittal Date:** 7/13/21 09:15

| Laboratory ID Number: BB12490       |               |            |          |       | Submit       | tal Date:    | 7/13/21 09:1 | 5          |   |
|-------------------------------------|---------------|------------|----------|-------|--------------|--------------|--------------|------------|---|
| Name                                | Prepared      | Analyzed   | Vio Spec | DF    | Results      | Units        | MDL          | RL         | Q |
| Analytical Method: EPA 200.7        | Anal          | yst: ABB   |          |       | Preparati    | on Method: I | EPA 1638     |            |   |
| * Boron, Total                      | 7/21/21 12:22 | 7/22/21 16 | :32      | 1.015 | Not Detected | mg/L         | 0.030000     | 0.1015     | U |
| * Calcium, Total                    | 7/21/21 12:22 | 7/22/21 16 | :32      | 1.015 | Not Detected | mg/L         | 0.070035     | 0.406      | U |
| * Iron, Total                       | 7/21/21 12:22 | 7/22/21 16 | :32      | 1.015 | Not Detected | mg/L         | 0.008120     | 0.0406     | U |
| * Lithium, Total                    | 7/21/21 12:22 | 7/22/21 16 | :32      | 1.015 | Not Detected | mg/L         | 0.007105     | 0.01999956 | U |
| * Magnesium, Total                  | 7/21/21 12:22 | 7/22/21 16 | :32      | 1.015 | Not Detected | mg/L         | 0.021315     | 0.406      | U |
| * Sodium, Total                     | 7/21/21 12:22 | 7/22/21 16 | :32      | 1.015 | Not Detected | mg/L         | 0.03045      | 0.406      | U |
| Analytical Method: EPA 200.8        | Anal          | yst: DLJ   |          |       | Preparati    | on Method: I | EPA 1638     |            |   |
| * Antimony, Total                   | 7/15/21 15:15 | 7/16/21 15 | :36      | 1.015 | Not Detected | mg/L         | 0.000508     | 0.001015   | U |
| * Arsenic, Total                    | 7/15/21 15:15 | 7/16/21 15 | :36      | 1.015 | Not Detected | mg/L         | 0.000068     | 0.000203   | U |
| * Barium, Total                     | 7/15/21 15:15 | 7/16/21 15 | :36      | 1.015 | Not Detected | mg/L         | 0.000102     | 0.000203   | U |
| * Beryllium, Total                  | 7/15/21 15:15 | 7/16/21 15 | :36      | 1.015 | Not Detected | mg/L         | 0.000406     | 0.001015   | U |
| * Cadmium, Total                    | 7/15/21 15:15 | 7/16/21 15 | :36      | 1.015 | Not Detected | mg/L         | 0.000068     | 0.000203   | U |
| * Chromium, Total                   | 7/15/21 15:15 | 7/16/21 15 | :36      | 1.015 | Not Detected | mg/L         | 0.000203     | 0.001015   | U |
| * Cobalt, Total                     | 7/15/21 15:15 | 7/16/21 15 | :36      | 1.015 | Not Detected | mg/L         | 0.000068     | 0.000203   | U |
| * Lead, Total                       | 7/15/21 15:15 | 7/16/21 15 | :36      | 1.015 | Not Detected | mg/L         | 0.000068     | 0.000203   | U |
| * Molybdenum, Total                 | 7/15/21 15:15 | 7/16/21 15 | :36      | 1.015 | Not Detected | mg/L         | 0.000068     | 0.000203   | U |
| * Manganese, Total                  | 7/15/21 15:15 | 7/16/21 15 | :36      | 1.015 | Not Detected | mg/L         | 0.000068     | 0.000203   | U |
| * Potassium, Total                  | 7/15/21 15:15 | 7/16/21 15 | :36      | 1.015 | Not Detected | mg/L         | 0.169505     | 0.5075     | U |
| * Selenium, Total                   | 7/15/21 15:15 | 7/16/21 15 | :36      | 1.015 | Not Detected | mg/L         | 0.000508     | 0.001015   | U |
| * Thallium, Total                   | 7/15/21 15:15 | 7/16/21 15 | :36      | 1.015 | Not Detected | mg/L         | 0.000068     | 0.000203   | U |
| Analytical Method: EPA 245.1        | Anal          | yst: CRB   |          |       |              |              |              |            |   |
| * Mercury, Total by CVAA            | 7/14/21 10:02 | 7/14/21 13 | :55      | 1     | Not Detected | mg/L         | 0.0003       | 0.0005     | U |
| Analytical Method: SM 2540C         | Anal          | yst: CNJ   |          |       |              |              |              |            |   |
| * Solids, Dissolved                 | 7/14/21 12:18 | 7/15/21 13 | :41      | 1     | Not Detected | mg/L         |              | 25         | U |
| Analytical Method: SM4500Cl E       | Anal          | yst: JCC   |          |       |              |              |              |            |   |
| * Chloride                          | 7/14/21 12:03 | 7/14/21 12 | :03      | 1     | Not Detected | mg/L         | 0.50         | 1          | U |
| Analytical Method: SM4500F G 2017   | Anal          | yst: JCC   |          |       |              |              |              |            |   |
| * Fluoride                          | 7/15/21 10:23 | 7/15/21 10 | :23      | 1     | Not Detected | mg/L         | 0.06         | 0.1        | U |
| Analytical Method: SM4500SO4 E 2011 | Anal          | yst: JCC   |          |       |              |              |              |            |   |
| * Sulfate                           | 7/14/21 10:39 | 7/14/21 10 | :39      | 1     | Not Detected | mg/L         | 0.50         | 1          | U |

MDL's and RL's are adjusted for sample dilution, as applicable

# **Batch QC Summary**



Customer Account: WMWGORPUEB

Sample Date:

7/12/21 15:00

**Customer ID:** 

**Delivery Date:** 7/13/21 09:15

Description: Gorgas Pooled Upgradient Equipment Blank-1

Laboratory ID Number: BB12490

|         |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | l Limit            | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB12491 | Lithium, Total         | mg/L  | -8.650E-05 | 0.0154   | 0.200 | 0.197   | 0.195   | 0.199    | 0.170 to 0.230     | 98.5 | 70.0 to 130 | 1.02  | 20.0          |
| BB12491 | Lead, Total            | mg/L  | 0.0000018  | 0.000147 | 0.100 | 0.113   | 0.113   | 0.107    | 0.0850 to 0.115    | 113  | 70.0 to 130 | 0.00  | 20.0          |
| BB12491 | Beryllium, Total       | mg/L  | 0.0000533  | 0.000880 | 0.100 | 0.103   | 0.102   | 0.101    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 0.976 | 20.0          |
| BB12491 | Sodium, Total          | mg/L  | 0.00119    | 0.0660   | 5.00  | 4.95    | 4.92    | 4.98     | 4.25 to 5.75       | 99.0 | 70.0 to 130 | 0.608 | 20.0          |
| BB12491 | Selenium, Total        | mg/L  | -0.0000651 | 0.00100  | 0.100 | 0.102   | 0.105   | 0.104    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 2.90  | 20.0          |
| BB12491 | Barium, Total          | mg/L  | -0.0000459 | 0.000200 | 0.100 | 0.101   | 0.104   | 0.0999   | 0.0850 to 0.115    | 101  | 70.0 to 130 | 2.93  | 20.0          |
| BB12491 | Calcium, Total         | mg/L  | 0.00896    | 0.152    | 5.00  | 5.03    | 5.02    | 5.05     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.199 | 20.0          |
| BB12491 | Cobalt, Total          | mg/L  | -0.0000691 | 0.000147 | 0.100 | 0.0949  | 0.0984  | 0.0969   | 0.0850 to 0.115    | 94.9 | 70.0 to 130 | 3.62  | 20.0          |
| BB12491 | Manganese, Total       | mg/L  | -0.000003  | 0.000147 | 0.100 | 0.101   | 0.104   | 0.103    | 0.0850 to 0.115    | 101  | 70.0 to 130 | 2.93  | 20.0          |
| BB12491 | Boron, Total           | mg/L  | 0.000567   | 0.0650   | 1.00  | 0.980   | 0.977   | 0.995    | 0.850 to 1.15      | 98.0 | 70.0 to 130 | 0.307 | 20.0          |
| BB12491 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0930  | 0.0983  | 0.0943   | 0.0850 to 0.115    | 93.0 | 70.0 to 130 | 5.54  | 20.0          |
| BB12491 | Molybdenum, Total      | mg/L  | 0.0000261  | 0.000147 | 0.100 | 0.0984  | 0.103   | 0.100    | 0.0850 to 0.115    | 98.4 | 70.0 to 130 | 4.57  | 20.0          |
| BB12491 | Mercury, Total by CVAA | mg/L  | 5.390E-05  | 0.000500 | 0.004 | 0.00402 | 0.00398 | 0.00396  | 0.00340 to 0.00460 | 100  | 70.0 to 130 | 1.00  | 20.0          |
| BB12491 | Iron, Total            | mg/L  | 2.630E-05  | 0.0176   | 0.2   | 0.199   | 0.198   | 0.201    | 0.170 to 0.230     | 99.5 | 70.0 to 130 | 0.504 | 20.0          |
| BB12491 | Potassium, Total       | mg/L  | 0.00426    | 0.367    | 10.0  | 9.90    | 10.2    | 10.2     | 8.50 to 11.5       | 99.0 | 70.0 to 130 | 2.99  | 20.0          |
| BB12491 | Magnesium, Total       | mg/L  | -0.00929   | 0.0462   | 5.00  | 5.00    | 5.00    | 5.01     | 4.25 to 5.75       | 100  | 70.0 to 130 | 0.00  | 20.0          |
| BB12491 | Chromium, Total        | mg/L  | 0.0000775  | 0.000440 | 0.100 | 0.0977  | 0.101   | 0.0999   | 0.0850 to 0.115    | 97.7 | 70.0 to 130 | 3.32  | 20.0          |
| BB12491 | Thallium, Total        | mg/L  | -0.000124  | 0.000147 | 0.100 | 0.115   | 0.115   | 0.112    | 0.0850 to 0.115    | 115  | 70.0 to 130 | 0.00  | 20.0          |
| BB12491 | Arsenic, Total         | mg/L  | 0.0000344  | 0.000147 | 0.100 | 0.107   | 0.104   | 0.105    | 0.0850 to 0.115    | 107  | 70.0 to 130 | 2.84  | 20.0          |
| BB12491 | Antimony, Total        | mg/L  | 0.000134   | 0.00100  | 0.100 | 0.0966  | 0.0989  | 0.0960   | 0.0850 to 0.115    | 96.6 | 70.0 to 130 | 2.35  | 20.0          |

# **Batch QC Summary**



Customer Account: WMWGORPUEB

Sample Date:

7/12/21 15:00

**Customer ID:** 

**Delivery Date:** 

7/13/21 09:15

Description: Gorgas Pooled Upgradient Equipment Blank-1

Laboratory ID Number: BB12490

|         |                   |       |         | MB    |       |      | Sample    |          | Standard     |     | Rec         |       | Prec          |
|---------|-------------------|-------|---------|-------|-------|------|-----------|----------|--------------|-----|-------------|-------|---------------|
| Sample  | Analysis          | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec | Limit       | Prec  | <u>Li</u> mit |
| BB12491 | Fluoride          | mg/L  | 0.0195  | 0.100 | 2.50  | 2.58 | 0.0245    | 2.55     | 2.25 to 2.75 | 103 | 80.0 to 120 | 0.00  | 20.0          |
| BB12489 | Solids, Dissolved | mg/L  | -4.00   | 25.0  |       |      | 3040      | 47.0     | 40.0 to 60.0 |     |             | 0.662 | 5.00          |
| BB12491 | Sulfate           | mg/L  | -0.557  | 1.00  | 20.0  | 20.0 | -0.380    | 19.4     | 18.0 to 22.0 | 100 | 80.0 to 120 | 0.00  | 20.0          |
| BB12491 | Chloride          | mg/L  | -0.0691 | 1.00  | 10.0  | 11.3 | 0.232     | 10.0     | 9.00 to 11.0 | 113 | 80.0 to 120 | 0.00  | 20.0          |

# **Certificate Of Analysis**



Description: Gorgas Pooled Upgradient Field Blank-1Location Code:WMWGORPUFBCollected:7/12/21 15:10

Customer ID:

**Submittal Date:** 7/13/21 09:15

Laboratory ID Number: BB12491

| Name                                | Prepared      | Analyzed     | Vio Spec DF | Results        | Units            | MDL      | RL         | Q |
|-------------------------------------|---------------|--------------|-------------|----------------|------------------|----------|------------|---|
| Analytical Method: EPA 200.7        | Anal          | yst: ABB     |             | Prepara        | tion Method: EPA | N 1638   |            |   |
| * Boron, Total                      | 7/21/21 12:22 | 7/22/21 16:3 | 36 1.01     | 5 Not Detected | mg/L             | 0.030000 | 0.1015     | U |
| * Calcium, Total                    | 7/21/21 12:22 | 7/22/21 16:3 | 36 1.01     | 5 Not Detected | mg/L             | 0.070035 | 0.406      | U |
| * Iron, Total                       | 7/21/21 12:22 | 7/22/21 16:3 | 36 1.01     | 5 Not Detected | mg/L             | 0.008120 | 0.0406     | U |
| * Lithium, Total                    | 7/21/21 12:22 | 7/22/21 16:3 | 36 1.01     | Not Detected   | mg/L             | 0.007105 | 0.01999956 | U |
| * Magnesium, Total                  | 7/21/21 12:22 | 7/22/21 16:3 | 36 1.01     | Not Detected   | mg/L             | 0.021315 | 0.406      | U |
| * Sodium, Total                     | 7/21/21 12:22 | 7/22/21 16:3 | 36 1.01     | Not Detected   | mg/L             | 0.03045  | 0.406      | U |
| Analytical Method: EPA 200.8        | Anal          | yst: DLJ     |             | Prepara        | tion Method: EPA | N 1638   |            |   |
| * Antimony, Total                   | 7/15/21 15:15 | 7/16/21 15:4 | 1.01        | Not Detected   | mg/L             | 0.000508 | 0.001015   | U |
| * Arsenic, Total                    | 7/15/21 15:15 | 7/16/21 15:4 | 1.01        | Not Detected   | mg/L             | 0.000068 | 0.000203   | U |
| * Barium, Total                     | 7/15/21 15:15 | 7/16/21 15:4 | 1.01        | 5 Not Detected | mg/L             | 0.000102 | 0.000203   | U |
| * Beryllium, Total                  | 7/15/21 15:15 | 7/16/21 15:4 | 1.01        | 5 Not Detected | mg/L             | 0.000406 | 0.001015   | U |
| * Cadmium, Total                    | 7/15/21 15:15 | 7/16/21 15:4 | 1.01        | 5 Not Detected | mg/L             | 0.000068 | 0.000203   | U |
| * Chromium, Total                   | 7/15/21 15:15 | 7/16/21 15:4 | 1.01        | 5 Not Detected | mg/L             | 0.000203 | 0.001015   | U |
| * Cobalt, Total                     | 7/15/21 15:15 | 7/16/21 15:4 | 1.01        | 5 Not Detected | mg/L             | 0.000068 | 0.000203   | U |
| * Lead, Total                       | 7/15/21 15:15 | 7/16/21 15:4 | 1.01        | 5 Not Detected | mg/L             | 0.000068 | 0.000203   | U |
| * Molybdenum, Total                 | 7/15/21 15:15 | 7/16/21 15:4 | 1.01        | 5 Not Detected | mg/L             | 0.000068 | 0.000203   | U |
| * Manganese, Total                  | 7/15/21 15:15 | 7/16/21 15:4 | 1.01        | 5 Not Detected | mg/L             | 0.000068 | 0.000203   | U |
| * Potassium, Total                  | 7/15/21 15:15 | 7/16/21 15:4 | 1.01        | 5 Not Detected | mg/L             | 0.169505 | 0.5075     | U |
| * Selenium, Total                   | 7/15/21 15:15 | 7/16/21 15:4 | 1.01        | Not Detected   | mg/L             | 0.000508 | 0.001015   | U |
| * Thallium, Total                   | 7/15/21 15:15 | 7/16/21 15:4 | 1.01        | Not Detected   | mg/L             | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 245.1        | Anal          | yst: CRB     |             |                |                  |          |            |   |
| * Mercury, Total by CVAA            | 7/14/21 10:02 | 7/14/21 13:5 | 57 1        | Not Detected   | mg/L             | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2540C         | Anal          | yst: CNJ     |             |                |                  |          |            |   |
| * Solids, Dissolved                 | 7/14/21 12:18 | 7/15/21 13:4 | 11 1        | Not Detected   | mg/L             |          | 25         | U |
| Analytical Method: SM4500CI E       | Anal          | yst: JCC     |             |                |                  |          |            |   |
| * Chloride                          | 7/14/21 12:04 | 7/14/21 12:0 | )4 1        | Not Detected   | mg/L             | 0.50     | 1          | U |
| Analytical Method: SM4500F G 2017   | Anal          | yst: JCC     |             |                |                  |          |            |   |
| * Fluoride                          | 7/15/21 10:24 | 7/15/21 10:2 | 24 1        | Not Detected   | mg/L             | 0.06     | 0.1        | U |
| Analytical Method: SM4500SO4 E 2011 | Anal          | yst: JCC     |             |                |                  |          |            |   |
| * Sulfate                           | 7/14/21 10:41 |              | 11 1        | Not Detected   | mg/L             | 0.50     | 1          | U |

MDL's and RL's are adjusted for sample dilution, as applicable

# **Batch QC Summary**



Customer Account: WMWGORPUFB

**Sample Date:** 7/12/21 15:10

**Customer ID:** 

**Delivery Date:** 7/13/21 09:15

**Description**: Gorgas Pooled Upgradient Field Blank-1

Laboratory ID Number: BB12491

|         |                        |       |            | MB       |       |         |         |          | Standard           |      | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB12491 | Molybdenum, Total      | mg/L  | 0.0000261  | 0.000147 | 0.100 | 0.0984  | 0.103   | 0.100    | 0.0850 to 0.115    | 98.4 | 70.0 to 130 | 4.57  | 20.0          |
| BB12491 | Mercury, Total by CVAA | mg/L  | 5.390E-05  | 0.000500 | 0.004 | 0.00402 | 0.00398 | 0.00396  | 0.00340 to 0.00460 | 100  | 70.0 to 130 | 1.00  | 20.0          |
| BB12491 | Lithium, Total         | mg/L  | -8.650E-05 | 0.0154   | 0.200 | 0.197   | 0.195   | 0.199    | 0.170 to 0.230     | 98.5 | 70.0 to 130 | 1.02  | 20.0          |
| BB12491 | Lead, Total            | mg/L  | 0.0000018  | 0.000147 | 0.100 | 0.113   | 0.113   | 0.107    | 0.0850 to 0.115    | 113  | 70.0 to 130 | 0.00  | 20.0          |
| BB12491 | Cobalt, Total          | mg/L  | -0.0000691 | 0.000147 | 0.100 | 0.0949  | 0.0984  | 0.0969   | 0.0850 to 0.115    | 94.9 | 70.0 to 130 | 3.62  | 20.0          |
| BB12491 | Manganese, Total       | mg/L  | -0.000003  | 0.000147 | 0.100 | 0.101   | 0.104   | 0.103    | 0.0850 to 0.115    | 101  | 70.0 to 130 | 2.93  | 20.0          |
| BB12491 | Boron, Total           | mg/L  | 0.000567   | 0.0650   | 1.00  | 0.980   | 0.977   | 0.995    | 0.850 to 1.15      | 98.0 | 70.0 to 130 | 0.307 | 20.0          |
| BB12491 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0930  | 0.0983  | 0.0943   | 0.0850 to 0.115    | 93.0 | 70.0 to 130 | 5.54  | 20.0          |
| BB12491 | Beryllium, Total       | mg/L  | 0.0000533  | 0.000880 | 0.100 | 0.103   | 0.102   | 0.101    | 0.0850 to 0.115    | 103  | 70.0 to 130 | 0.976 | 20.0          |
| BB12491 | Sodium, Total          | mg/L  | 0.00119    | 0.0660   | 5.00  | 4.95    | 4.92    | 4.98     | 4.25 to 5.75       | 99.0 | 70.0 to 130 | 0.608 | 20.0          |
| BB12491 | Iron, Total            | mg/L  | 2.630E-05  | 0.0176   | 0.2   | 0.199   | 0.198   | 0.201    | 0.170 to 0.230     | 99.5 | 70.0 to 130 | 0.504 | 20.0          |
| BB12491 | Potassium, Total       | mg/L  | 0.00426    | 0.367    | 10.0  | 9.90    | 10.2    | 10.2     | 8.50 to 11.5       | 99.0 | 70.0 to 130 | 2.99  | 20.0          |
| BB12491 | Selenium, Total        | mg/L  | -0.0000651 | 0.00100  | 0.100 | 0.102   | 0.105   | 0.104    | 0.0850 to 0.115    | 102  | 70.0 to 130 | 2.90  | 20.0          |
| BB12491 | Barium, Total          | mg/L  | -0.0000459 | 0.000200 | 0.100 | 0.101   | 0.104   | 0.0999   | 0.0850 to 0.115    | 101  | 70.0 to 130 | 2.93  | 20.0          |
| BB12491 | Calcium, Total         | mg/L  | 0.00896    | 0.152    | 5.00  | 5.03    | 5.02    | 5.05     | 4.25 to 5.75       | 101  | 70.0 to 130 | 0.199 | 20.0          |
| BB12491 | Magnesium, Total       | mg/L  | -0.00929   | 0.0462   | 5.00  | 5.00    | 5.00    | 5.01     | 4.25 to 5.75       | 100  | 70.0 to 130 | 0.00  | 20.0          |
| BB12491 | Chromium, Total        | mg/L  | 0.0000775  | 0.000440 | 0.100 | 0.0977  | 0.101   | 0.0999   | 0.0850 to 0.115    | 97.7 | 70.0 to 130 | 3.32  | 20.0          |
| BB12491 | Thallium, Total        | mg/L  | -0.000124  | 0.000147 | 0.100 | 0.115   | 0.115   | 0.112    | 0.0850 to 0.115    | 115  | 70.0 to 130 | 0.00  | 20.0          |
| BB12491 | Arsenic, Total         | mg/L  | 0.0000344  | 0.000147 | 0.100 | 0.107   | 0.104   | 0.105    | 0.0850 to 0.115    | 107  | 70.0 to 130 | 2.84  | 20.0          |
| BB12491 | Antimony, Total        | mg/L  | 0.000134   | 0.00100  | 0.100 | 0.0966  | 0.0989  | 0.0960   | 0.0850 to 0.115    | 96.6 | 70.0 to 130 | 2.35  | 20.0          |

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

# **Batch QC Summary**



Customer Account: WMWGORPUFB

Sample Date:

7/12/21 15:10

**Customer ID:** 

**Delivery Date:** 

7/13/21 09:15

Description: Gorgas Pooled Upgradient Field Blank-1

Laboratory ID Number: BB12491

|         |                   |       |         | MB    |       |      | Sample    |          | Standard     |     | Rec         |       | Prec          |
|---------|-------------------|-------|---------|-------|-------|------|-----------|----------|--------------|-----|-------------|-------|---------------|
| Sample  | Analysis          | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec | Limit       | Prec  | <u>Li</u> mit |
| BB12489 | Solids, Dissolved | mg/L  | -4.00   | 25.0  |       |      | 3040      | 47.0     | 40.0 to 60.0 |     |             | 0.662 | 5.00          |
| BB12491 | Sulfate           | mg/L  | -0.557  | 1.00  | 20.0  | 20.0 | -0.380    | 19.4     | 18.0 to 22.0 | 100 | 80.0 to 120 | 0.00  | 20.0          |
| BB12491 | Chloride          | mg/L  | -0.0691 | 1.00  | 10.0  | 11.3 | 0.232     | 10.0     | 9.00 to 11.0 | 113 | 80.0 to 120 | 0.00  | 20.0          |
| BB12491 | Fluoride          | mg/L  | 0.0195  | 0.100 | 2.50  | 2.58 | 0.0245    | 2.55     | 2.25 to 2.75 | 103 | 80.0 to 120 | 0.00  | 20.0          |

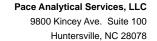
Comments:

### Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040 (205) 664-6001

# **Definitions**



| Abbreviation | Description                                                                                                                                         |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| DF           | Dilution Factor                                                                                                                                     |
| LCS          | Lab Control Sample                                                                                                                                  |
| LFM          | Lab Fortified Matrix                                                                                                                                |
| MB           | Method Blank                                                                                                                                        |
| MDL          | Method Detection Limit; minimum concentration of an analyte that can be determined with 99% confidence that the concentration is greater than zero. |
| MS           | Matrix Spike                                                                                                                                        |
| MSD          | Matrix Spike Duplicate                                                                                                                              |
| Prec         | Precision (% RPD)                                                                                                                                   |
| Q            | Qualifier; comment used to note deviations or additional information associated with analytical results.                                            |
| QC           | Quality Control                                                                                                                                     |
| Rec          | Recovery of Matrix Spike                                                                                                                            |
| RL           | Reporting Limit; lowest concentration at which an analyte can be quantitatively measured.                                                           |
| Vio Spec     | Violation Specification; regulatory limit which has been exceeded by the sample analyzed.                                                           |
| Qualifier    | Description                                                                                                                                         |
| FA           | Field results were reviewed by the Water Field Group. Refer to APC Field Case Narrative.                                                            |
| J            | Reported value is an estimate because concentration is less than reporting limit.                                                                   |
| U            | Compound was analyzed, but not detected.                                                                                                            |


| Lab S     | Chain of Groundy        | Custody            | Fi      | eld Com  | iplete                                           | Outside          | e Lab      |                   |               |              |
|-----------|-------------------------|--------------------|---------|----------|--------------------------------------------------|------------------|------------|-------------------|---------------|--------------|
| Field     | Groundy<br>APC General  | vater              | La La   | ab Comp  | olete                                            |                  | I.         | ab ETA            |               | $\neg$       |
| D         |                         |                    | Dratory |          |                                                  | D 1. W           |            |                   |               | <del>ا</del> |
| Reque     | sted Complete           |                    | 1 -     |          |                                                  | Results To       |            | rooks, Greg Dyer  |               |              |
|           | Site Representa         |                    |         |          |                                                  | Requested By     |            |                   |               |              |
|           | Colle                   | ector TJ Dau       | gherty  |          |                                                  | Location         | Gorgas     | Pooled Upgradient |               |              |
| Bottles   | 1 Metals                |                    | Hg      | 250 n    |                                                  |                  | 250 mL     | 7 N/A             | N/A           |              |
|           | 2 Diss Metals           | 500 mL 4           | TDS     | 500 n    | nL [                                             | 6 Alkalinity 2   | 250 mL     | 8 N/A             | N/A           |              |
|           | Comments                |                    |         |          |                                                  |                  |            |                   |               |              |
|           |                         |                    |         | Bottle   |                                                  |                  |            | Tab               |               |              |
|           | Sample #                | Date               | Time    | Count    |                                                  | Description      |            | Lab<br>Filter     | Lab Id        |              |
| N         | <i>J</i> W-1            | 07/12/2021         | 10:45   | 6        | Groun                                            | dwater           |            | 1 IIICI           | BB12485       |              |
|           | //W-1 Dup               | 07/12/2021         | 10:45   | 6        | <u> </u>                                         | le Duplicate     |            |                   | BB12486       |              |
| <b>⊢</b>  | /W-2                    | 07/12/2021         | 11:48   | 6        | <u> </u>                                         | dwater           |            |                   | BB12487       |              |
| ⊢         | /IW-3                   | 07/12/2021         | 12:53   | 6        | <del>                                     </del> | dwater           | 1          |                   | BB12488       |              |
| N         | лw-4                    | 07/12/2021         | 14:35   | 6        | <del>                                     </del> | dwater           |            |                   | BB12489       |              |
| -         | <br>:B-1                | 07/12/2021         | 15:00   | 4        | Equipr                                           | nent Blank       |            |                   | BB12490       |              |
| F         | FB-1                    | 07/12/2021         | 15:10   | 4        | Field E                                          |                  | Ť          |                   | BB12491       |              |
|           |                         |                    |         |          |                                                  |                  | Î          |                   |               |              |
|           |                         |                    |         |          |                                                  |                  | İ          |                   |               |              |
|           |                         |                    |         |          |                                                  |                  |            |                   |               |              |
|           |                         |                    |         |          |                                                  |                  |            |                   |               |              |
|           |                         |                    |         |          |                                                  |                  |            |                   |               |              |
|           |                         |                    |         |          |                                                  |                  |            |                   |               |              |
|           |                         |                    |         |          |                                                  |                  |            |                   |               |              |
|           |                         |                    |         |          |                                                  |                  |            |                   |               |              |
|           |                         |                    |         |          |                                                  |                  |            |                   |               |              |
|           |                         |                    |         |          |                                                  |                  |            |                   |               |              |
|           |                         |                    |         |          |                                                  |                  |            |                   |               |              |
|           |                         |                    |         |          |                                                  |                  |            |                   |               |              |
|           |                         |                    |         |          |                                                  |                  |            |                   |               |              |
|           |                         |                    |         |          |                                                  |                  |            |                   |               |              |
|           | Relingu                 | ished By           |         |          |                                                  | Received By      |            |                   | Date/Tim      | e            |
|           | H                       | · Ma               |         |          |                                                  | Laura Milly      |            |                   | 07/13/2021 0  | 8:33         |
|           |                         |                    |         |          |                                                  |                  |            |                   |               | $\dashv$     |
|           |                         |                    |         |          |                                                  |                  |            |                   |               |              |
|           |                         |                    |         |          |                                                  |                  |            |                   |               |              |
| Ç,        | narTroll ID 75          | 86-41443-5-2       |         | 7        | Δ11 -                                            | metals and radic | ological b | ottles h          | nave pH < 2 F | ——<br>刁      |
|           | urbidity ID 39          |                    |         | $\dashv$ | 7 111 1                                          |                  | 0.2 degre  |                   | ave pii < 2   |              |
|           | mple Event 13           |                    |         | -        | Th                                               | ^                | 5408-275   |                   |               |              |
| Ja        | inpic Dvent 10          |                    |         | _        | 111                                              | pH Strip ID      |            |                   |               |              |
| Bottles/I | Pre-Preserved Bottles a | re provided by the | GTL     | _        |                                                  | F                |            |                   |               |              |

Page 44 of 45

| Alabama Por | Chain o           | f Custody         | <b>r</b> Fi    | eld Com | plete    | V O         | utside Lab   |            |                   |          |
|-------------|-------------------|-------------------|----------------|---------|----------|-------------|--------------|------------|-------------------|----------|
| Field       | Ground            | water             | La             | ab Comp | lete     |             |              | 1 5554     |                   |          |
|             | APC Gener         | al Testing Labo   | oratory        |         |          |             | 1            | ab ETA     |                   | <u></u>  |
| Reque       | sted Complete     | Date Routine      |                |         |          | Result      |              | rooks, Gre | g Dyer            |          |
|             | •                 | tative John Pat   |                |         |          | Requeste    | `            |            |                   |          |
|             | Col               | lector TJ Daug    | herty          |         |          | Loca        | ition Gorgas | Pooled     | Upgradient        |          |
| Bottles     | 1 Radium          | 1 L 3             | N/A            | N/A     |          | 5 N/A       | N/A          | 7 N/A      | N/A               |          |
|             | 2 N/A             | N/A 4             | N/A            | N/A     |          | 6 N/A       | N/A          | 8 N/A      | N/A               |          |
|             | Comments          | Rad MS/MSD collec | ted @ MW-2     |         |          |             |              |            |                   |          |
|             |                   | Ĭ                 |                |         |          |             |              |            |                   |          |
|             | 0 1 "             | D.                | PT*            | Bottle  |          | ъ .         | ·•           | Lab        | T 1 T1            |          |
|             | Sample #<br>//W-1 | Date 07/10/2021   | Time           | Count   | Ground   | Descript    | tion         | Filter     | Lab Id<br>BB12492 |          |
| <u> </u>    |                   | 07/12/2021        | 10:45          | 1       |          |             |              |            | BB12493           |          |
| <b>⊢</b>    | /W-1 Dup          | 07/12/2021        | 10:45          | 1       |          | e Duplicate |              |            | BB12494           |          |
| -           | /W-2<br>//W-3     | _                 | 11:48          | 3       | Ground   |             |              |            | BB12494           | <u> </u> |
| -           |                   | 07/12/2021        | 12:53          | 1       | Ground   |             |              | $\vdash$   | BB12496           | <u> </u> |
| <b>—</b>    | //W-4<br>EB-1     | 07/12/2021        | 14:35          | 1       |          | nent Blank  |              |            | BB12497           |          |
| <b>⊢</b>    | ·B-1              | 07/12/2021        | 15:00<br>15:10 | 1       | Field B  |             |              |            | BB12498           |          |
| -<br> -     | D-1               | 07/12/2021        | 15.10          | '       | T ICIG D | nai ik      |              |            | DD12490           |          |
|             |                   |                   |                |         |          |             |              |            |                   |          |
|             |                   |                   |                |         |          |             |              |            |                   |          |
|             |                   |                   |                |         |          |             |              |            |                   |          |
|             |                   | 1                 |                |         |          |             |              |            |                   |          |
|             |                   | 1                 |                |         |          |             |              |            |                   |          |
|             |                   | 1                 |                |         |          |             |              |            |                   |          |
|             |                   | 1                 |                |         |          |             |              |            |                   | !        |
|             |                   |                   |                |         |          |             |              |            |                   |          |
|             |                   |                   |                |         |          |             |              |            |                   |          |
|             |                   | 1                 |                |         |          |             |              |            |                   |          |
|             |                   | 1                 |                |         |          |             |              |            |                   |          |
|             |                   | 1                 |                |         |          |             |              |            |                   |          |
|             |                   |                   |                |         |          |             |              |            |                   |          |
|             | Reling            | uished By         |                | •       |          | Received    | d By         |            | Date/Tim          | ne       |
|             | 1                 | - Mo              |                |         |          | Laura Ma    | lyf          |            | 07/13/2021 0      | 8:33     |
|             |                   |                   |                |         |          |             | <i>γ</i> ,   |            |                   |          |
|             |                   |                   |                |         |          |             |              |            |                   |          |
|             |                   |                   |                |         |          |             |              |            |                   |          |
| Sr          | narTroll ID 5     | 586-41443-5-2     |                | 7       | A 11 1   | netals and  | radiological | hottles k  | nave pH < 2       |          |
|             | urbidity ID 3     |                   |                | -       | 7 111 1  | Cooler Te   |              | 2011031    | PII \ Z           |          |
|             | mple Event 1      |                   |                | -       | The      | ermometei   | 1            |            |                   |          |
| oa          |                   |                   |                | _       | 111      | pH Strip    |              | 305-10-9   |                   |          |
|             |                   |                   |                |         |          | 1 P         |              |            |                   |          |

Bottles/Pre-Preserved Bottles are provided by the GTL

Page 45 of 45



(704)875-9092



August 19, 2021

Laura Midkiff Alabama Power 744 Highway 87 GSC #8 Calera, AL 35040

RE: Project: GORGAS POOLED WMWGORPU\_1328

Pace Project No.: 92549918

### Dear Laura Midkiff:

Enclosed are the analytical results for sample(s) received by the laboratory on July 15, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Greensburg

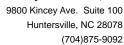
If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Herring

kevin.herring@pacelabs.com

Keni Lung


1(704)875-9092

HORIZON Database Administrator

Enclosures

cc: Brooke Caton, Alabama Power Renee Jernigan, Alabama Power







### **CERTIFICATIONS**

Project: GORGAS POOLED WMWGORPU\_1328

Pace Project No.: 92549918

### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

**Arkansas Certification** 

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221

KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

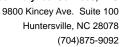
Missouri Certification #: 235

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L




### **SAMPLE SUMMARY**

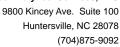
Project: GORGAS POOLED WMWGORPU\_1328

Pace Project No.: 92549918

| Lab ID      | Sample ID        | Matrix | Date Collected | Date Received  |
|-------------|------------------|--------|----------------|----------------|
| 92549918001 | BB12492 MW-1     | Water  | 07/12/21 10:45 | 07/15/21 09:20 |
| 92549918002 | BB12493 MW-1 DUP | Water  | 07/12/21 10:45 | 07/15/21 09:20 |
| 92549918003 | BB12494 MW-2     | Water  | 07/12/21 11:48 | 07/15/21 09:20 |
| 92549918004 | BB12494 MW-2 MS  | Water  | 07/12/21 11:48 | 07/15/21 09:20 |
| 92549918005 | BB12494 MW-2 MSD | Water  | 07/12/21 11:48 | 07/15/21 09:20 |
| 92549918006 | BB12495 MW-3     | Water  | 07/12/21 12:53 | 07/15/21 09:20 |
| 92549918007 | BB12496 MW-4     | Water  | 07/12/21 14:35 | 07/15/21 09:20 |
| 92549918008 | BB12497 EB-1     | Water  | 07/12/21 15:00 | 07/15/21 09:20 |
| 92549918009 | BB12498 FB-1     | Water  | 07/12/21 15:10 | 07/15/21 09:20 |






### **SAMPLE ANALYTE COUNT**

Project: GORGAS POOLED WMWGORPU\_1328

Pace Project No.: 92549918

| Lab ID      | Sample ID        | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------------|--------------------------|----------|----------------------|------------|
| 92549918001 | BB12492 MW-1     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | RMK      | 1                    | PASI-PA    |
| 92549918002 | BB12493 MW-1 DUP | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | RMK      | 1                    | PASI-PA    |
| 92549918003 | BB12494 MW-2     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | RMK      | 1                    | PASI-PA    |
| 92549918004 | BB12494 MW-2 MS  | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | JC2      | 1                    | PASI-PA    |
| 92549918005 | BB12494 MW-2 MSD | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | JC2      | 1                    | PASI-PA    |
| 92549918006 | BB12495 MW-3     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | RMK      | 1                    | PASI-PA    |
| 92549918007 | BB12496 MW-4     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | RMK      | 1                    | PASI-PA    |
| 92549918008 | BB12497 EB-1     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | RMK      | 1                    | PASI-PA    |
| 92549918009 | BB12498 FB-1     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | RMK      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg





### **PROJECT NARRATIVE**

Project: GORGAS POOLED WMWGORPU\_1328

Pace Project No.: 92549918

Method: EPA 9315

**Description:** 9315 Total Radium **Client:** Alabama Power **Date:** August 19, 2021

### **General Information:**

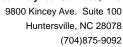
9 samples were analyzed for EPA 9315 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


### **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

### Additional Comments:





### **PROJECT NARRATIVE**

Project: GORGAS POOLED WMWGORPU\_1328

Pace Project No.: 92549918

Method: EPA 9320

Description:9320 Radium 228Client:Alabama PowerDate:August 19, 2021

### **General Information:**

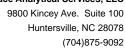
9 samples were analyzed for EPA 9320 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


### **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

### Additional Comments:





### **PROJECT NARRATIVE**

Project: GORGAS POOLED WMWGORPU\_1328

Pace Project No.: 92549918

Method:Total Radium CalculationDescription:Total Radium 228+226Client:Alabama PowerDate:August 19, 2021

### **General Information:**

7 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

### **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

### Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.



Project: GORGAS POOLED WMWGORPU\_1328

Pace Project No.: 92549918

| Sample: BB12492 MW-1<br>PWS: | <b>Lab ID:</b> 92549918<br>Site ID: | 3001 Collected: 07/12/21 10:45<br>Sample Type: | Received: | 07/15/21 09:20 | Matrix: Water |      |
|------------------------------|-------------------------------------|------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                              | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Serv                | vices - Greensburg                             |           |                |               |      |
| Radium-226                   | EPA 9315                            | 0.112U ± 0.166 (0.354)<br>C:89% T:NA           | pCi/L     | 08/13/21 08:32 | 2 13982-63-3  |      |
|                              | Pace Analytical Serv                | vices - Greensburg                             |           |                |               |      |
| Radium-228                   | EPA 9320                            | 0.364U ± 0.366 (0.751)<br>C:66% T:83%          | pCi/L     | 08/03/21 14:37 | 7 15262-20-1  |      |
|                              | Pace Analytical Serv                | vices - Greensburg                             |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation         | 0.476U ± 0.532 (1.11)                          | pCi/L     | 08/16/21 16:15 | 7440-14-4     |      |

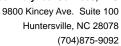


Project: GORGAS POOLED WMWGORPU\_1328

Pace Project No.: 92549918

| Sample: BB12493 MW-1 DUP<br>PWS: | <b>Lab ID: 925499</b><br>Site ID: | <b>18002</b> Collected: 07/12/21 10:45 Sample Type: | Received: | 07/15/21 09:20 | Matrix: Water |      |
|----------------------------------|-----------------------------------|-----------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                       | Method                            | Act ± Unc (MDC) Carr Trac                           | Units     | Analyzed       | CAS No.       | Qual |
|                                  | Pace Analytical Se                | ervices - Greensburg                                |           |                |               |      |
| Radium-226                       | EPA 9315                          | -0.0928U ± 0.150 (0.490)<br>C:90% T:NA              | pCi/L     | 08/13/21 08:32 | 2 13982-63-3  |      |
|                                  | Pace Analytical Se                | ervices - Greensburg                                |           |                |               |      |
| Radium-228                       | EPA 9320                          | 0.767 ± 0.411 (0.721)<br>C:68% T:85%                | pCi/L     | 08/03/21 14:37 | 7 15262-20-1  |      |
|                                  | Pace Analytical Se                | ervices - Greensburg                                |           |                |               |      |
| Total Radium                     | Total Radium Calculation          | 0.767U ± 0.561 (1.21)                               | pCi/L     | 08/16/21 16:15 | 5 7440-14-4   |      |




Project: GORGAS POOLED WMWGORPU\_1328

Pace Project No.: 92549918

| Sample: BB12494 MW-2<br>PWS: | <b>Lab ID: 925499</b> Site ID: | 18003 Collected: 07/12/21 11:48<br>Sample Type: | Received: | 07/15/21 09:20 | Matrix: Water |      |
|------------------------------|--------------------------------|-------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                         | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Se             | ervices - Greensburg                            |           |                |               |      |
| Radium-226                   | EPA 9315                       | 0.155U ± 0.210 (0.445)<br>C:85% T:NA            | pCi/L     | 08/13/21 08:32 | 2 13982-63-3  |      |
|                              | Pace Analytical So             | ervices - Greensburg                            |           |                |               |      |
| Radium-228                   | EPA 9320                       | -0.00397U ± 0.356 (0.828)<br>C:72% T:82%        | pCi/L     | 08/03/21 14:38 | 3 15262-20-1  |      |
|                              | Pace Analytical So             | ervices - Greensburg                            |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation    | 0.155U ± 0.566 (1.27)                           | pCi/L     | 08/16/21 16:15 | 5 7440-14-4   |      |

08/03/21 14:38 15262-20-1

pCi/L

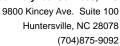




### **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: GORGAS POOLED WMWGORPU\_1328

EPA 9320


Pace Project No.: 92549918

Radium-228

Sample: BB12494 MW-2 MS Lab ID: 92549918004 Collected: 07/12/21 11:48 Received: 07/15/21 09:20 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Method Analyzed Qual Pace Analytical Services - Greensburg EPA 9315 85.72 %REC ± NA (NA) Radium-226 pCi/L 08/13/21 08:32 13982-63-3 C:NA T:NA Pace Analytical Services - Greensburg

104.17 %REC ± NA (NA)

C:NA T:NA





Project: GORGAS POOLED WMWGORPU\_1328

Pace Project No.: 92549918

Radium-228

Sample: BB12494 MW-2 MSD Lab ID: 92549918005 Collected: 07/12/21 11:48 Received: 07/15/21 09:20 Matrix: Water

PWS: Site ID: Sample Type:

Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg 87.19 %REC 1.70 RPD ± EPA 9315 Radium-226 pCi/L 08/13/21 08:32 13982-63-3 NA (NA) C:NA T:ŃA Pace Analytical Services - Greensburg EPA 9320 108.02 %REC 3.63 RPD ±

pCi/L

08/03/21 14:38 15262-20-1

NA (NA) C:NA T:NA



Project: GORGAS POOLED WMWGORPU\_1328

Pace Project No.: 92549918

| Sample: BB12495 MW-3<br>PWS: | <b>Lab ID: 9254991</b><br>Site ID: | 18006 Collected: 07/12/21 12:53<br>Sample Type: | Received: | 07/15/21 09:20 | Matrix: Water |      |
|------------------------------|------------------------------------|-------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                             | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Ser                | rvices - Greensburg                             |           |                |               |      |
| Radium-226                   | EPA 9315                           | -0.000304U ± 0.176 (0.482)<br>C:89% T:NA        | pCi/L     | 08/13/21 08:32 | 2 13982-63-3  |      |
|                              | Pace Analytical Ser                | rvices - Greensburg                             |           |                |               |      |
| Radium-228                   | EPA 9320                           | 0.114U ± 0.333 (0.750)<br>C:65% T:84%           | pCi/L     | 08/03/21 14:38 | 3 15262-20-1  |      |
|                              | Pace Analytical Ser                | rvices - Greensburg                             |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation        | 0.114U ± 0.509 (1.23)                           | pCi/L     | 08/16/21 16:1  | 5 7440-14-4   |      |



Project: GORGAS POOLED WMWGORPU\_1328

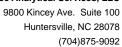
Pace Project No.: 92549918

| Sample: BB12496 MW-4<br>PWS: | <b>Lab ID: 9254</b> 9<br>Site ID: | 9918007 Collected: 07/12/21 14:35<br>Sample Type: | Received: | 07/15/21 09:20 | Matrix: Water |      |
|------------------------------|-----------------------------------|---------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                            | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical                   | Services - Greensburg                             |           |                |               |      |
| Radium-226                   | EPA 9315                          | 0.107U ± 0.176 (0.390)<br>C:95% T:NA              | pCi/L     | 08/13/21 08:32 | 2 13982-63-3  |      |
|                              | Pace Analytical                   | Services - Greensburg                             |           |                |               |      |
| Radium-228                   | EPA 9320                          | 0.194U ± 0.358 (0.784)<br>C:72% T:84%             | pCi/L     | 08/03/21 14:38 | 3 15262-20-1  |      |
|                              | Pace Analytical                   | Services - Greensburg                             |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation       | 0.301U ± 0.534 (1.17)                             | pCi/L     | 08/16/21 16:15 | 7440-14-4     |      |



Project: GORGAS POOLED WMWGORPU\_1328

Pace Project No.: 92549918


| Sample: BB12497 EB-1<br>PWS: | <b>Lab ID: 9254991</b><br>Site ID: | 8008 Collected: 07/12/21 15:00<br>Sample Type: | Received: | 07/15/21 09:20 | Matrix: Water |      |
|------------------------------|------------------------------------|------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                             | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Ser                | vices - Greensburg                             |           |                |               |      |
| Radium-226                   | EPA 9315                           | 0.0598U ± 0.171 (0.423)<br>C:83% T:NA          | pCi/L     | 08/13/21 08:32 | 2 13982-63-3  |      |
|                              | Pace Analytical Ser                | vices - Greensburg                             |           |                |               |      |
| Radium-228                   | EPA 9320                           | 0.269U ± 0.375 (0.805)<br>C:69% T:86%          | pCi/L     | 08/03/21 14:38 | 3 15262-20-1  |      |
|                              | Pace Analytical Ser                | vices - Greensburg                             |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation        | 0.329U ± 0.546 (1.23)                          | pCi/L     | 08/16/21 16:15 | 5 7440-14-4   |      |



Project: GORGAS POOLED WMWGORPU\_1328

Pace Project No.: 92549918

| Sample: BB12498 FB-1<br>PWS: | <b>Lab ID: 925499</b> 1<br>Site ID: | 18009 Collected: 07/12/21 15:10 Sample Type: | Received: | 07/15/21 09:20 | Matrix: Water |      |
|------------------------------|-------------------------------------|----------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                              | Act ± Unc (MDC) Carr Trac                    | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Se                  | rvices - Greensburg                          |           |                |               |      |
| Radium-226                   | EPA 9315                            | -0.0401U ± 0.143 (0.443)<br>C:85% T:NA       | pCi/L     | 08/13/21 08:32 | 2 13982-63-3  |      |
|                              | Pace Analytical Se                  | rvices - Greensburg                          |           |                |               |      |
| Radium-228                   | EPA 9320                            | 0.101U ± 0.314 (0.709)<br>C:67% T:88%        | pCi/L     | 08/03/21 14:38 | 3 15262-20-1  |      |
|                              | Pace Analytical Se                  | rvices - Greensburg                          |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation         | 0.101U ± 0.457 (1.15)                        | pCi/L     | 08/16/21 16:15 | 5 7440-14-4   |      |





### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: GORGAS POOLED WMWGORPU\_1328

Pace Project No.: 92549918

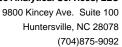
QC Batch: 457856 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92549918001, 92549918002, 92549918003, 92549918004, 92549918005, 92549918006, 92549918007,

92549918008, 92549918009

METHOD BLANK: 2210350 Matrix: Water


Associated Lab Samples: 92549918001, 92549918002, 92549918003, 92549918004, 92549918005, 92549918006, 92549918007,

92549918008, 92549918009

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.186 ± 0.369 (0.813) C:71% T:80%
 pCi/L
 08/03/21 14:39

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: GORGAS POOLED WMWGORPU\_1328

Pace Project No.: 92549918

QC Batch: 457316 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92549918001, 92549918002, 92549918003, 92549918004, 92549918005, 92549918006, 92549918007,

92549918008, 92549918009

METHOD BLANK: 2207826 Matrix: Water

Associated Lab Samples: 92549918001, 92549918002, 92549918003, 92549918004, 92549918005, 92549918006, 92549918007,

92549918008, 92549918009

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0608 ± 0.218 (0.537) C:89% T:NA
 pCi/L
 08/13/21 08:32

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

### **QUALIFIERS**

Project: GORGAS POOLED WMWGORPU\_1328

Pace Project No.: 92549918

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 08/19/2021 01:01 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: GORGAS POOLED WMWGORPU\_1328

Pace Project No.: 92549918

Date: 08/19/2021 01:01 PM

| Lab ID      | Sample ID        | QC Batch Method                 | QC Batch | Analytical Method | Analytica<br>Batch |
|-------------|------------------|---------------------------------|----------|-------------------|--------------------|
| 92549918001 | BB12492 MW-1     | EPA 9315                        | 457316   |                   |                    |
| 92549918002 | BB12493 MW-1 DUP | EPA 9315                        | 457316   |                   |                    |
| 92549918003 | BB12494 MW-2     | EPA 9315                        | 457316   |                   |                    |
| 92549918004 | BB12494 MW-2 MS  | EPA 9315                        | 457316   |                   |                    |
| 92549918005 | BB12494 MW-2 MSD | EPA 9315                        | 457316   |                   |                    |
| 92549918006 | BB12495 MW-3     | EPA 9315                        | 457316   |                   |                    |
| 92549918007 | BB12496 MW-4     | EPA 9315                        | 457316   |                   |                    |
| 92549918008 | BB12497 EB-1     | EPA 9315                        | 457316   |                   |                    |
| 92549918009 | BB12498 FB-1     | EPA 9315                        | 457316   |                   |                    |
| 92549918001 | BB12492 MW-1     | EPA 9320                        | 457856   |                   |                    |
| 92549918002 | BB12493 MW-1 DUP | EPA 9320                        | 457856   |                   |                    |
| 92549918003 | BB12494 MW-2     | EPA 9320                        | 457856   |                   |                    |
| 92549918004 | BB12494 MW-2 MS  | EPA 9320                        | 457856   |                   |                    |
| 92549918005 | BB12494 MW-2 MSD | EPA 9320                        | 457856   |                   |                    |
| 92549918006 | BB12495 MW-3     | EPA 9320                        | 457856   |                   |                    |
| 92549918007 | BB12496 MW-4     | EPA 9320                        | 457856   |                   |                    |
| 92549918008 | BB12497 EB-1     | EPA 9320                        | 457856   |                   |                    |
| 92549918009 | BB12498 FB-1     | EPA 9320                        | 457856   |                   |                    |
| 92549918001 | BB12492 MW-1     | Total Radium Calculation        | 460439   |                   |                    |
| 92549918002 | BB12493 MW-1 DUP | Total Radium Calculation        | 460439   |                   |                    |
| 92549918003 | BB12494 MW-2     | Total Radium Calculation        | 460439   |                   |                    |
| 92549918006 | BB12495 MW-3     | Total Radium Calculation        | 460439   |                   |                    |
| 92549918007 | BB12496 MW-4     | Total Radium Calculation        | 460439   |                   |                    |
| 92549918008 | BB12497 EB-1     | Total Radium Calculation        | 460439   |                   |                    |
| 2549918009  | BB12498 FB-1     | <b>Total Radium Calculation</b> | 460439   |                   |                    |

| Hittsburgh Lab Sample Cond                                                                      | ition  | Upo     | n K          | eceipt                  | 1104 . 005 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>.</b> |
|-------------------------------------------------------------------------------------------------|--------|---------|--------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Pace Analytical Client Name:                                                                    | A      | طما     | 7~           | n Power                 | WO#: 92549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | €18      |
|                                                                                                 | • /    | •       |              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Courier: Fed Ex UPS USPS Clier                                                                  | nt 🗆   | Comm    | ercial       | Pace Other              | 92549918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| Tracking #: 5140 3411 5909                                                                      |        |         |              |                         | LIMS Login                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| Custody Seal on Cooler/Box Present:                                                             |        | 10      | Seal         | s intact; 🔲 yes 📮       | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| Thermometer Used                                                                                | Туре   | of Ice: | We           | t Blue None             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Cooler Temperature Observed Temp                                                                |        | ٠.      | Corr         | rection Factor:         | · C Final Temp:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·C       |
| Temp should be above freezing to 6°C                                                            |        |         |              | F                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , , ,    |
|                                                                                                 | F      |         |              | pH paper Lot#           | Date and Initials of person exami contents: 7-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.51     |
| Comments:                                                                                       | Yes    | No      | N/A          | 10000                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Chain of Custody Present:                                                                       | 1      |         | _            | 1.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Chain of Custody Filled Out:                                                                    | 1      |         | _            | 2.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Chain of Custody Relinquished:                                                                  | -      | _       |              | 3.                      | and the second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| Sampler Name & Signature on COC:                                                                | ٠.     | /       | _            | 4.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sample Labels match COC:                                                                        | 4      |         | <u> </u>     | 5.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Tholago datorimons                                                                              | ~ 7    |         |              | ·                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Samples Arrived within Hold Time:                                                               | /      |         |              | 6.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Short Hold Time Analysis (<72hr remaining):                                                     | -      | /       |              | 7.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Rush Turn Around Time Requested:                                                                | -      | _       |              | 8,                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sufficient Volume:                                                                              | -      |         |              | 9.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Correct Containers Used:                                                                        | /      |         | -            | 10.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -Pace Containers Used:                                                                          | /      |         |              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Containers Intact:                                                                              | /      |         |              | 11.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Orthophosphate field filtered                                                                   | -      |         | <del>/</del> | 12.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Hex Cr Aqueous sample field filtered                                                            |        |         | <u>'</u>     | 13.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Organic Samples checked for dechlorination:                                                     |        |         | <u>/</u>     | 14.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Filtered volume received for Dissolved tests All containers have been checked for preservation. | 1      |         |              | 15.                     | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |          |
| exceptions: VOA, coliform, TOC, O&G, Phenolics, Non-aqueous matrix                              | Radon, |         |              | 16.<br>PHC2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| All containers meet method preservation                                                         |        |         |              | Initial when            | Date/time of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| requirements.                                                                                   |        |         |              | Lot # of added          | preservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|                                                                                                 |        |         |              | preservative            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Headspace in VOA Vials ( >6mm):                                                                 |        |         | 1            | 17.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Trip Blank Present:                                                                             |        |         | 1            | 18.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |
| Trip Blank Custody Seals Present                                                                |        |         | 1            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Rad Samples Screened < 0.5 mrem/hr                                                              | /      |         | 3            | Initial when completed: | Survey Meter Date: SN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        |
| Client Notification/ Resolution:                                                                |        | ·····   |              |                         | dia and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco |          |
| Person Contacted:                                                                               |        | 0       | Date/I       | Гіme:                   | Contacted By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| Comments/ Resolution:                                                                           |        |         |              |                         | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |          |
| Roud                                                                                            | N      | 15/     | MS           | D for M                 | W-Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|                                                                                                 |        |         |              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                 |        |         |              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                 |        |         |              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |

 $\ \square$  A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

\*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed

|                                                       | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                    |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Kevin, Herring@pacelabs.con                           | Project Number: WMWGORPU 1328 Pace Profile #: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28 days            |
|                                                       | Plant Gorgas Pooled Upgradient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 004-0197 Fax       |
| Pace Quote: CCR                                       | APC10700668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ā                  |
| Address: 744 Highway 87 GSC Bldg #8 Regulatory Agency | Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wife so the soon   |
| Company Name: Alabama Power Co.                       | Company Name: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calera Al 35040    |
| Attention: Laura Midkiff                              | Laura Midkitt Attention:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dila Fower Company |
| Invoice information: Page: 1 Of                       | Project Information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mation:            |
| Section C                                             | Section B Section C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |

|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |     |                        |                               | 12       |          | 10       | 9        | 8   | 7        | 6       | 5        | 4               | 3               | 2        | 1        | ITEM#                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Requested                      | Phone:            |                   | Address:                      | Company:              | Required                      |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|------------------------|-------------------------------|----------|----------|----------|----------|-----|----------|---------|----------|-----------------|-----------------|----------|----------|------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------|-------------------|-------------------------------|-----------------------|-------------------------------|
| 10# · 025/0019        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Comp |                    |     |                        | ADDITIONAL COMMENTS           |          |          |          |          |     | BB12498  | BB12497 | B812496  | BB12495         | 8812494         | BB12493  | BB12492  | One Character per box. (A-Z, 0-9 /, -) Sample lds must be unique | SAMPLE ID         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Requested Due Date: 28 days    | 205-564-6167 Isax | Calera, AL 35040  | 744 Highway 87 GSC Bldg #8    | Alabama Power Company | Required Client Information:  |
| 0 10                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |     |                        |                               |          |          |          |          |     | FB-1     | £B-1    | MW-4     | MW-3            | MW-2            | MW-1 DUP | L-WM     | Who Air Other                                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Proje                          | Purc              |                   |                               |                       |                               |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |     | Laura Midkifff APC GTL | REU                           |          |          | _        |          | 4   | ତ୍ୟ      | GV      | GV       | GV              | GV              | GV       | SV       | 해목품동은<br>MATRIX CODE (                                           | 2 th o the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or remove.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Project Number                 | Purchase Order #: |                   | П                             | Report To: La         | Required Project Information: |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |     | M APC                  | Sindon                        |          |          |          |          |     | gwg      | 5 MS    | GW G     | GW G            | GW G            | GW G     | swe      | SAMPLE TYPE                                                      | (G=GRAB C         | =COMP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rian                           | 2 .#              |                   | ooke (                        | Laura Midkiff         | t Inform                      |
| П                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |     | GTL                    | ED BY I AI                    |          |          |          | _        | -   | -        |         |          |                 |                 |          | -        | DATE T                                                           | START             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( Gorgas                       | APC1070           |                   | Caton & F                     | idkiff                | nation:                       |
| SIGNAT                | PRINT Name of SAMPLER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Secretary for the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |     |                        | RELINQUISHED BY I AFFILIATION |          |          |          | +        | -   | 7/12/    | 7/12/   | 7/12/    | 7/12/           | 7/12/           | 7/12/    |          | M E                                                              |                   | COLLECTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAAGOK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Plant Gorgas Pooled Upgradient | 0668              |                   | Brooke Caton & Renee Jernigan |                       |                               |
| SIGNATURE of SAMPLER: | PRINT Name of SAMPLER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1500 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000 t | _                  |     | 7/13                   |                               |          | _        | _        | -        |     |          |         |          | 7/12/2021 12:53 | 7/12/2021 11:48 |          | -        | DATE                                                             | E C               | Ü                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/10/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pgradien                       |                   |                   | nigan                         |                       |                               |
| MPLER                 | MPLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contra |                    |     | 7/13/2021              | DATE                          |          |          |          | 4        | _   | 6        | 8       | 35       | 53              | 8               | ቴ<br>-   | \$       | SAMPLE TEMP AT                                                   | T OOL FOT         | DN .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                   |                   |                               |                       |                               |
| 1"                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  | ╁   | 10:15                  |                               | -        | $\dashv$ | +        | +        | +   | -        | -       | -        | 7               | ω               | -        | _        | # OF CONTAINER                                                   |                   | - N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pa                             | Pa                | Ado               | ဂ္ဂ                           | Att                   | N.                            |
| 11                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 1   | 15                     | TIME                          |          |          |          |          | 1   |          |         |          |                 |                 |          |          | Unpreserved                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | race Fronte #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Se Pro                         | Pace Quote:       | Address:          | mpany                         | Attention:            | invoice information:          |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 5598W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-                 | ļ., |                        |                               | _        | 4        | $\dashv$ | _        | 4   | ×        | ×       | ×        | ×               | ×               | ×        | ×        | H2SO4                                                            |                   | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ect Ma                         | ĕ                 | 7                 | Name                          | _                     | nform.                        |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |     |                        |                               | -        | +        | -        | +        | -   | +        |         | -        | $\dashv$        | -               | -        | -        | HO3                                                              |                   | Preservatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pace Project Manager.          |                   | 744 Highway 87    | Company Name: Alabama Por     | aira Midki#           | ation:                        |
| Н                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |     | 7                      |                               |          |          |          |          |     |          |         |          |                 |                 |          |          | NaOH                                                             |                   | rvativ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                              |                   | ghwa              | ban                           | SiQ<br>K              |                               |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SHOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | ١,  | H                      | ACCEPT                        | 4        | 4        | 4        | 4        | 4   | 4        | 4       | _        | 4               | -               |          | 4        | Na2S2O3                                                          |                   | ès                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kevin                          | SCR               | y 87              | a Po                          | *                     |                               |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | ,   | 2                      | B                             | $\dashv$ | +        | $\dashv$ | $\dashv$ | +   | $\dashv$ | -       | 1        | $\dashv$        | $\dashv$        | $\dashv$ | $\dashv$ | Other                                                            |                   | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.Her                          |                   | SS                | ğ                             | I                     |                               |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |     | 1                      | ED BY / AFFILIATION           |          |          |          |          |     |          |         |          |                 |                 | _        |          | Analyses 1                                                       | Test              | Y/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ring                           |                   | GSC Bldg #8       | ÞΊ                            | ١                     |                               |
| 9                     | ESTATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PART |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |     | N                      |                               | 4        | 4        | 4        | _        | -   | ×        | ×       | ×        | ×               | ×               |          | _        | EPA 9315<br>EPA 9320                                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pac                            |                   | 费                 |                               | ı                     |                               |
| DATE Signed:          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |     | ١                      | ğ                             | +        | +        | $\dashv$ | +        | +   | ×        | ×       | ×        | ×               | ×               | ×        | _        | Total Radium Sur                                                 | m                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .Heming@pacelabs.con           |                   |                   |                               | ١                     |                               |
| gned:                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 600000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |     |                        |                               |          |          | I        | 1        |     |          |         |          |                 | ×               |          |          | Matrix Spike/Matr                                                | ix Spike Du       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                              |                   | $\perp$           |                               |                       |                               |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                  | H   |                        | 355<br>1456<br>254            | 4        | +        | +        | +        | +   | +        | +       | $\dashv$ | -               | -               | 4        | +        |                                                                  |                   | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1800                           |                   | Breaker.          |                               |                       |                               |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | New Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |     | 7-1                    | DATE                          | +        | +        | 十        | +        | -   | $\dashv$ | +       | 1        | $\dashv$        | +               | +        | +        |                                                                  | -1192.9           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NAMES I                        |                   |                   |                               |                       |                               |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $oldsymbol{\perp}$ |     | (J-2)                  | m                             |          |          | 1        |          | 1   | 1        |         |          |                 |                 |          |          |                                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25000                          |                   |                   |                               |                       |                               |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |     | ó                      |                               | -        | 4        | 4        | +        | 4   | 4        | 4       | -        | -               | $\dashv$        | -        | $\dashv$ |                                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000 to                       | H                 |                   |                               |                       |                               |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STANTA STANTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |     | 420                    | TIME                          |          | +        | +        | +        | ╅   | $\dashv$ | 1       | 1        |                 | 1               | +        | 1        |                                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Salara de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della | Sta                            | ۱                 | Reg               |                               | Ę                     | —<br>n                        |
| TEMP                  | in C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | П   | E/N                    |                               |          |          |          |          |     |          |         |          |                 |                 |          | 4        |                                                                  | n/an              | 20.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | State / Location               | ۱                 | Regulatory Agency |                               | rage.                 | 3                             |
| Recei                 | ved on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ╀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                  | Н   |                        | 8                             |          | Т        | Т        | $\top$   | Т   | T        | Т       | Т        |                 | _               | Т        | +        | Residual Chlorine                                                | e (Y/N)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | See Area Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cation                         | ŀ                 | Agenc             |                               | I                     |                               |
| Ice<br>(Y/N)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |     | 2                      | SAMPLE CONDITIONS             |          |          |          |          |     |          |         |          |                 |                 |          |          |                                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STARSTON CONT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 部署                             |                   | 4                 |                               | -                     | •                             |
| Custo<br>Sealed       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |     | 2,                     | 8                             |          |          |          |          |     |          |         |          |                 |                 |          |          |                                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STANGE OF STANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 162230                         |                   | 1282              |                               | 1                     | 5                             |
| Coole<br>(Y/N)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |     |                        | NOL                           |          |          |          |          |     |          |         |          |                 |                 |          |          |                                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.022.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1881                           |                   | Shell             |                               | 2                     | ĥ                             |
|                       | les                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                  | . 1 |                        | *10                           | - 1      | )        | - 1      | - 1      | - 1 | - 1      | - 1     |          | - 1             | - 1             | - 1      | - 1      |                                                                  |                   | OFFICE HOUSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6252                           |                   | 1577              |                               | 1                     |                               |

CLIENT: 92-AL Power

PM: KLH1

Due Date: 08/13/21

Page 22 of 24

# **Quality Control Sample Performance Assessment**

Test: Analyst: Date: Worklist: Matrix:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

| Ra-228             |       | Analyst must manually Liner for relocating mignification in renova- |             |             |
|--------------------|-------|---------------------------------------------------------------------|-------------|-------------|
| JC2                |       | Sample Matrix Spike Control Assessment                              | MS/MSD 1    | MS/MSD 2    |
| 7/30/2021          |       | Sample Collection Date:                                             | 7/14/2021   | 7/12/2021   |
| 61831              |       | Sample I.D.                                                         | 92550955021 | 92549918003 |
| LM.                |       | Sample MS I.D.                                                      | 92550955022 | 92549918004 |
|                    |       | Sample MSD I.D.                                                     | 92550955023 | 92549918005 |
|                    |       | Spike I.D.:                                                         | 21-003      | 21-003      |
| 2210350            |       | MS/MSD Decay Corrected Spike Concentration (pCi/mt.):               | 36.952      | 36.952      |
| 0.186              |       | Spike Volume Used in MS (mL):                                       | 0.20        | 0.20        |
| 0.369              |       | Spike Volume Used in MSD (mL):                                      | 0.20        | 0.20        |
| 0.813              |       | MS Aliquot (L, g, F):                                               | 0.806       | 0.812       |
| 0.99               |       | MS Target Conc.(pCi/l., g, F):                                      | 9.165       | 660'6       |
| Pass               |       | MSD Aliquot (L, g, F):                                              | 0.810       | 0.809       |
| Pass               |       | MSD Target Conc. (pCi/L, g, F):                                     | 9.123       | 9.137       |
|                    |       | MS Spike Uncertainty (calculated):                                  | 0.449       | 0.446       |
| CSD (Y or N)?      |       | MSD Spike Uncertainty (calculated):                                 | 0.447       | 0.448       |
| LCS61831 LCSD61831 | 31831 | Sample Result:                                                      | -0.002      | -0.004      |
| 8/3/2021           |       | Sample Result 2 Sigma CSU (pCi/L, g, F):                            | 0.326       | 0.356       |
| 21-003             |       | Sample Matrix Spike Result:                                         | 9.623       | 9.474       |
| 36.708             |       | Matrix Spike Result 2 Sigma CSU (pCi/l., g, F):                     | 1.948       | 1.878       |
| 0.10               |       | Sample Matrix Spike Duplicate Result:                               | 10.171      | 9.866       |
| 0.810              |       | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):            | 2.026       | 1.960       |
| 4.534              |       | MS Numerical Performance Indicator:                                 | 0.446       | 0.379       |
| 0.222              |       | MSD Numerical Performance Indicator:                                | 0.980       | 0.703       |
| 4.013              |       | MS Percent Recovery:                                                | 105.02%     | 104.17%     |
| 0.972              |       | MSD Percent Recovery:                                               | 111.51%     | 108.02%     |
| -1.03              |       | MS Status vs Numerical Indicator:                                   | Pass        | Pass        |
| 88.50%             |       | MSD Status vs Numerical Indicator:                                  | Pass        | Pass        |
| A/N                |       | MS Status vs Recovery:                                              | Pass        | Pass        |
| Pass               |       | MSD Status vs Recovery:                                             | Pass        | Pass        |
| 135%               |       | MS/MSD Upper % Recovery Limits:                                     | 135%        | 135%        |
| %09                |       | MS/MSD Lower % Recovery Limits:                                     | %09         | %09         |
|                    |       |                                                                     |             |             |

MB Sample ID
MB concentration:
M/B 2 Sigma CSU:
M/B MB MDC:

Method Blank Assessmen

MB Numerical Performance Indicator:

MB Status vs Numerical Indicator:

MB Status vs. MDC

| aboratory Control Sample Assessment           | CSD (Y or N)? | 2         |  |
|-----------------------------------------------|---------------|-----------|--|
|                                               | LCS61831      | LCSD61831 |  |
| Count Date:                                   | 8/3/2021      |           |  |
| Spike I.D.:                                   | 21-003        |           |  |
| Decay Corrected Spike Concentration (pCi/mL): | 36.708        |           |  |
| Volume Used (mL):                             | 0.10          |           |  |
| Aliquot Volume (L, g, F):                     | 0.810         |           |  |
| Target Conc. (pCi/L, g, F):                   | 4.534         |           |  |
| Uncertainty (Calculated):                     | 0.222         |           |  |
| Result (pCi/L, g, F):                         | 4.013         |           |  |
| LCS/LCSD 2 Sigma CSU (pCi/L, g, F):           | 0.972         |           |  |
| Numerical Performance Indicator:              | -1.03         |           |  |
| Percent Recovery:                             | 88.50%        |           |  |
| Status vs Numerical Indicator:                | A/N           |           |  |
| Status vs Recovery:                           | Pass          |           |  |
| Upper % Recovery Limits:                      | 135%          |           |  |
| Lower % Recovery Limits:                      | %09           |           |  |

|              |                                         | Matrix Spike/Matrix Spike Duplicate Sample Assessment    |             |
|--------------|-----------------------------------------|----------------------------------------------------------|-------------|
|              | Enter Duplicate                         | Sample I.D.                                              | 92550955021 |
|              | sample IDs if                           | Sample MS I.D.                                           | 92550955022 |
|              | other than                              | Sample MSD I.D.                                          | 92550955023 |
|              | LCS/LCSD in                             | Sample Matrix Spike Result:                              | 9.623       |
|              | the space below.                        | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):           | 1.948       |
|              |                                         | Sample Matrix Spike Duplicate Result:                    | 10.171      |
| See Below ## |                                         | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): | 2.026       |
|              | Control Control Control Control Control | Duplicate Numerical Performance Indicator:               | -0.382      |
|              | Subjective Comment                      | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: | 2.99%       |
|              |                                         | MS/ MSD Duplicate Status vs Numerical Indicator:         | Pass        |
|              |                                         | MS/ MSD Duplicate Status vs RPD:                         | Pass        |
|              |                                         | % RPD Limit:                                             | 36%         |
|              | •                                       |                                                          |             |

Sample Result (DCIII, g. F):
Sample Result 2 Sigma CSU (pCiII, g. F):
Sample Duplicate Result 2 Sigma CSU (pCIII, g. F):
Are sample and/or duplicate results below RL?
Duplicate Numerical Performance Indicator:
Duplicate Numerical Performance Indicator:

Duplicate Sample I.D.

Sample I.D.:

**Duplicate Sample Assessment** 

92549918003 92549918004 92549918005

9.474 1.878 9.866 1.960 -0.283 3.63% Pass Pass 36%

| ci i                                                                     |
|--------------------------------------------------------------------------|
| ×                                                                        |
| the MDC                                                                  |
| -                                                                        |
| ≆                                                                        |
| =                                                                        |
| ≷                                                                        |
| မ္မ                                                                      |
| ă                                                                        |
| φ                                                                        |
| ਰ                                                                        |
| S                                                                        |
| results                                                                  |
| Σ                                                                        |
| ₾                                                                        |
| Ø.                                                                       |
| licate                                                                   |
| ≅                                                                        |
| r duplica                                                                |
| ಕ                                                                        |
| either the sample or duplicate results are below the MD                  |
| ~                                                                        |
| <del>~</del>                                                             |
| ₹                                                                        |
| ਲ                                                                        |
| S                                                                        |
| ഉ                                                                        |
| ==                                                                       |
| ā                                                                        |
| ≘                                                                        |
| •                                                                        |
| =                                                                        |
| a)                                                                       |
| ≖                                                                        |
| 8                                                                        |
| 픚                                                                        |
| ă                                                                        |
| a                                                                        |
| ಕ                                                                        |
| =                                                                        |
| .22                                                                      |
| ⊆                                                                        |
| .유                                                                       |
| 픙                                                                        |
| ŏ                                                                        |
| ᇫ                                                                        |
| a)                                                                       |
| 큠                                                                        |
| licat                                                                    |
| ₫.                                                                       |
| 킁                                                                        |
| ğ                                                                        |
| 0                                                                        |
| uation                                                                   |
| :≛                                                                       |
| ä                                                                        |
| œ                                                                        |
| Eval                                                                     |
| ## Evaluation of duplicate precision is not applicable if either the sam |
| 推                                                                        |
| **                                                                       |

Duplicate Status vs RPD: % RPD Limit:

Duplicate Status vs Numerical Indicator:



Comments:

Ra-228\_61831\_W.xls Ra-228 (R086-8 04Sep2019).xls

# Pace Analytical"

# **Quality Control Sample Performance Assessment**

LAL 7/23/2021 61766 DW Test: Analyst: Date: Worklist: Matrix:

2207826 0.061 0.218 0.537 0.55 N/A Pass

MB Counting Uncertainty:
MB MDC:

MB Sample ID

Method Blank Assessment

MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

|   | Sample Matrix Spike Control Assessment                            | MS/MSD 1    | MS/MSD 2 |
|---|-------------------------------------------------------------------|-------------|----------|
|   | Sample Collection Date:                                           |             |          |
|   | Sample I.D.                                                       | 92549918003 |          |
|   | Sample MSD I.D.                                                   | 92549918005 |          |
|   | Spike I.D.:                                                       | 19-033      |          |
|   | MS/MSD Decay Corrected Spike Concentration (pCi/mL):              | 25.335      |          |
|   | Spike Volume Used in MS (mL):                                     | 0.20        | -        |
|   | Spike Volume Used in MSD (mL):                                    | 0.20        |          |
|   | MS Aliquot (L, g, F):                                             | 0.201       |          |
|   | MS Target Conc.(pCi/L, g, F):                                     | 25.256      |          |
|   | MSD Aliquot (L, g, F):                                            | 0.210       |          |
|   | MSD Target Conc. (pCi/L, g, F):                                   | 24.093      |          |
|   | MS Spike Uncertainty (calculated):                                | 0.303       |          |
| П | MSD Spike Uncertainty (calculated):                               | 0.289       |          |
| 6 | Sample Result:                                                    | 0.155       |          |
|   | Sample Result Counting Uncertainty (pCl/l, g, F):                 | 0.208       |          |
|   | Sample Matrix Spike Result:                                       | 21.803      |          |
|   | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):           | 1.637       |          |
|   | Sample Matrix Spike Duplicate Result:                             | 21.161      |          |
|   | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | 1.655       |          |
|   | MS Numerical Performance Indicator:                               | -4.215      |          |
|   | MSD Numerical Performance Indicator:                              | -3.573      |          |
|   | MS Percent Recovery:                                              | 85.72%      |          |
|   | MSD Percent Recovery:                                             | 87.19%      |          |
|   | MS Status vs Numerical Indicator:                                 | N/A         |          |
|   | MSD Status vs Numerical Indicator:                                | Ϋ́Ν         |          |
|   | MS Status vs Recovery:                                            | Pass        |          |
| _ | MSD Status vs Recovery:                                           | Pass        |          |
|   | MS/MSD Upper % Recovery Limits:                                   | 125%        |          |
|   | MS/MSD Lower % Recovery Limits:                                   | 75%         |          |

|                                               |                |           | ids SM                                |
|-----------------------------------------------|----------------|-----------|---------------------------------------|
| Laboratory Control Sample Assessment          | LCSD (Y or N)? | z         | ids OSM                               |
|                                               | LCS61766       | LCSD61766 |                                       |
| Count Date:                                   | 8/13/2021      |           | Sample Result Countir                 |
| Spike I.D.:                                   | 19-033         |           | <i>s</i>                              |
| Decay Corrected Spike Concentration (pCl/mL): | 24.035         |           | Matrix Spike Result Countir           |
| Volume Used (mL):                             | 0.10           |           | Sample Ma                             |
| Aliquot Volume (L, g, F):                     | 0.200          |           | Matrix Spike Duplicate Result Countir |
| Target Conc. (pCi/L, g, F):                   | 12.013         |           | MS Numer                              |
| Uncertainty (Calculated):                     | 0.144          |           | MSD Numer                             |
| Result (pCi/L, g, F):                         | 13.562         |           |                                       |
| LCS/LCSD Counting Uncertainty (pCi/L, g, F):  | 1.284          |           |                                       |
| Numerical Performance Indicator:              | 2.35           |           | MS Sta                                |
| Percent Recovery:                             | 112.89%        |           | MSD Ste                               |
| Status vs Numerical Indicator:                | N/A            |           |                                       |
| Status vs Recovery:                           | Pass           |           |                                       |
| Upper % Recovery Limits:                      | 125%           |           | DSW/SW                                |
| Lower % Recovery Limits:                      | 75%            |           | DSW/SW                                |
|                                               |                |           |                                       |

|   |                                                       | 92549918003 | 92549918004    | 92549918005     | 21.803                      | 1.637                                                   | 21.161                                | 1.655                                                             | 0.540                                      | 1.70%                                                    | A/A                                              | Pass                             | 72%          |
|---|-------------------------------------------------------|-------------|----------------|-----------------|-----------------------------|---------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------|--------------|
|   | Matrix Spike/Matrix Spike Duplicate Sample Assessment | Sample I.D. | Sample MS I.D. | Sample MSD I.D. | Sample Matrix Spike Result: | Matrix Spike Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | Duplicate Numerical Performance Indicator: | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: | MS/ MSD Duplicate Status vs Numerical Indicator: | MS/ MSD Duplicate Status vs RPD: | % RPD Limit: |
| I |                                                       |             |                |                 |                             |                                                         |                                       |                                                                   |                                            |                                                          |                                                  |                                  |              |

See Below ##

Sample I.D.:

Sample Result (pCl/I. g. F):

Sample Result Counting Uncertainty (pCl/I. g. F):

Sample Duplicate Result (pCl/I. g. F):

Sample Duplicate Result (pCl/I. g. F):

Are sample and/or duplicate results below RI.?

**Duplicate Sample Assessment** 

| the MDC.       |
|----------------|
| Σ              |
| the            |
| elow           |
| pel            |
| are            |
| S              |
| Ħ              |
| ĕ              |
| licate results |
| 읊              |
| 콩              |
| ≒              |
| ple            |
| amp            |
| the san        |
|                |
| either         |
| ē              |
| e ==           |
| licable if     |
|                |
| abb            |
| пo             |
| .2             |
| sion           |
| .22            |
| pre            |
| e              |
| licate         |
| ₩.             |
| σţ             |
| aluation of du |
| lati           |
| Zag            |
| ŭ              |
| #              |
|                |

Duplicate Status vs Numerical Indicator:
Duplicate Status vs RPD:
Duplicate Status vs RPD:
% RPD Limit:

Duplicate Numerical Performance Indicator:

Comments:



Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040 205-664-6001

# Analytical Report



Sample Group: WMWGORLF\_1330

Project/Site: Gorgas Landfill

Parrish, AL 35580

For: Southern Company Services

3535 Colonnade Parkway Birmingham, AL 35243

Attention: Dustin Brooks & Greg Dyer

Released By: Laura Midkiff

lbmidkif@southernco.com

(205) 664-6197



Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040 (205) 664-6001

August 23, 2021

Dear Dustin Brooks,

Enclosed are the analytical results for sample(s) received by the laboratory between July 21, 2021 and July 22, 2021. All results reported herein conform to the laboratory's most current Quality Assurance Manual. Results marked with an asterisk conform to the most current applicable TNI/NELAC requirements. Exceptions will be noted in the body of the report.

Some analyses were subcontracted. The test report from the external subcontractor is attached to this report in its entirety.

Laboratory certification ID: E571114

Issued By: State of Florida, Department of Health

Expiration: June 30, 2022

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

**Quality Control:** 

Laura Midkiff Ongary, ou-Environmental Affairs, email-bindidff southerno.co., eu-US Date: 2021.08.23 12.55.12.0500

T. Durant Supervision:

Maske

Power Company, ou=Environmenta Affairs, email=tdmaske@southerno c=US Date: 2021.08.23 14:26:38 -05'00'





This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.



Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



### **Total Metals ICP**

### Gorgas Landfill

### WMWGORLF\_1330

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | <u>Batch ID</u>           | Project ID    |
|-----------|---------------------------|---------------|
| BB13181   | 703638 & 703658 (Ca Only) | WMWGORLF_1330 |
| BB13182   | 703638 & 703658 (Ca Only) | WMWGORLF_1330 |
| BB13183   | 703638 & 703658 (Ca Only) | WMWGORLF_1330 |
| BB13184   | 703638 & 703658 (Ca Only) | WMWGORLF_1330 |
| BB13185   | 703638 & 703658 (Ca Only) | WMWGORLF_1330 |
| BB13186   | 703638 & 703658 (Ca Only) | WMWGORLF_1330 |
| BB13187   | 703638 & 703658 (Ca Only) | WMWGORLF_1330 |
| BB13188   | 703638 & 703658 (Ca Only) | WMWGORLF_1330 |
| BB13189   | 703638 & 703658 (Ca Only) | WMWGORLF_1330 |
| BB13190   | 703638 & 703658 (Ca Only) | WMWGORLF_1330 |
| BB13191   | 704249                    | WMWGORLF_1330 |
| BB13324   | 704249                    | WMWGORLF_1330 |
| BB13325   | 704249                    | WMWGORLF_1330 |
| BB13326   | 704249                    | WMWGORLF_1330 |
| BB13327   | 704249                    | WMWGORLF_1330 |
| BB13328   | 704249                    | WMWGORLF_1330 |
| BB13329   | 704249                    | WMWGORLF_1330 |
| BB13330   | 704249                    | WMWGORLF_1330 |
| BB13331   | 704249                    | WMWGORLF_1330 |
| BB13332   | 704249                    | WMWGORLF_1330 |
| BB13333   | 704250                    | WMWGORLF_1330 |
|           |                           |               |

- 4. All of the above samples were analyzed by EPA 200.7 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



### **General Quality Control Procedures:**

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes, except for the following:
  - The method blank for Calcium failed in batch 703638. All affected samples were reprepared and reanalyzed in batch 703658 for Calcium only. The method blank associated with batch 703658 passed all acceptance criteria for Calcium.
- All calibration curve requirements were within acceptance criteria.
- All sample internal standard criteria were met.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for accuracy were met, except for the following:
  - BB13190 Iron, Magnesium, and Sodium MS/MSD spike levels were <30% of the sample concentrations.</li>
  - BB13332 Calcium, Iron, Magnesium, and Sodium MS/MSD spike levels were <30% of the sample concentrations.
  - BB13333 Calcium, Magnesium, and Sodium MS/MSD spike levels were <30% of the sample concentrations.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria
  for precision were met.

**Revision 5** 

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u>                   | <b>Dilution Factor</b> |
|-----------|----------------------------------|------------------------|
| BB13181   | Calcium, Magnesium               | 10.15                  |
| BB13182   | Calcium, Magnesium               | 10.15                  |
| BB13183   | Calcium, Iron, Magnesium         | 10.15                  |
| BB13184   | Calcium, Magnesium, Sodium       | 10.15                  |
| BB13185   | Calcium, Iron, Magnesium, Sodium | 10.15                  |
| BB13186   | Calcium, Iron, Magnesium, Sodium | 10.15                  |
| BB13187   | Calcium, Magnesium, Sodium       | 10.15                  |
| BB13189   | Calcium, Magnesium, Sodium       | 10.15                  |
| BB13190   | Calcium, Iron, Magnesium, Sodium | 10.15                  |
| BB13189   | Iron                             | 101.5                  |
| BB13191   | Calcium, Magnesium               | 10.15                  |
| BB13324   | Calcium, Magnesium, Sodium       | 10.15                  |
| BB13325   | Calcium, Magnesium               | 10.15                  |
| BB13326   | Calcium                          | 10.15                  |
| BB13327   | Calcium, Iron, Magnesium         | 10.15                  |
| BB13328   | Calcium, Magnesium               | 10.15                  |
| BB13331   | Calcium, Magnesium, Sodium       | 10.15                  |
| BB13332   | Calcium, Iron, Magnesium, Sodium | 10.15                  |
| BB13333   | Calcium, Magnesium,              | 10.15                  |
| BB13327   | Magnesium                        | 101.5                  |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



### **Dissolved Metals ICP**

### Gorgas Landfill

### WMWGORLF 1330

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB13181   | 703659   | WMWGORLF_1330 |
| BB13182   | 703659   | WMWGORLF_1330 |
| BB13183   | 703659   | WMWGORLF_1330 |
| BB13184   | 703659   | WMWGORLF_1330 |
| BB13185   | 703659   | WMWGORLF_1330 |
| BB13186   | 703659   | WMWGORLF_1330 |
| BB13187   | 703659   | WMWGORLF_1330 |
| BB13189   | 703659   | WMWGORLF_1330 |
| BB13190   | 703659   | WMWGORLF_1330 |
| BB13191   | 703659   | WMWGORLF_1330 |
| BB13324   | 703661   | WMWGORLF_1330 |
| BB13325   | 703661   | WMWGORLF_1330 |
| BB13326   | 703661   | WMWGORLF_1330 |
| BB13327   | 703661   | WMWGORLF_1330 |
| BB13328   | 703661   | WMWGORLF_1330 |
| BB13331   | 703661   | WMWGORLF_1330 |
| BB13332   | 703661   | WMWGORLF_1330 |
| BB13333   | 703661   | WMWGORLF_1330 |

- 4. All of the above samples were analyzed and prepared by EPA 200.7 for dissolved analysis.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

### **General Quality Control Procedures:**

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.

### **Revision 5**

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



- Due to no filtered method blank (MB) or laboratory control sample (LCS) submitted with the sample set, an unfiltered MB and LCS were analyzed with the samples in each batch.
- All laboratory control sample criteria were met.
- The method blank associated with each batch passed all acceptance criteria for all requested analytes.
- All calibration curve requirements were within acceptance criteria.
- All sample internal standard criteria were met.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical
  sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range,
  any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any
  qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of
  review.

### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were analyzed with each ICP batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were analyzed with each ICP batch. All acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u> | <b>Dilution Factor</b> |
|-----------|----------------|------------------------|
| BB13183   | Iron           | 10.15                  |
| BB13185   | Iron           | 10.15                  |
| BB13186   | Iron           | 10.15                  |
| BB13189   | Iron           | 101.5                  |
| BB13190   | Iron           | 10.15                  |
| BB13327   | Iron           | 10.15                  |
| BB13332   | Iron           | 10.15                  |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



### **Total Metals ICPMS**

### Gorgas Landfill

### WMWGORLF 1330

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB13181   | 703864   | WMWGORLF_1330 |
| BB13182   | 703864   | WMWGORLF_1330 |
| BB13183   | 703864   | WMWGORLF_1330 |
| BB13184   | 703864   | WMWGORLF_1330 |
| BB13185   | 703864   | WMWGORLF_1330 |
| BB13186   | 703864   | WMWGORLF_1330 |
| BB13187   | 703864   | WMWGORLF_1330 |
| BB13188   | 703864   | WMWGORLF_1330 |
| BB13189   | 703864   | WMWGORLF_1330 |
| BB13190   | 703864   | WMWGORLF_1330 |
| BB13191   | 703865   | WMWGORLF_1330 |
| BB13324   | 703865   | WMWGORLF_1330 |
| BB13325   | 703865   | WMWGORLF_1330 |
| BB13326   | 703865   | WMWGORLF_1330 |
| BB13327   | 703865   | WMWGORLF_1330 |
| BB13328   | 703865   | WMWGORLF_1330 |
| BB13329   | 703865   | WMWGORLF_1330 |
| BB13330   | 703865   | WMWGORLF_1330 |
| BB13331   | 703865   | WMWGORLF_1330 |
| BB13332   | 703865   | WMWGORLF_1330 |
| BB13333   | 703866   | WMWGORLF_1330 |
|           |          |               |

- 4. All of the above samples were analyzed by EPA 200.8 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

### **General Quality Control Procedures:**

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.

### **Revision 5**

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.

#### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for accuracy were met, except for the following:
  - o BB13333 Manganese MS/MSD spike level was <30% of the sample concentration.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u> | <b>Dilution Factor</b> |
|-----------|----------------|------------------------|
| BB13181   | Manganese      | 5.075                  |
| BB13182   | Manganese      | 5.075                  |
| BB13183   | Manganese      | 92.365                 |
| BB13185   | Manganese      | 92.365                 |
| BB13186   | Manganese      | 92.365                 |
| BB13189   | Manganese      | 92.365                 |
| BB13190   | Manganese      | 5.075                  |
| BB13191   | Manganese      | 5.075                  |
| BB13325   | Manganese      | 5.075                  |
| BB13326   | Manganese      | 5.075                  |
| BB13327   | Manganese      | 92.365                 |
| BB13333   | Manganese      | 5.075                  |
|           |                |                        |

8. The raw data results are shown with dilution factors included.

**Revision 5** 

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **Dissolved Metals ICPMS**

#### Gorgas Landfill

#### WMWGORLF 1330

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB13181   | 703867   | WMWGORLF_1330 |
| BB13182   | 703867   | WMWGORLF_1330 |
| BB13183   | 703867   | WMWGORLF_1330 |
| BB13184   | 703867   | WMWGORLF_1330 |
| BB13185   | 703867   | WMWGORLF_1330 |
| BB13186   | 703867   | WMWGORLF_1330 |
| BB13187   | 703867   | WMWGORLF_1330 |
| BB13189   | 703867   | WMWGORLF_1330 |
| BB13190   | 703867   | WMWGORLF_1330 |
| BB13191   | 703867   | WMWGORLF_1330 |
| BB13324   | 703868   | WMWGORLF_1330 |
| BB13325   | 703868   | WMWGORLF_1330 |
| BB13326   | 703868   | WMWGORLF_1330 |
| BB13327   | 703868   | WMWGORLF_1330 |
| BB13328   | 703868   | WMWGORLF_1330 |
| BB13331   | 703868   | WMWGORLF_1330 |
| BB13332   | 703868   | WMWGORLF_1330 |
| BB13333   | 703868   | WMWGORLF_1330 |

- 4. All of the above samples were analyzed and prepared by EPA 200.8 for dissolved analysis.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.

#### **Revision 5**

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



- Due to no filtered method blank (MB) or laboratory control sample (LCS) submitted with the sample set, an unfiltered MB and LCS were analyzed with the samples in each batch.
- All laboratory control sample criteria were met.
- The method blank associated with each preparation batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were analyzed with each ICPMS batch. All acceptance criteria for accuracy were met, except for the following:
  - o BB13191 & BB13333 Manganese MS/MSD spike levels were <30% of the sample concentrations.
- A matrix spike and matrix spike duplicate were analyzed with each ICPMS batch. All acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u> | <b>Dilution Factor</b> |
|-----------|----------------|------------------------|
| BB13181   | Manganese      | 5.075                  |
| BB13182   | Manganese      | 5.075                  |
| BB13183   | Manganese      | 92.365                 |
| BB13185   | Manganese      | 92.365                 |
| BB13186   | Manganese      | 92.365                 |
| BB13189   | Manganese      | 92.365                 |
| BB13190   | Manganese      | 5.075                  |
| BB13191   | Manganese      | 5.075                  |
| BB13325   | Manganese      | 5.075                  |
| BB13326   | Manganese      | 5.075                  |
| BB13327   | Manganese      | 92.365                 |
| BB13333   | Manganese      | 5.075                  |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### Mercury

#### Gorgas Landfill

#### WMWGORLF\_1330

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB13181   | 703259   | WMWGORLF_1330 |
| BB13182   | 703259   | WMWGORLF_1330 |
| BB13183   | 703259   | WMWGORLF_1330 |
| BB13184   | 703259   | WMWGORLF_1330 |
| BB13185   | 703259   | WMWGORLF_1330 |
| BB13186   | 703259   | WMWGORLF_1330 |
| BB13187   | 703259   | WMWGORLF_1330 |
| BB13188   | 703259   | WMWGORLF_1330 |
| BB13189   | 703259   | WMWGORLF_1330 |
| BB13190   | 703259   | WMWGORLF_1330 |
| BB13191   | 703260   | WMWGORLF_1330 |
| BB13324   | 703260   | WMWGORLF_1330 |
| BB13325   | 703260   | WMWGORLF_1330 |
| BB13326   | 703260   | WMWGORLF_1330 |
| BB13327   | 703260   | WMWGORLF_1330 |
| BB13328   | 703260   | WMWGORLF_1330 |
| BB13329   | 703260   | WMWGORLF_1330 |
| BB13330   | 703260   | WMWGORLF_1330 |
| BB13331   | 703260   | WMWGORLF_1330 |
| BB13332   | 703260   | WMWGORLF_1330 |
| BB13333   | 703261   | WMWGORLF_1330 |

- 4. All of the above samples were analyzed and prepared by EPA 245.1.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **General Quality Control Procedures:**

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the method detection limit for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch was below the limit of quantitation for the requested analyte.
- All calibration met criteria for the requested analyte.
- All response signals were satisfactory.

#### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



TDS

#### Gorgas Landfill

#### WMWGORLF\_1330

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID    |
|-----------|----------|---------------|
| BB13181   | 703262   | WMWGORLF_1330 |
| BB13182   | 703262   | WMWGORLF_1330 |
| BB13183   | 703262   | WMWGORLF_1330 |
| BB13184   | 703262   | WMWGORLF_1330 |
| BB13185   | 703262   | WMWGORLF_1330 |
| BB13186   | 703262   | WMWGORLF_1330 |
| BB13187   | 703262   | WMWGORLF_1330 |
| BB13188   | 703262   | WMWGORLF_1330 |
| BB13189   | 703262   | WMWGORLF_1330 |
| BB13190   | 703262   | WMWGORLF_1330 |
| BB13191   | 703263   | WMWGORLF_1330 |
| BB13324   | 703336   | WMWGORLF_1330 |
| BB13325   | 703336   | WMWGORLF_1330 |
| BB13326   | 703336   | WMWGORLF_1330 |
| BB13327   | 703336   | WMWGORLF_1330 |
| BB13328   | 703336   | WMWGORLF_1330 |
| BB13329   | 703336   | WMWGORLF_1330 |
| BB13330   | 703336   | WMWGORLF_1330 |
| BB13331   | 703336   | WMWGORLF_1330 |
| BB13332   | 703336   | WMWGORLF_1330 |
| BB13333   | 703336   | WMWGORLF_1330 |

- 4. All of the above samples were analyzed by Standard Method 2540C.
- 5. All samples were analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **General Quality Control Procedures:**

- A Method Blank was analyzed with each batch. All criteria were met.
- All final weights of samples, standards, and blanks agreed within 0.5mg of the previous weight.
- A sample duplicate was analyzed with each batch. RPD/2 was less than 5%.
- A laboratory control sample was analyzed with each batch. All criteria were met.
- Samples were between 2.5mg and 200mg residue.
- All samples with residue <2.5mg had the maximum volume of 150mL filtered. Affected samples are as follows:
  - o BB13188
  - o BB13329
  - o BB13330

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **Anions**

#### Gorgas Landfill

#### WMWGORLF\_1330

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID                 | Project ID    |
|-----------|--------------------------|---------------|
| BB13181   | 703372, 703375, & 703378 | WMWGORLF_1330 |
| BB13182   | 703372, 703375, & 703378 | WMWGORLF_1330 |
| BB13183   | 703372, 703375, & 703378 | WMWGORLF_1330 |
| BB13184   | 703372, 703375, & 703378 | WMWGORLF_1330 |
| BB13185   | 703372, 703375, & 703378 | WMWGORLF_1330 |
| BB13186   | 703372, 703375, & 703378 | WMWGORLF_1330 |
| BB13187   | 703372, 703375, & 703378 | WMWGORLF_1330 |
| BB13188   | 703372, 703375, & 703378 | WMWGORLF_1330 |
| BB13189   | 703372, 703375, & 703378 | WMWGORLF_1330 |
| BB13190   | 703372, 703375, & 703378 | WMWGORLF_1330 |
| BB13191   | 703373, 703376, & 703379 | WMWGORLF_1330 |
| BB13324   | 703373, 703376, & 703379 | WMWGORLF_1330 |
| BB13325   | 703373, 703376, & 703379 | WMWGORLF_1330 |
| BB13326   | 703373, 703376, & 703379 | WMWGORLF_1330 |
| BB13327   | 703373, 703376, & 703379 | WMWGORLF_1330 |
| BB13328   | 703373, 703376, & 703379 | WMWGORLF_1330 |
| BB13329   | 703373, 703376, & 703379 | WMWGORLF_1330 |
| BB13330   | 703373, 703376, & 703379 | WMWGORLF_1330 |
| BB13331   | 703373, 703376, & 703379 | WMWGORLF_1330 |
| BB13332   | 703373, 703376, & 703379 | WMWGORLF_1330 |
| BB13333   | 703374, 703377, & 703380 | WMWGORLF_1330 |

- 4. All of the above samples were analyzed and prepared by SM4500 Cl E, SM4500 F G, and SM4500 SO4 E.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **General Quality Control Procedures:**

- All calibration met criteria for the requested analyte.
- Prior to sample analysis, an initial calibration verification (ICV), and all criteria were met.
- Prior to sample analysis, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

#### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike was analyzed with each batch. Acceptance criteria for accuracy were met.
- A sample duplicate was analyzed with each batch. Acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u>     | <b>Dilution Factor</b> |
|-----------|--------------------|------------------------|
| BB13181   | Sulfate            | 50                     |
| BB13182   | Sulfate            | 80                     |
| BB13183   | Sulfate            | 50                     |
| BB13184   | Chloride & Sulfate | 8 & 40                 |
| BB13185   | Sulfate            | 160                    |
| BB13186   | Sulfate            | 160                    |
| BB13187   | Sulfate            | 40                     |
| BB13189   | Sulfate            | 160                    |
| BB13190   | Sulfate            | 50                     |
| BB13191   | Sulfate            | 40                     |
| BB13324   | Sulfate            | 100                    |

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



| BB13325 | Sulfate            | 40      |
|---------|--------------------|---------|
| BB13326 | Sulfate            | 40      |
| BB13327 | Sulfate            | 100     |
| BB13328 | Sulfate            | 80      |
| BB13331 | Chloride & Sulfate | 10 & 40 |
| BB13332 | Chloride & Sulfate | 16 & 80 |
| BB13333 | Sulfate            | 160     |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### Alkalinity

#### Gorgas Landfill

#### WMWGORLF\_1330

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID        | Project ID    |
|-----------|-----------------|---------------|
| BB13181   | 703999 & 704000 | WMWGORLF_1330 |
| BB13182   | 703999 & 704000 | WMWGORLF_1330 |
| BB13183   | 703999 & 704000 | WMWGORLF_1330 |
| BB13184   | 703999 & 704000 | WMWGORLF_1330 |
| BB13185   | 703999 & 704000 | WMWGORLF_1330 |
| BB13186   | 703999 & 704000 | WMWGORLF_1330 |
| BB13187   | 703999 & 704000 | WMWGORLF_1330 |
| BB13188   | 703999 & 704000 | WMWGORLF_1330 |
| BB13189   | 703999 & 704000 | WMWGORLF_1330 |
| BB13190   | 703999 & 704000 | WMWGORLF_1330 |
| BB13191   | 703999 & 704000 | WMWGORLF_1330 |
| BB13324   | 703999 & 704000 | WMWGORLF_1330 |
| BB13325   | 703999 & 704000 | WMWGORLF_1330 |
| BB13326   | 703999 & 704000 | WMWGORLF_1330 |
| BB13327   | 703999 & 704000 | WMWGORLF_1330 |
| BB13328   | 703999 & 704000 | WMWGORLF_1330 |
| BB13329   | 703999 & 704000 | WMWGORLF_1330 |
| BB13330   | 703999 & 704000 | WMWGORLF_1330 |
| BB13331   | 703999 & 704000 | WMWGORLF_1330 |
| BB13332   | 703999 & 704000 | WMWGORLF_1330 |
| BB13333   | 703999 & 704000 | WMWGORLF_1330 |

- 4. All of the above samples were analyzed by Standard Method 2320B.
- 5. All samples were analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **General Quality Control Procedures:**

- An initial pH check was analyzed with each batch. The acceptance criteria were met.
- A final pH check was analyzed with each batch. The acceptance criteria were met.
- An alkalinity laboratory control sample was analyzed with each batch. Range criteria of within 10% of true value was met.
- An alkalinity sample duplicate was analyzed with each batch. Precision criteria less than 10 RPD was met.

## Certificate Of Analysis



Description: Gorgas Landfill - MW-13Location Code:WMWGORLFCollected:7/20/21 09:13

Customer ID:

Laboratory ID Number: BB13181 Submittal Date: 7/21/21 09:49

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results                      | Units      | MDL                                                                                                                                                     | RL         | Q |
|------------------------------|---------------|--------------|-------------|------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             | Preparati                    | on Method: | EPA 1638                                                                                                                                                |            |   |
| * Boron, Total               | 7/21/21 13:33 | 7/22/21 19:0 | 8 1.015     | 0.0592                       | mg/L       | 0.030000                                                                                                                                                | 0.1015     | J |
| * Calcium, Total             | 7/28/21 08:00 | 7/28/21 13:3 | 3 10.15     | 262                          | mg/L       | 0.70035                                                                                                                                                 | 4.06       |   |
| * Iron, Total                | 7/21/21 13:33 | 7/22/21 19:0 | 8 1.015     | 0.0540                       | mg/L       | 0.008120                                                                                                                                                | 0.0406     |   |
| * Lithium, Total             | 7/21/21 13:33 | 7/22/21 19:0 | 8 1.015     | 0.0282                       | mg/L       | 0.007105                                                                                                                                                | 0.01999956 | 3 |
| * Magnesium, Total           | 7/21/21 13:33 | 7/27/21 15:4 | 5 10.15     | 305                          | mg/L       | 0.21315                                                                                                                                                 | 4.06       |   |
| * Sodium, Total              | 7/21/21 13:33 | 7/22/21 19:0 | 8 1.015     | 31.5                         | mg/L       | 0.03045                                                                                                                                                 | 0.406      |   |
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             |                              |            |                                                                                                                                                         |            |   |
| * Iron, Dissolved            | 7/28/21 09:25 | 7/28/21 10:2 | 9 1.015     | 0.0483                       | mg/L       | 0.008120                                                                                                                                                | 0.0406     |   |
| Analytical Method: EPA 200.8 | Anal          | yst: ABB     |             | Preparation Method: EPA 1638 |            |                                                                                                                                                         |            |   |
| * Antimony, Total            | 7/23/21 13:00 | 7/26/21 13:5 | 7 1.015     | Not Detected                 | mg/L       | 0.000508                                                                                                                                                | 0.001015   | U |
| * Arsenic, Total             | 7/23/21 13:00 | 7/26/21 13:5 | 7 1.015     | 0.000154                     | mg/L       | 0.000068                                                                                                                                                | 0.000203   | J |
| * Barium, Total              | 7/23/21 13:00 | 7/26/21 13:5 | 7 1.015     | 0.0118                       | mg/L       | 0.000102                                                                                                                                                | 0.000203   |   |
| * Beryllium, Total           | 7/23/21 13:00 | 7/26/21 13:5 | 7 1.015     | Not Detected                 | mg/L       | 0.000406                                                                                                                                                | 0.001015   | U |
| * Cadmium, Total             | 7/23/21 13:00 | 7/26/21 13:5 | 7 1.015     | Not Detected                 | mg/L       | 0.000068                                                                                                                                                | 0.000203   | U |
| * Chromium, Total            | 7/23/21 13:00 | 7/26/21 13:5 | 7 1.015     | Not Detected                 | mg/L       | 0.000203                                                                                                                                                | 0.001015   | U |
| * Cobalt, Total              | 7/23/21 13:00 | 7/26/21 13:5 | 7 1.015     | 0.00414                      | mg/L       | 0.000068                                                                                                                                                | 0.000203   |   |
| * Lead, Total                | 7/23/21 13:00 | 7/26/21 13:5 | 7 1.015     | Not Detected                 | mg/L       | 0.000068                                                                                                                                                | 0.000203   | U |
| * Molybdenum, Total          | 7/23/21 13:00 | 7/26/21 13:5 | 7 1.015     | 0.000506                     | mg/L       | 0.000068                                                                                                                                                | 0.000203   |   |
| * Potassium, Total           | 7/23/21 13:00 | 7/26/21 13:5 | 7 1.015     | 8.28                         | mg/L       | 0.169505                                                                                                                                                | 0.5075     |   |
| * Manganese, Total           | 7/23/21 13:00 | 7/26/21 22:3 | 5 5.075     | 1.38                         | mg/L       | 0.000068       0.000203         0.000203       0.001015         0.000068       0.000203         0.000068       0.000203         0.000068       0.000203 |            |   |
| * Selenium, Total            | 7/23/21 13:00 | 7/26/21 13:5 | 7 1.015     | 0.00315                      | mg/L       | 0.000508                                                                                                                                                | 0.001015   |   |
| * Thallium, Total            | 7/23/21 13:00 | 7/26/21 13:5 | 7 1.015     | Not Detected                 | mg/L       | 0.000068                                                                                                                                                | 0.000203   | U |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             |                              |            |                                                                                                                                                         |            |   |
| * Manganese, Dissolved       | 7/23/21 13:21 | 7/26/21 21:2 | 4 5.075     | 1.42                         | mg/L       | 0.000340                                                                                                                                                | 0.001015   |   |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB     |             |                              |            |                                                                                                                                                         |            |   |
| * Mercury, Total by CVAA     | 7/22/21 15:11 | 7/22/21 19:1 | 7 1         | Not Detected                 | mg/L       | 0.0003                                                                                                                                                  | 0.0005     | U |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |                              |            |                                                                                                                                                         |            |   |
| Alkalinity, Total as CaCO3   | 7/30/21 10:55 | 7/30/21 11:5 | 8 1         | 223                          | mg/L       |                                                                                                                                                         | 0.1        |   |
| Analytical Method: SM 2540C  | Anal          | yst: CNJ     |             |                              |            |                                                                                                                                                         |            |   |
| * Solids, Dissolved          | 7/22/21 12:06 | •            | 1           | 2520                         | mg/L       |                                                                                                                                                         | 125        |   |

MDL's and RL's are adjusted for sample dilution, as applicable

### Certificate Of Analysis



**Description:** Gorgas Landfill - MW-13

**Location Code:** 

WMWGORLF 7/20/21 09:13

Collected:

Customer ID: Submittal Date:

7/21/21 09:49

| Laboratory ID Number: BB13181         |               |              |             | Subi    | nittai Date: | 7/21/21 09:49 |     |    |  |
|---------------------------------------|---------------|--------------|-------------|---------|--------------|---------------|-----|----|--|
| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results | Units        | MDL           | RL  | Q  |  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |             |         |              |               |     |    |  |
| Bicarbonate Alkalinity, (calc.)       | 7/30/21 10:55 | 7/30/21 11   | :58 1       | 223     | mg/L         |               |     |    |  |
| Carbonate Alkalinity, (calc.)         | 7/30/21 10:55 | 7/30/21 11   | :58 1       | 0.11    | mg/L         |               |     |    |  |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |             |         |              |               |     |    |  |
| * Chloride                            | 7/26/21 10:18 | 7/26/21 10   | :18 1       | 1.70    | mg/L         | 0.50          | 1   |    |  |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |             |         |              |               |     |    |  |
| * Fluoride                            | 7/26/21 13:23 | 7/26/21 13   | :23 1       | 0.323   | mg/L         | 0.06          | 0.1 |    |  |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |             |         |              |               |     |    |  |
| * Sulfate                             | 7/23/21 13:28 | 3 7/23/21 13 | :28 50      | 1560    | mg/L         | 25.00         | 50  |    |  |
| Analytical Method: Field Measurements | Ana           | lyst: DKG    |             |         |              |               |     |    |  |
| Conductivity                          | 7/20/21 09:10 | 7/20/21 09   | :10         | 2629.85 | uS/cm        |               |     | FA |  |
| рН                                    | 7/20/21 09:10 | 7/20/21 09   | :10         | 6.59    | SU           |               |     | FA |  |
| Temperature                           | 7/20/21 09:10 | 7/20/21 09   | :10         | 20.50   | С            |               |     | FA |  |
| Turbidity                             | 7/20/21 09:10 | 7/20/21 09   | :10         | 0.57    | NTU          |               |     | FA |  |
|                                       |               |              |             |         |              |               |     |    |  |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 7/20/21 09:13

**Customer ID:** 

**Delivery Date:** 7/21/21 09:49

Description: Gorgas Landfill - MW-13

Laboratory ID Number: BB13181

|         |                        |       |            | MB       |       |         |         |          | Standard           |       | Rec         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pred         |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Limit Prec Li 70.0 to 130 1.85 20. 70.0 to 130 1.88 20. 70.0 to 130 2.92 20. 70.0 to 130 0.303 20. 70.0 to 130 0.922 20. 70.0 to 130 0.922 20. 70.0 to 130 0.229 20. 70.0 to 130 0.229 20. 70.0 to 130 0.254 20. 70.0 to 130 0.254 20. 70.0 to 130 0.437 20. 70.0 to 130 0.576 20. 70.0 to 130 0.576 20. 70.0 to 130 0.299 20. 70.0 to 130 0.299 20. 70.0 to 130 0.467 20. 70.0 to 130 0.00 20. 70.0 to 130 0.00 20. 70.0 to 130 0.00 20. 70.0 to 130 0.00 20. 70.0 to 130 0.00 20. 70.0 to 130 0.00 20. 70.0 to 130 0.00 20. | <u>Li</u> mi |
| BB13190 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.107   | 0.109   | 0.106    | 0.0850 to 0.115    | 106   | 70.0 to 130 | 1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0         |
| 3B13191 | Iron, Dissolved        | mg/L  | -0.000913  | 0.0176   | 0.2   | 2.15    | 2.11    | 0.197    | 0.170 to 0.230     | 95.0  | 70.0 to 130 | 1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0         |
| 3B13190 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0902  | 0.0876  | 0.0932   | 0.0850 to 0.115    | 89.2  | 70.0 to 130 | 2.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0         |
| 3B13190 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0990  | 0.0993  | 0.0929   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 0.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.0         |
| 3B13190 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.108   | 0.109   | 0.112    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 0.922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.0         |
| 3B13190 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.0963  | 0.0976  | 0.103    | 0.0850 to 0.115    | 95.3  | 70.0 to 130 | 1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0         |
| 3B13190 | Lithium, Total         | mg/L  | 4.400E-06  | 0.0154   | 0.200 | 0.436   | 0.437   | 0.197    | 0.170 to 0.230     | 120   | 70.0 to 130 | 0.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.0         |
| BB13190 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.0984  | 0.103   | 0.0998   | 0.0850 to 0.115    | 98.2  | 70.0 to 130 | 4.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0         |
| BB13190 | Magnesium, Total       | mg/L  | 0.0146     | 0.0462   | 5.00  | 78.6    | 78.8    | 5.02     | 4.25 to 5.75       | 46.0  | 70.0 to 130 | 0.254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.0         |
| 3B13190 | Sodium, Total          | mg/L  | 0.00987    | 0.0660   | 5.00  | 68.8    | 68.5    | 4.98     | 4.25 to 5.75       | 64.0  | 70.0 to 130 | 0.437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.0         |
| 3B13190 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.111   | 0.114   | 0.101    | 0.0850 to 0.115    | 97.9  | 70.0 to 130 | 2.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0         |
| 3B13190 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.73    | 1.74    | 0.100    | 0.0850 to 0.115    | 100   | 70.0 to 130 | 0.576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.0         |
| 3B13190 | Boron, Total           | mg/L  | 0.00843    | 0.0650   | 1.00  | 1.22    | 1.22    | 0.982    | 0.850 to 1.15      | 102   | 70.0 to 130 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0         |
| BB13189 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334     | 335     | 4.97     | 4.25 to 5.75       | 80.0  | 70.0 to 130 | 0.299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.0         |
| 3B13190 | Iron, Total            | mg/L  | 0.00365    | 0.0176   | 0.2   | 8.54    | 8.58    | 0.201    | 0.170 to 0.230     | -65.0 | 70.0 to 130 | 0.467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.0         |
| 3B13190 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.122   | 0.122   | 0.0990   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0         |
| 3B13190 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.3    | 16.2    | 10.5     | 8.50 to 11.5       | 105   | 70.0 to 130 | 0.615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.0         |
| 3B13190 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.00388 | 0.00388 | 0.00389  | 0.00340 to 0.00460 | 97.0  | 70.0 to 130 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0         |
| 3B13190 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.0928  | 0.0941  | 0.0982   | 0.0850 to 0.115    | 92.7  | 70.0 to 130 | 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0         |
| 3B13190 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.103   | 0.106   | 0.110    | 0.0850 to 0.115    | 103   | 70.0 to 130 | 2.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0         |
| 3B13191 | Manganese, Dissolved   | mg/L  | 0.0000146  | 0.000147 | 0.100 | 3.05    | 3.03    | 0.108    | 0.0850 to 0.115    | 10.0  | 70.0 to 130 | 0.658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.0         |
| 3B13190 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0961  | 0.0967  | 0.0988   | 0.0850 to 0.115    | 96.0  | 70.0 to 130 | 0.622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.0         |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

7/20/21 09:13

**Customer ID:** 

**Delivery Date:** 

7/21/21 09:49

Description: Gorgas Landfill - MW-13

Laboratory ID Number: BB13181

|   |         |                            |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| E | BB13190 | Sulfate                    | mg/L  | -0.437 | 1.00  | 1000  | 1680 | 667       | 19.0     | 18.0 to 22.0 | 102  | 80.0 to 120 | 0.300 | 20.0          |
| E | BB13190 | Chloride                   | mg/L  | -0.107 | 1.00  | 10.0  | 13.3 | 3.46      | 9.89     | 9.00 to 11.0 | 96.6 | 80.0 to 120 | 5.07  | 20.0          |
| E | BB13190 | Solids, Dissolved          | mg/L  | -2.00  | 25.0  |       |      | 1060      | 55.0     | 40.0 to 60.0 |      |             | 0.935 | 5.00          |
| E | BB13190 | Fluoride                   | mg/L  | 0.0205 | 0.100 | 2.50  | 2.84 | 0.286     | 2.59     | 2.25 to 2.75 | 103  | 80.0 to 120 | 6.50  | 20.0          |
| E | BB13333 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 163       | 53.4     | 45.0 to 55.0 |      |             | 0.612 | 10.0          |
|   |         |                            |       |        |       |       |      |           |          |              |      |             |       |               |

## Certificate Of Analysis



Description: Gorgas Landfill - MW-14Location Code:WMWGORLFCollected:7/20/21 10:16

Customer ID:

Laboratory ID Number: BB13182 Submittal Date: 7/21/21 09:49

| Name                                  | Prepared      | Analyzed     | Vio Spec D | DF   | Results      | Units        | MDL      | RL         | Q |
|---------------------------------------|---------------|--------------|------------|------|--------------|--------------|----------|------------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: ABB     |            |      | Preparati    | on Method: E | PA 1638  |            |   |
| * Boron, Total                        | 7/21/21 13:33 | 7/22/21 19:1 | 1 1.0      | .015 | 0.0485       | mg/L         | 0.030000 | 0.1015     | J |
| * Calcium, Total                      | 7/28/21 08:00 | 7/28/21 13:3 | 7 10       | 0.15 | 316          | mg/L         | 0.70035  | 4.06       |   |
| * Iron, Total                         | 7/21/21 13:33 | 7/22/21 19:1 | 1 1.0      | .015 | 1.33         | mg/L         | 0.008120 | 0.0406     |   |
| * Lithium, Total                      | 7/21/21 13:33 | 7/22/21 19:1 | 1 1.0      | .015 | 0.0376       | mg/L         | 0.007105 | 0.01999956 |   |
| * Magnesium, Total                    | 7/21/21 13:33 | 7/27/21 15:4 | 8 10       | 0.15 | 347          | mg/L         | 0.21315  | 4.06       |   |
| * Sodium, Total                       | 7/21/21 13:33 | 7/22/21 19:1 | 1 1.0      | .015 | 32.1         | mg/L         | 0.03045  | 0.406      |   |
| Analytical Method: EPA 200.7          | Anal          | yst: ABB     |            |      |              |              |          |            |   |
| * Iron, Dissolved                     | 7/28/21 09:25 | 7/28/21 10:3 | 3 1.0      | .015 | 1.23         | mg/L         | 0.008120 | 0.0406     |   |
| Analytical Method: EPA 200.8          | Anal          | yst: ABB     |            |      | Preparati    | on Method: E | PA 1638  |            |   |
| * Antimony, Total                     | 7/23/21 13:00 | 7/26/21 14:0 | 0 1.0      | .015 | Not Detected | mg/L         | 0.000508 | 0.001015   | U |
| * Arsenic, Total                      | 7/23/21 13:00 | 7/26/21 14:0 | 0 1.0      | .015 | 0.000783     | mg/L         | 0.000068 | 0.000203   |   |
| * Barium, Total                       | 7/23/21 13:00 | 7/26/21 14:0 | 0 1.0      | .015 | 0.0116       | mg/L         | 0.000102 | 0.000203   |   |
| * Beryllium, Total                    | 7/23/21 13:00 | 7/26/21 14:0 | 0 1.0      | .015 | Not Detected | mg/L         | 0.000406 | 0.001015   | U |
| * Cadmium, Total                      | 7/23/21 13:00 | 7/26/21 14:0 | 0 1.0      | .015 | Not Detected | mg/L         | 0.000068 | 0.000203   | U |
| * Chromium, Total                     | 7/23/21 13:00 | 7/26/21 14:0 | 0 1.0      | .015 | Not Detected | mg/L         | 0.000203 | 0.001015   | U |
| * Cobalt, Total                       | 7/23/21 13:00 | 7/26/21 14:0 | 0 1.0      | .015 | 0.00847      | mg/L         | 0.000068 | 0.000203   |   |
| * Lead, Total                         | 7/23/21 13:00 | 7/26/21 14:0 | 0 1.0      | .015 | Not Detected | mg/L         | 0.000068 | 0.000203   | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 7/23/21 13:00 | 7/26/21 14:0 | 0 1.0      | .015 | 0.000280     | mg/L         | 0.000068 | 0.000203   |   |
| * Potassium, Total                    | 7/23/21 13:00 | 7/26/21 14:0 | 0 1.0      | .015 | 8.53         | mg/L         | 0.169505 | 0.5075     |   |
| * Manganese, Total                    | 7/23/21 13:00 | 7/26/21 22:3 | 8 5.0      | .075 | 2.30         | mg/L         | 0.000340 | 0.001015   |   |
| * Selenium, Total                     | 7/23/21 13:00 | 7/26/21 14:0 | 0 1.0      | .015 | Not Detected | mg/L         | 0.000508 | 0.001015   | U |
| * Thallium, Total                     | 7/23/21 13:00 | 7/26/21 14:0 | 0 1.0      | .015 | Not Detected | mg/L         | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |            |      |              |              |          |            |   |
| * Manganese, Dissolved                | 7/23/21 13:21 | 7/26/21 21:2 | .7 5.0     | .075 | 2.23         | mg/L         | 0.000340 | 0.001015   |   |
| Analytical Method: EPA 245.1          | Anal          | yst: ABB     |            |      |              |              |          |            |   |
| * Mercury, Total by CVAA              | 7/22/21 15:11 | 7/22/21 19:2 | 1 1        |      | Not Detected | mg/L         | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B          | Anal          | yst: JAG     |            |      |              |              |          |            |   |
| Alkalinity, Total as CaCO3            | 7/30/21 10:55 | 7/30/21 11:5 | 8 1        |      | 244          | mg/L         |          | 0.1        |   |
| Analytical Method: SM 2540C           |               | yst: CNJ     |            |      |              | -            |          |            |   |
| * Solids, Dissolved                   | 7/22/21 12:06 | •            | ) 1        |      | 2990         | mg/L         |          | 147.1      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

### Certificate Of Analysis



Description: Gorgas Landfill - MW-14

Location Code:

WMWGORLF

Collected: Customer ID:

Customer ID: Submittal Date: 7/20/21 10:16

7/21/21 09:49

Laboratory ID Number: BB13182

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |          |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 7/30/21 10:55 | 7/30/21 11:  | 58       | 1  | 244     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 7/30/21 10:55 | 7/30/21 11:  | 58       | 1  | 0.08    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Chloride                            | 7/26/21 10:20 | 7/26/21 10:2 | 20       | 1  | 3.65    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Fluoride                            | 7/26/21 13:24 | 7/26/21 13:2 | 24       | 1  | 0.276   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Sulfate                             | 7/23/21 13:29 | 7/23/21 13:2 | 29       | 80 | 1830    | mg/L  | 40.00 | 80  |    |
| Analytical Method: Field Measurements | Ana           | lyst: DKG    |          |    |         |       |       |     |    |
| Conductivity                          | 7/20/21 10:12 | 7/20/21 10:  | 12       |    | 2964.18 | uS/cm |       |     | FA |
| рН                                    | 7/20/21 10:12 | 7/20/21 10:  | 12       |    | 6.38    | SU    |       |     | FA |
| Temperature                           | 7/20/21 10:12 | 7/20/21 10:  | 12       |    | 20.10   | С     |       |     | FA |
| Turbidity                             | 7/20/21 10:12 | 7/20/21 10:  | 12       |    | 2.44    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 7/20/21 10:16

Customer ID:

**Delivery Date:** 7/21/21 09:49

Description: Gorgas Landfill - MW-14

Laboratory ID Number: BB13182

|         |                        |       |            | MB       |       |         |         |          | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| BB13190 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.0963  | 0.0976  | 0.103    | 0.0850 to 0.115    | 95.3  | 70.0 to 130 | 1.34  | 20.0          |
| BB13190 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.73    | 1.74    | 0.100    | 0.0850 to 0.115    | 100   | 70.0 to 130 | 0.576 | 20.0          |
| BB13190 | Boron, Total           | mg/L  | 0.00843    | 0.0650   | 1.00  | 1.22    | 1.22    | 0.982    | 0.850 to 1.15      | 102   | 70.0 to 130 | 0.00  | 20.0          |
| BB13189 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334     | 335     | 4.97     | 4.25 to 5.75       | 80.0  | 70.0 to 130 | 0.299 | 20.0          |
| BB13190 | Iron, Total            | mg/L  | 0.00365    | 0.0176   | 0.2   | 8.54    | 8.58    | 0.201    | 0.170 to 0.230     | -65.0 | 70.0 to 130 | 0.467 | 20.0          |
| BB13190 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0990  | 0.0993  | 0.0929   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 0.303 | 20.0          |
| BB13190 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.108   | 0.109   | 0.112    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 0.922 | 20.0          |
| BB13190 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.107   | 0.109   | 0.106    | 0.0850 to 0.115    | 106   | 70.0 to 130 | 1.85  | 20.0          |
| BB13191 | Iron, Dissolved        | mg/L  | -0.000913  | 0.0176   | 0.2   | 2.15    | 2.11    | 0.197    | 0.170 to 0.230     | 95.0  | 70.0 to 130 | 1.88  | 20.0          |
| BB13190 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0902  | 0.0876  | 0.0932   | 0.0850 to 0.115    | 89.2  | 70.0 to 130 | 2.92  | 20.0          |
| BB13190 | Sodium, Total          | mg/L  | 0.00987    | 0.0660   | 5.00  | 68.8    | 68.5    | 4.98     | 4.25 to 5.75       | 64.0  | 70.0 to 130 | 0.437 | 20.0          |
| BB13190 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.111   | 0.114   | 0.101    | 0.0850 to 0.115    | 97.9  | 70.0 to 130 | 2.67  | 20.0          |
| BB13190 | Lithium, Total         | mg/L  | 4.400E-06  | 0.0154   | 0.200 | 0.436   | 0.437   | 0.197    | 0.170 to 0.230     | 120   | 70.0 to 130 | 0.229 | 20.0          |
| BB13190 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.0984  | 0.103   | 0.0998   | 0.0850 to 0.115    | 98.2  | 70.0 to 130 | 4.57  | 20.0          |
| BB13190 | Magnesium, Total       | mg/L  | 0.0146     | 0.0462   | 5.00  | 78.6    | 78.8    | 5.02     | 4.25 to 5.75       | 46.0  | 70.0 to 130 | 0.254 | 20.0          |
| BB13190 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.0928  | 0.0941  | 0.0982   | 0.0850 to 0.115    | 92.7  | 70.0 to 130 | 1.39  | 20.0          |
| BB13190 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.103   | 0.106   | 0.110    | 0.0850 to 0.115    | 103   | 70.0 to 130 | 2.87  | 20.0          |
| BB13191 | Manganese, Dissolved   | mg/L  | 0.0000146  | 0.000147 | 0.100 | 3.05    | 3.03    | 0.108    | 0.0850 to 0.115    | 10.0  | 70.0 to 130 | 0.658 | 20.0          |
| BB13190 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0961  | 0.0967  | 0.0988   | 0.0850 to 0.115    | 96.0  | 70.0 to 130 | 0.622 | 20.0          |
| BB13190 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.122   | 0.122   | 0.0990   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.00  | 20.0          |
| BB13190 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.3    | 16.2    | 10.5     | 8.50 to 11.5       | 105   | 70.0 to 130 | 0.615 | 20.0          |
| BB13190 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.00388 | 0.00388 | 0.00389  | 0.00340 to 0.00460 | 97.0  | 70.0 to 130 | 0.00  | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

7/20/21 10:16

**Customer ID:** 

**Delivery Date:** 

7/21/21 09:49

Description: Gorgas Landfill - MW-14

Laboratory ID Number: BB13182

|   |         |                            |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| Е | 3B13190 | Sulfate                    | mg/L  | -0.437 | 1.00  | 1000  | 1680 | 667       | 19.0     | 18.0 to 22.0 | 102  | 80.0 to 120 | 0.300 | 20.0          |
| Е | 3B13333 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 163       | 53.4     | 45.0 to 55.0 |      |             | 0.612 | 10.0          |
| Е | 3B13190 | Fluoride                   | mg/L  | 0.0205 | 0.100 | 2.50  | 2.84 | 0.286     | 2.59     | 2.25 to 2.75 | 103  | 80.0 to 120 | 6.50  | 20.0          |
| Е | 3B13190 | Chloride                   | mg/L  | -0.107 | 1.00  | 10.0  | 13.3 | 3.46      | 9.89     | 9.00 to 11.0 | 96.6 | 80.0 to 120 | 5.07  | 20.0          |
| Е | 3B13190 | Solids, Dissolved          | mg/L  | -2.00  | 25.0  |       |      | 1060      | 55.0     | 40.0 to 60.0 |      |             | 0.935 | 5.00          |
|   |         |                            |       |        |       |       |      |           |          |              |      |             |       |               |

# Certificate Of Analysis



Description: Gorgas Landfill - MW-15Location Code:WMWGORLFCollected:7/20/21 11:25

Customer ID:

**Submittal Date:** 7/21/21 09:49

Laboratory ID Number: BB13183

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units          | MDL      | RL         | Q |
|------------------------------|---------------|--------------|-------------|--------------|----------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             | Preparat     | ion Method: EF | PA 1638  |            |   |
| * Boron, Total               | 7/21/21 13:33 | 7/22/21 19:  | 1.015       | 0.0514       | mg/L           | 0.030000 | 0.1015     | J |
| * Calcium, Total             | 7/28/21 08:00 | 7/28/21 13:4 | 40 10.15    | 274          | mg/L           | 0.70035  | 4.06       |   |
| * Iron, Total                | 7/21/21 13:33 | 7/27/21 15:  | 52 10.15    | 17.8         | mg/L           | 0.08120  | 0.406      |   |
| * Lithium, Total             | 7/21/21 13:33 | 7/22/21 19:  | 1.015       | 0.0661       | mg/L           | 0.007105 | 0.01999956 | , |
| * Magnesium, Total           | 7/21/21 13:33 | 7/27/21 15:  | 52 10.15    | 288          | mg/L           | 0.21315  | 4.06       |   |
| * Sodium, Total              | 7/21/21 13:33 | 7/22/21 19:  | 1.015       | 30.8         | mg/L           | 0.03045  | 0.406      |   |
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             |              |                |          |            |   |
| * Iron, Dissolved            | 7/28/21 09:25 | 7/28/21 12:  | 54 10.15    | 18.7         | mg/L           | 0.08120  | 0.406      |   |
| Analytical Method: EPA 200.8 | Anal          | yst: ABB     |             | Preparati    | ion Method: EF | PA 1638  |            |   |
| * Antimony, Total            | 7/23/21 13:00 | 7/26/21 14:0 | 04 1.015    | Not Detected | mg/L           | 0.000508 | 0.001015   | U |
| * Arsenic, Total             | 7/23/21 13:00 | 7/26/21 14:0 | 04 1.015    | 0.000286     | mg/L           | 0.000068 | 0.000203   |   |
| * Barium, Total              | 7/23/21 13:00 | 7/26/21 14:0 | 04 1.015    | 0.0118       | mg/L           | 0.000102 | 0.000203   |   |
| * Beryllium, Total           | 7/23/21 13:00 | 7/26/21 14:0 | 04 1.015    | Not Detected | mg/L           | 0.000406 | 0.001015   | U |
| * Cadmium, Total             | 7/23/21 13:00 | 7/26/21 14:0 | 04 1.015    | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Chromium, Total            | 7/23/21 13:00 | 7/26/21 14:0 | 04 1.015    | Not Detected | mg/L           | 0.000203 | 0.001015   | U |
| * Cobalt, Total              | 7/23/21 13:00 | 7/26/21 14:0 | 04 1.015    | 0.0721       | mg/L           | 0.000068 | 0.000203   |   |
| * Lead, Total                | 7/23/21 13:00 | 7/26/21 14:0 | 04 1.015    | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Molybdenum, Total          | 7/23/21 13:00 | 7/26/21 14:0 | 04 1.015    | 0.0000691    | mg/L           | 0.000068 | 0.000203   | J |
| * Potassium, Total           | 7/23/21 13:00 | 7/26/21 14:0 | 04 1.015    | 5.61         | mg/L           | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 7/23/21 13:00 | 7/26/21 22:4 | 92.365      | 14.1         | mg/L           | 0.006188 | 0.018473   |   |
| * Selenium, Total            | 7/23/21 13:00 | 7/26/21 14:0 | 04 1.015    | Not Detected | mg/L           | 0.000508 | 0.001015   | U |
| * Thallium, Total            | 7/23/21 13:00 | 7/26/21 14:0 | 04 1.015    | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             |              |                |          |            |   |
| * Manganese, Dissolved       | 7/23/21 13:21 | 7/26/21 21:  | 31 92.365   | 14.0         | mg/L           | 0.006188 | 0.018473   |   |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB     |             |              |                |          |            |   |
| * Mercury, Total by CVAA     | 7/22/21 15:11 | -            | 25 1        | Not Detected | mg/L           | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B | Anai          | yst: JAG     |             |              |                |          |            |   |
| Alkalinity, Total as CaCO3   | 7/30/21 10:55 | -            | 58 1        | 182          | mg/L           |          | 0.1        |   |
| Analytical Method: SM 2540C  |               | lyst: CNJ    |             |              | -              |          |            |   |
| * Solids, Dissolved          | 7/22/21 12:06 | -            | 0 1         | 2600         | mg/L           |          | 125        |   |

MDL's and RL's are adjusted for sample dilution, as applicable

### Certificate Of Analysis



**Description:** Gorgas Landfill - MW-15

Location Code: Collected:

WMWGORLF 7/20/21 11:25

Customer ID:

Submittal Date:

7/21/21 09:49

| ults Units MDL RL Q |
|---------------------|
| mg/L                |
| mg/L                |
| =                   |
| 3 mg/L              |
|                     |
| 6 mg/L 0.50 1       |
|                     |
| 88 mg/L 0.06 0.1    |
|                     |
| 0 mg/L 25.00 50     |
|                     |
| 7.77 uS/cm FA       |
| 3 SU FA             |
| 18 C FA             |
| 1 NTU FA            |
| 6<br>88<br>90<br>7. |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 7/20/21 11:25

Customer ID:
Delivery Date: 7/21/21 09:49

Description: Gorgas Landfill - MW-15

Laboratory ID Number: BB13183

|         |                        |       |            | MB       |       |         |         |          | Standard           |       | Rec         |       | Pred         |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------|--------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mi |
| BB13190 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.107   | 0.109   | 0.106    | 0.0850 to 0.115    | 106   | 70.0 to 130 | 1.85  | 20.0         |
| 3B13191 | Iron, Dissolved        | mg/L  | -0.000913  | 0.0176   | 0.2   | 2.15    | 2.11    | 0.197    | 0.170 to 0.230     | 95.0  | 70.0 to 130 | 1.88  | 20.0         |
| 3B13190 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0902  | 0.0876  | 0.0932   | 0.0850 to 0.115    | 89.2  | 70.0 to 130 | 2.92  | 20.0         |
| 3B13190 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.0963  | 0.0976  | 0.103    | 0.0850 to 0.115    | 95.3  | 70.0 to 130 | 1.34  | 20.0         |
| 3B13190 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0990  | 0.0993  | 0.0929   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 0.303 | 20.0         |
| 3B13190 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.108   | 0.109   | 0.112    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 0.922 | 20.0         |
| 3B13190 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.122   | 0.122   | 0.0990   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.00  | 20.0         |
| 3B13190 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.3    | 16.2    | 10.5     | 8.50 to 11.5       | 105   | 70.0 to 130 | 0.615 | 20.0         |
| BB13190 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.00388 | 0.00388 | 0.00389  | 0.00340 to 0.00460 | 97.0  | 70.0 to 130 | 0.00  | 20.0         |
| 3B13190 | Lithium, Total         | mg/L  | 4.400E-06  | 0.0154   | 0.200 | 0.436   | 0.437   | 0.197    | 0.170 to 0.230     | 120   | 70.0 to 130 | 0.229 | 20.0         |
| 3B13190 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.0984  | 0.103   | 0.0998   | 0.0850 to 0.115    | 98.2  | 70.0 to 130 | 4.57  | 20.0         |
| 3B13190 | Magnesium, Total       | mg/L  | 0.0146     | 0.0462   | 5.00  | 78.6    | 78.8    | 5.02     | 4.25 to 5.75       | 46.0  | 70.0 to 130 | 0.254 | 20.0         |
| 3B13190 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.73    | 1.74    | 0.100    | 0.0850 to 0.115    | 100   | 70.0 to 130 | 0.576 | 20.0         |
| 3B13190 | Boron, Total           | mg/L  | 0.00843    | 0.0650   | 1.00  | 1.22    | 1.22    | 0.982    | 0.850 to 1.15      | 102   | 70.0 to 130 | 0.00  | 20.0         |
| BB13189 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334     | 335     | 4.97     | 4.25 to 5.75       | 80.0  | 70.0 to 130 | 0.299 | 20.0         |
| BB13190 | Iron, Total            | mg/L  | 0.00365    | 0.0176   | 0.2   | 8.54    | 8.58    | 0.201    | 0.170 to 0.230     | -65.0 | 70.0 to 130 | 0.467 | 20.0         |
| 3B13190 | Sodium, Total          | mg/L  | 0.00987    | 0.0660   | 5.00  | 68.8    | 68.5    | 4.98     | 4.25 to 5.75       | 64.0  | 70.0 to 130 | 0.437 | 20.0         |
| 3B13190 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.111   | 0.114   | 0.101    | 0.0850 to 0.115    | 97.9  | 70.0 to 130 | 2.67  | 20.0         |
| 3B13190 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.0928  | 0.0941  | 0.0982   | 0.0850 to 0.115    | 92.7  | 70.0 to 130 | 1.39  | 20.0         |
| 3B13190 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.103   | 0.106   | 0.110    | 0.0850 to 0.115    | 103   | 70.0 to 130 | 2.87  | 20.0         |
| 3B13191 | Manganese, Dissolved   | mg/L  | 0.0000146  | 0.000147 | 0.100 | 3.05    | 3.03    | 0.108    | 0.0850 to 0.115    | 10.0  | 70.0 to 130 | 0.658 | 20.0         |
| 3B13190 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0961  | 0.0967  | 0.0988   | 0.0850 to 0.115    | 96.0  | 70.0 to 130 | 0.622 | 20.0         |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date: 7/2

7/20/21 11:25

**Customer ID:** 

Delivery Date:

7/21/21 09:49

Description: Gorgas Landfill - MW-15

Laboratory ID Number: BB13183

|   |         |                            |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec         |       | Prec  |
|---|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-------------|-------|-------|
|   | Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | Limit |
| Е | 3B13190 | Sulfate                    | mg/L  | -0.437 | 1.00  | 1000  | 1680 | 667       | 19.0     | 18.0 to 22.0 | 102  | 80.0 to 120 | 0.300 | 20.0  |
| E | 3B13190 | Chloride                   | mg/L  | -0.107 | 1.00  | 10.0  | 13.3 | 3.46      | 9.89     | 9.00 to 11.0 | 96.6 | 80.0 to 120 | 5.07  | 20.0  |
| E | 3B13190 | Solids, Dissolved          | mg/L  | -2.00  | 25.0  |       |      | 1060      | 55.0     | 40.0 to 60.0 |      |             | 0.935 | 5.00  |
| Е | 3B13190 | Fluoride                   | mg/L  | 0.0205 | 0.100 | 2.50  | 2.84 | 0.286     | 2.59     | 2.25 to 2.75 | 103  | 80.0 to 120 | 6.50  | 20.0  |
| Е | 3B13333 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 163       | 53.4     | 45.0 to 55.0 |      |             | 0.612 | 10.0  |
|   |         |                            |       |        |       |       |      |           |          |              |      |             |       |       |

# Certificate Of Analysis



Description: Gorgas Landfill - MW-12VLocation Code:WMWGORLFCollected:7/20/21 12:32

Customer ID:

**Submittal Date:** 7/21/21 09:49

| Laboratory ID Number: BB13184 |               |              |             |            |                    |          |            |   |
|-------------------------------|---------------|--------------|-------------|------------|--------------------|----------|------------|---|
| Name                          | Prepared      | Analyzed     | Vio Spec DF | Results    | Units              | MDL      | RL         | Q |
| Analytical Method: EPA 200.7  | Analy         | st: ABB      |             | Pre        | paration Method: E | PA 1638  |            |   |
| * Boron, Total                | 7/21/21 13:33 | 7/22/21 19:1 | 8 1.01      | 5 0.149    | mg/L               | 0.030000 | 0.1015     |   |
| * Calcium, Total              | 7/28/21 08:00 | 7/28/21 13:4 | 4 10.1      | 5 283      | mg/L               | 0.70035  | 4.06       |   |
| * Iron, Total                 | 7/21/21 13:33 | 7/22/21 19:1 | 8 1.01      | 5 3.78     | mg/L               | 0.008120 | 0.0406     |   |
| * Lithium, Total              | 7/21/21 13:33 | 7/22/21 19:1 | 8 1.01      | 5 0.330    | mg/L               | 0.007105 | 0.01999956 | 6 |
| * Magnesium, Total            | 7/21/21 13:33 | 7/27/21 15:5 | 5 10.1      | 5 186      | mg/L               | 0.21315  | 4.06       |   |
| * Sodium, Total               | 7/21/21 13:33 | 7/27/21 15:5 | 5 10.1      | 5 124      | mg/L               | 0.3045   | 4.06       |   |
| Analytical Method: EPA 200.7  | Analy         | st: ABB      |             |            |                    |          |            |   |
| * Iron, Dissolved             | 7/28/21 09:25 | 7/28/21 10:4 | 0 1.01      | 5 3.65     | mg/L               | 0.008120 | 0.0406     |   |
| Analytical Method: EPA 200.8  | Analy         | st: ABB      |             | Pre        | paration Method: E | PA 1638  |            |   |
| * Antimony, Total             | 7/23/21 13:00 | 7/26/21 14:0 | 7 1.01      | 5 Not Dete | cted mg/L          | 0.000508 | 0.001015   | U |
| * Arsenic, Total              | 7/23/21 13:00 | 7/26/21 14:0 | 7 1.01      | 5 0.00573  | mg/L               | 0.000068 | 0.000203   |   |
| * Barium, Total               | 7/23/21 13:00 | 7/26/21 14:0 | 7 1.01      | 5 0.0186   | mg/L               | 0.000102 | 0.000203   |   |
| * Beryllium, Total            | 7/23/21 13:00 | 7/26/21 14:0 | 7 1.01      | 5 Not Dete | cted mg/L          | 0.000406 | 0.001015   | U |
| * Cadmium, Total              | 7/23/21 13:00 | 7/26/21 14:0 | 7 1.01      | 5 Not Dete | cted mg/L          | 0.000068 | 0.000203   | U |
| * Chromium, Total             | 7/23/21 13:00 | 7/26/21 14:0 | 7 1.01      | 5 Not Dete | cted mg/L          | 0.000203 | 0.001015   | U |
| * Cobalt, Total               | 7/23/21 13:00 | 7/26/21 14:0 | 7 1.01      | 5 0.000181 | mg/L               | 0.000068 | 0.000203   | J |
| * Lead, Total                 | 7/23/21 13:00 | 7/26/21 14:0 | 7 1.01      | 5 Not Dete | cted mg/L          | 0.000068 | 0.000203   | U |
| * Molybdenum, Total           | 7/23/21 13:00 | 7/26/21 14:0 | 7 1.01      | 5 0.00188  | mg/L               | 0.000068 | 0.000203   |   |
| * Potassium, Total            | 7/23/21 13:00 | 7/26/21 14:0 | 7 1.01      | 5 7.21     | mg/L               | 0.169505 | 0.5075     |   |
| * Manganese, Total            | 7/23/21 13:00 | 7/26/21 14:0 | 7 1.01      | 5 0.491    | mg/L               | 0.000068 | 0.000203   |   |
| * Selenium, Total             | 7/23/21 13:00 | 7/26/21 14:0 | 7 1.01      | 5 Not Dete | cted mg/L          | 0.000508 | 0.001015   | U |
| * Thallium, Total             | 7/23/21 13:00 | 7/26/21 14:0 | 7 1.01      | 5 Not Dete | cted mg/L          | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8  | Analy         | st: DLJ      |             |            |                    |          |            |   |
| * Manganese, Dissolved        | 7/23/21 13:21 | 7/26/21 12:2 | 1.01        | 5 0.499    | mg/L               | 0.000068 | 0.000203   |   |
| Analytical Method: EPA 245.1  |               | st: ABB      |             |            |                    |          |            |   |
| Mercury, Total by CVAA        | 7/22/21 15:11 | 7/22/21 19:2 | 9 1         | Not Dete   | cted mg/L          | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B  | Analy         | st: JAG      |             |            |                    |          |            |   |
| Alkalinity, Total as CaCO3    | 7/30/21 10:55 | 7/30/21 11:5 | 8 1         | 293        | mg/L               |          | 0.1        |   |
| Analytical Method: SM 2540C   | Analy         | st: CNJ      |             |            |                    |          |            |   |
| * Solids, Dissolved           | 7/22/21 12:06 |              | 1           | 2190       | mg/L               |          | 125        |   |

MDL's and RL's are adjusted for sample dilution, as applicable

### Certificate Of Analysis



**Description:** Gorgas Landfill - MW-12V

Location Code: Collected:

WMWGORLF 7/20/21 12:32

Customer ID:

Submittal Date:

7/21/21 09:49

| Laboratory ID Number: BB13184         |               |            |             | Subr    | nittai Date: | 7/21/21 09 | :49 |    |
|---------------------------------------|---------------|------------|-------------|---------|--------------|------------|-----|----|
| Name                                  | Prepared      | Analyzed   | Vio Spec DF | Results | Units        | MDL        | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG  |             |         |              |            |     |    |
| Bicarbonate Alkalinity, (calc.)       | 7/30/21 10:55 | 7/30/21 11 | :58 1       | 293     | mg/L         |            |     |    |
| Carbonate Alkalinity, (calc.)         | 7/30/21 10:55 | 7/30/21 11 | :58 1       | 0.28    | mg/L         |            |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC  |             |         |              |            |     |    |
| * Chloride                            | 7/26/21 10:30 | 7/26/21 10 | :30 8       | 59.2    | mg/L         | 4.00       | 8   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC  |             |         |              |            |     |    |
| * Fluoride                            | 7/26/21 13:26 | 7/26/21 13 | :26 1       | 0.224   | mg/L         | 0.06       | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC  |             |         |              |            |     |    |
| * Sulfate                             | 7/23/21 13:31 | 7/23/21 13 | :31 40      | 1220    | mg/L         | 20.00      | 40  |    |
| Analytical Method: Field Measurements | Ana           | lyst: DKG  |             |         |              |            |     |    |
| Conductivity                          | 7/20/21 12:29 | 7/20/21 12 | :29         | 2516.11 | uS/cm        |            |     | FA |
| рН                                    | 7/20/21 12:29 | 7/20/21 12 | :29         | 6.84    | SU           |            |     | FA |
| Temperature                           | 7/20/21 12:29 | 7/20/21 12 | :29         | 22.91   | С            |            |     | FA |
| Turbidity                             | 7/20/21 12:29 | 7/20/21 12 | :29         | 1.48    | NTU          |            |     | FA |
|                                       |               |            |             |         |              |            |     |    |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 7/20/21 12:32

Customer ID:

**Delivery Date:** 7/21/21 09:49

Description: Gorgas Landfill - MW-12V

Laboratory ID Number: BB13184

|        |                        |       |            | MB       |       |         |         |          | Standard           |       | Rec         |       | Pred          |
|--------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------|---------------|
| Sample | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| B13190 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0990  | 0.0993  | 0.0929   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 0.303 | 20.0          |
| B13190 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.108   | 0.109   | 0.112    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 0.922 | 20.0          |
| B13190 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.0963  | 0.0976  | 0.103    | 0.0850 to 0.115    | 95.3  | 70.0 to 130 | 1.34  | 20.0          |
| B13190 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.107   | 0.109   | 0.106    | 0.0850 to 0.115    | 106   | 70.0 to 130 | 1.85  | 20.0          |
| B13191 | Iron, Dissolved        | mg/L  | -0.000913  | 0.0176   | 0.2   | 2.15    | 2.11    | 0.197    | 0.170 to 0.230     | 95.0  | 70.0 to 130 | 1.88  | 20.0          |
| B13190 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0902  | 0.0876  | 0.0932   | 0.0850 to 0.115    | 89.2  | 70.0 to 130 | 2.92  | 20.0          |
| B13190 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.0928  | 0.0941  | 0.0982   | 0.0850 to 0.115    | 92.7  | 70.0 to 130 | 1.39  | 20.0          |
| B13190 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.103   | 0.106   | 0.110    | 0.0850 to 0.115    | 103   | 70.0 to 130 | 2.87  | 20.0          |
| B13191 | Manganese, Dissolved   | mg/L  | 0.0000146  | 0.000147 | 0.100 | 3.05    | 3.03    | 0.108    | 0.0850 to 0.115    | 10.0  | 70.0 to 130 | 0.658 | 20.0          |
| B13190 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0961  | 0.0967  | 0.0988   | 0.0850 to 0.115    | 96.0  | 70.0 to 130 | 0.622 | 20.0          |
| B13190 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.73    | 1.74    | 0.100    | 0.0850 to 0.115    | 100   | 70.0 to 130 | 0.576 | 20.0          |
| B13190 | Boron, Total           | mg/L  | 0.00843    | 0.0650   | 1.00  | 1.22    | 1.22    | 0.982    | 0.850 to 1.15      | 102   | 70.0 to 130 | 0.00  | 20.0          |
| B13189 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334     | 335     | 4.97     | 4.25 to 5.75       | 80.0  | 70.0 to 130 | 0.299 | 20.0          |
| B13190 | Iron, Total            | mg/L  | 0.00365    | 0.0176   | 0.2   | 8.54    | 8.58    | 0.201    | 0.170 to 0.230     | -65.0 | 70.0 to 130 | 0.467 | 20.0          |
| B13190 | Sodium, Total          | mg/L  | 0.00987    | 0.0660   | 5.00  | 68.8    | 68.5    | 4.98     | 4.25 to 5.75       | 64.0  | 70.0 to 130 | 0.437 | 20.0          |
| B13190 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.111   | 0.114   | 0.101    | 0.0850 to 0.115    | 97.9  | 70.0 to 130 | 2.67  | 20.0          |
| B13190 | Lithium, Total         | mg/L  | 4.400E-06  | 0.0154   | 0.200 | 0.436   | 0.437   | 0.197    | 0.170 to 0.230     | 120   | 70.0 to 130 | 0.229 | 20.0          |
| B13190 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.0984  | 0.103   | 0.0998   | 0.0850 to 0.115    | 98.2  | 70.0 to 130 | 4.57  | 20.0          |
| B13190 | Magnesium, Total       | mg/L  | 0.0146     | 0.0462   | 5.00  | 78.6    | 78.8    | 5.02     | 4.25 to 5.75       | 46.0  | 70.0 to 130 | 0.254 | 20.0          |
| B13190 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.122   | 0.122   | 0.0990   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.00  | 20.0          |
| B13190 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.3    | 16.2    | 10.5     | 8.50 to 11.5       | 105   | 70.0 to 130 | 0.615 | 20.0          |
| B13190 | Mercury, Total by CVAA | ma/L  | 3.000E-05  | 0.000500 | 0.004 | 0.00388 | 0.00388 | 0.00389  | 0.00340 to 0.00460 | 97.0  | 70.0 to 130 | 0.00  | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

7/20/21 12:32

**Customer ID:** 

**Delivery Date:** 

7/21/21 09:49

Description: Gorgas Landfill - MW-12V

Laboratory ID Number: BB13184

|   |         |                            |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| E | BB13190 | Sulfate                    | mg/L  | -0.437 | 1.00  | 1000  | 1680 | 667       | 19.0     | 18.0 to 22.0 | 102  | 80.0 to 120 | 0.300 | 20.0          |
| E | BB13190 | Chloride                   | mg/L  | -0.107 | 1.00  | 10.0  | 13.3 | 3.46      | 9.89     | 9.00 to 11.0 | 96.6 | 80.0 to 120 | 5.07  | 20.0          |
| E | BB13190 | Solids, Dissolved          | mg/L  | -2.00  | 25.0  |       |      | 1060      | 55.0     | 40.0 to 60.0 |      |             | 0.935 | 5.00          |
| E | BB13190 | Fluoride                   | mg/L  | 0.0205 | 0.100 | 2.50  | 2.84 | 0.286     | 2.59     | 2.25 to 2.75 | 103  | 80.0 to 120 | 6.50  | 20.0          |
| E | BB13333 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 163       | 53.4     | 45.0 to 55.0 |      |             | 0.612 | 10.0          |
|   |         |                            |       |        |       |       |      |           |          |              |      |             |       |               |

## Certificate Of Analysis



Description: Gorgas Landfill - MW-6Location Code:WMWGORLFCollected:7/20/21 13:57

Customer ID:

Laboratory ID Number: BB13185 Submittal Date: 7/21/21 09:49

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF    | Results      | Units        | MDL      | RL         | Q |
|---------------------------------------|---------------|--------------|----------|-------|--------------|--------------|----------|------------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: ABB     |          |       | Preparati    | on Method: L | PA 1638  |            |   |
| * Boron, Total                        | 7/21/21 13:33 | 7/22/21 19:2 | 21 1     | .015  | 0.0608       | mg/L         | 0.030000 | 0.1015     | J |
| * Calcium, Total                      | 7/28/21 08:00 | 7/28/21 13:4 | 7 1      | 0.15  | 348          | mg/L         | 0.70035  | 4.06       |   |
| * Iron, Total                         | 7/21/21 13:33 | 7/27/21 15:5 | 59 1     | 0.15  | 23.8         | mg/L         | 0.08120  | 0.406      |   |
| * Lithium, Total                      | 7/21/21 13:33 | 7/22/21 19:2 | 21 1     | .015  | 0.180        | mg/L         | 0.007105 | 0.01999956 |   |
| * Magnesium, Total                    | 7/21/21 13:33 | 7/27/21 15:5 | 59 1     | 0.15  | 289          | mg/L         | 0.21315  | 4.06       |   |
| * Sodium, Total                       | 7/21/21 13:33 | 7/27/21 15:5 | 59 1     | 0.15  | 56.9         | mg/L         | 0.3045   | 4.06       |   |
| Analytical Method: EPA 200.7          | Anal          | yst: ABB     |          |       |              |              |          |            |   |
| * Iron, Dissolved                     | 7/28/21 09:25 | 7/28/21 12:5 | 57 1     | 0.15  | 23.5         | mg/L         | 0.08120  | 0.406      |   |
| Analytical Method: EPA 200.8          | Anal          | yst: ABB     |          |       | Preparati    | on Method: L | EPA 1638 |            |   |
| * Antimony, Total                     | 7/23/21 13:00 | 7/26/21 14:1 | 1 1      | .015  | Not Detected | mg/L         | 0.000508 | 0.001015   | U |
| * Arsenic, Total                      | 7/23/21 13:00 | 7/26/21 14:1 | 1 1      | .015  | 0.00475      | mg/L         | 0.000068 | 0.000203   |   |
| * Barium, Total                       | 7/23/21 13:00 | 7/26/21 14:1 | 1 1      | .015  | 0.0143       | mg/L         | 0.000102 | 0.000203   |   |
| * Beryllium, Total                    | 7/23/21 13:00 | 7/26/21 14:1 | 1 1      | .015  | 0.000480     | mg/L         | 0.000406 | 0.001015   | J |
| * Cadmium, Total                      | 7/23/21 13:00 | 7/26/21 14:1 | 1 1      | .015  | 0.000576     | mg/L         | 0.000068 | 0.000203   |   |
| * Chromium, Total                     | 7/23/21 13:00 | 7/26/21 14:1 | 1 1      | .015  | Not Detected | mg/L         | 0.000203 | 0.001015   | U |
| * Cobalt, Total                       | 7/23/21 13:00 | 7/26/21 14:1 | 1 1      | .015  | 0.216        | mg/L         | 0.000068 | 0.000203   |   |
| * Lead, Total                         | 7/23/21 13:00 | 7/26/21 14:1 | 1 1      | .015  | Not Detected | mg/L         | 0.000068 | 0.000203   | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 7/23/21 13:00 | 7/26/21 14:1 | 1 1      | .015  | 0.0000715    | mg/L         | 0.000068 | 0.000203   | J |
| * Potassium, Total                    | 7/23/21 13:00 | 7/26/21 14:1 | 1 1      | .015  | 6.50         | mg/L         | 0.169505 | 0.5075     |   |
| * Manganese, Total                    | 7/23/21 13:00 | 7/26/21 22:4 | 6 9      | 2.365 | 24.8         | mg/L         | 0.006188 | 0.018473   |   |
| * Selenium, Total                     | 7/23/21 13:00 | 7/26/21 14:1 | 1 1      | .015  | Not Detected | mg/L         | 0.000508 | 0.001015   | U |
| * Thallium, Total                     | 7/23/21 13:00 | 7/26/21 14:1 | 1 1      | .015  | Not Detected | mg/L         | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |          |       |              |              |          |            |   |
| * Manganese, Dissolved                | 7/23/21 13:21 | 7/26/21 21:3 | 34 9     | 2.365 | 26.0         | mg/L         | 0.006188 | 0.018473   |   |
| Analytical Method: EPA 245.1          | Anal          | yst: ABB     |          |       |              |              |          |            |   |
| Mercury, Total by CVAA                | 7/22/21 15:11 |              | 3 1      |       | Not Detected | mg/L         | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B          |               | yst: JAG     |          |       |              |              |          |            |   |
| Alkalinity, Total as CaCO3            | 7/30/21 10:55 |              | 58 1     |       | 134          | mg/L         |          | 0.1        |   |
| Analytical Method: SM 2540C           |               | yst: CNJ     |          |       |              |              |          |            |   |
| * Solids, Dissolved                   | 7/22/21 12:06 | •            | ) 1      |       | 3090         | mg/L         |          | 147.1      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

### Certificate Of Analysis



Description: Gorgas Landfill - MW-6

**Location Code:** 

WMWGORLF

Collected:

Customer ID: Submittal Date: 7/20/21 13:57

7/21/21 09:49

Laboratory ID Number: BB13185

| Prepared      | Analyzed                                                                                                                        | Vio Spec                                                                                                                                                                                                                                                                                             | DF                                                                                                                                                                                                                                                                              | Results                                                                                                                                                                                                                                                                                     | Units                                                                                                                                                                                                                                                                                                                                                                | MDL                                                                                                                                                                                                                                                                                                                                                                                                      | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q                               |
|---------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Ana           | lyst: JAG                                                                                                                       |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
| 7/30/21 10:55 | 7/30/21 11:                                                                                                                     | 58                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                               | 134                                                                                                                                                                                                                                                                                         | mg/L                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
| 7/30/21 10:55 | 7/30/21 11:                                                                                                                     | 58                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
| Ana           | lyst: JCC                                                                                                                       |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
| 7/26/21 10:23 | 7/26/21 10:2                                                                                                                    | 23                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                               | 4.04                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                 | 0.50                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| Ana           | lyst: JCC                                                                                                                       |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
| 7/26/21 13:28 | 7/26/21 13:2                                                                                                                    | 28                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                               | 0.131                                                                                                                                                                                                                                                                                       | mg/L                                                                                                                                                                                                                                                                                                                                                                 | 0.06                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
| Ana           | lyst: JCC                                                                                                                       |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
| 7/23/21 13:36 | 7/23/21 13:3                                                                                                                    | 36                                                                                                                                                                                                                                                                                                   | 160                                                                                                                                                                                                                                                                             | 1930                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                 | 80.00                                                                                                                                                                                                                                                                                                                                                                                                    | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
| Ana           | lyst: DKG                                                                                                                       |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
| 7/20/21 13:54 | 7/20/21 13:                                                                                                                     | 54                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                 | 3020.13                                                                                                                                                                                                                                                                                     | uS/cm                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FA                              |
| 7/20/21 13:54 | 7/20/21 13:                                                                                                                     | 54                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                 | 5.99                                                                                                                                                                                                                                                                                        | SU                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FA                              |
| 7/20/21 13:54 | 7/20/21 13:                                                                                                                     | 54                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                 | 21.06                                                                                                                                                                                                                                                                                       | С                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FA                              |
| 7/20/21 13:54 | 7/20/21 13:                                                                                                                     | 54                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                 | 1.09                                                                                                                                                                                                                                                                                        | NTU                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FA                              |
|               | 7/30/21 10:55 7/30/21 10:55 7/30/21 10:55 Ana 7/26/21 10:23 Ana 7/26/21 13:28 Ana 7/23/21 13:36 Ana 7/20/21 13:54 7/20/21 13:54 | Analyst: JAG  7/30/21 10:55 7/30/21 11:5  7/30/21 10:55 7/30/21 11:5  Analyst: JCC  7/26/21 10:23 7/26/21 10:2  Analyst: JCC  7/26/21 13:28 7/26/21 13:2  Analyst: JCC  7/23/21 13:36 7/23/21 13:3  Analyst: DKG  7/20/21 13:54 7/20/21 13:5  7/20/21 13:54 7/20/21 13:5  7/20/21 13:54 7/20/21 13:5 | Analyst: JAG  7/30/21 10:55 7/30/21 11:58  7/30/21 10:55 7/30/21 11:58  Analyst: JCC  7/26/21 10:23 7/26/21 10:23  Analyst: JCC  7/26/21 13:28 7/26/21 13:28  Analyst: JCC  7/23/21 13:36 7/23/21 13:36  Analyst: DKG  7/20/21 13:54 7/20/21 13:54  7/20/21 13:54 7/20/21 13:54 | Analyst: JAG  7/30/21 10:55 7/30/21 11:58 1  7/30/21 10:55 7/30/21 11:58 1  Analyst: JCC  7/26/21 10:23 7/26/21 10:23 1  Analyst: JCC  7/26/21 13:28 7/26/21 13:28 1  Analyst: JCC  7/23/21 13:36 7/23/21 13:36 160  Analyst: DKG  7/20/21 13:54 7/20/21 13:54  7/20/21 13:54 7/20/21 13:54 | Analyst: JAG  7/30/21 10:55 7/30/21 11:58 1 134  7/30/21 10:55 7/30/21 11:58 1 0.01  Analyst: JCC  7/26/21 10:23 7/26/21 10:23 1 4.04  Analyst: JCC  7/26/21 13:28 7/26/21 13:28 1 0.131  Analyst: JCC  7/23/21 13:36 7/23/21 13:36 160 1930  Analyst: DKG  7/20/21 13:54 7/20/21 13:54 3020.13  7/20/21 13:54 7/20/21 13:54 5.99  7/20/21 13:54 7/20/21 13:54 21.06 | Analyst: JAG  7/30/21 10:55 7/30/21 11:58 1 134 mg/L  7/30/21 10:55 7/30/21 11:58 1 0.01 mg/L  Analyst: JCC  7/26/21 10:23 7/26/21 10:23 1 4.04 mg/L  Analyst: JCC  7/26/21 13:28 7/26/21 13:28 1 0.131 mg/L  Analyst: JCC  7/23/21 13:36 7/23/21 13:36 160 1930 mg/L  Analyst: DKG  7/20/21 13:54 7/20/21 13:54 3020.13 uS/cm  7/20/21 13:54 7/20/21 13:54 5.99 SU  7/20/21 13:54 7/20/21 13:54 21.06 C | Analyst: JAG         7/30/21 10:55       7/30/21 11:58       1       134       mg/L         7/30/21 10:55       7/30/21 11:58       1       0.01       mg/L         Analyst: JCC         7/26/21 10:23       7/26/21 10:23       1       4.04       mg/L       0.50         Analyst: JCC         7/26/21 13:28       7/26/21 13:28       1       0.131       mg/L       0.06         Analyst: JCC         7/23/21 13:36       7/23/21 13:36       160       1930       mg/L       80.00         Analyst: DKG         7/20/21 13:54       7/20/21 13:54       3020.13       uS/cm         7/20/21 13:54       7/20/21 13:54       5.99       SU         7/20/21 13:54       7/20/21 13:54       21.06       C | ### Analyst: JAG  7/30/21 10:55 |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 7/20/21 13:57

Customer ID:

**Delivery Date:** 7/21/21 09:49

Description: Gorgas Landfill - MW-6

Laboratory ID Number: BB13185

|         |                        |       |            | MB       |       |         |         |          | Standard           |       | Rec         |       | Pred         |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------|--------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mi |
| 3B13190 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0990  | 0.0993  | 0.0929   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 0.303 | 20.0         |
| 3B13190 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.108   | 0.109   | 0.112    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 0.922 | 20.0         |
| 3B13190 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.0963  | 0.0976  | 0.103    | 0.0850 to 0.115    | 95.3  | 70.0 to 130 | 1.34  | 20.0         |
| 3B13190 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.107   | 0.109   | 0.106    | 0.0850 to 0.115    | 106   | 70.0 to 130 | 1.85  | 20.0         |
| 3B13191 | Iron, Dissolved        | mg/L  | -0.000913  | 0.0176   | 0.2   | 2.15    | 2.11    | 0.197    | 0.170 to 0.230     | 95.0  | 70.0 to 130 | 1.88  | 20.0         |
| 3B13190 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0902  | 0.0876  | 0.0932   | 0.0850 to 0.115    | 89.2  | 70.0 to 130 | 2.92  | 20.0         |
| 3B13190 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.73    | 1.74    | 0.100    | 0.0850 to 0.115    | 100   | 70.0 to 130 | 0.576 | 20.0         |
| 3B13190 | Boron, Total           | mg/L  | 0.00843    | 0.0650   | 1.00  | 1.22    | 1.22    | 0.982    | 0.850 to 1.15      | 102   | 70.0 to 130 | 0.00  | 20.0         |
| 3B13189 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334     | 335     | 4.97     | 4.25 to 5.75       | 80.0  | 70.0 to 130 | 0.299 | 20.0         |
| 3B13190 | Iron, Total            | mg/L  | 0.00365    | 0.0176   | 0.2   | 8.54    | 8.58    | 0.201    | 0.170 to 0.230     | -65.0 | 70.0 to 130 | 0.467 | 20.0         |
| 3B13190 | Sodium, Total          | mg/L  | 0.00987    | 0.0660   | 5.00  | 68.8    | 68.5    | 4.98     | 4.25 to 5.75       | 64.0  | 70.0 to 130 | 0.437 | 20.0         |
| 3B13190 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.111   | 0.114   | 0.101    | 0.0850 to 0.115    | 97.9  | 70.0 to 130 | 2.67  | 20.0         |
| 3B13190 | Lithium, Total         | mg/L  | 4.400E-06  | 0.0154   | 0.200 | 0.436   | 0.437   | 0.197    | 0.170 to 0.230     | 120   | 70.0 to 130 | 0.229 | 20.0         |
| 3B13190 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.0984  | 0.103   | 0.0998   | 0.0850 to 0.115    | 98.2  | 70.0 to 130 | 4.57  | 20.0         |
| 3B13190 | Magnesium, Total       | mg/L  | 0.0146     | 0.0462   | 5.00  | 78.6    | 78.8    | 5.02     | 4.25 to 5.75       | 46.0  | 70.0 to 130 | 0.254 | 20.0         |
| 3B13190 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.122   | 0.122   | 0.0990   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.00  | 20.0         |
| 3B13190 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.3    | 16.2    | 10.5     | 8.50 to 11.5       | 105   | 70.0 to 130 | 0.615 | 20.0         |
| 3B13190 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.00388 | 0.00388 | 0.00389  | 0.00340 to 0.00460 | 97.0  | 70.0 to 130 | 0.00  | 20.0         |
| 3B13190 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.0928  | 0.0941  | 0.0982   | 0.0850 to 0.115    | 92.7  | 70.0 to 130 | 1.39  | 20.0         |
| 3B13190 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.103   | 0.106   | 0.110    | 0.0850 to 0.115    | 103   | 70.0 to 130 | 2.87  | 20.0         |
| 3B13191 | Manganese, Dissolved   | mg/L  | 0.0000146  | 0.000147 | 0.100 | 3.05    | 3.03    | 0.108    | 0.0850 to 0.115    | 10.0  | 70.0 to 130 | 0.658 | 20.0         |
| 3B13190 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0961  | 0.0967  | 0.0988   | 0.0850 to 0.115    | 96.0  | 70.0 to 130 | 0.622 | 20.0         |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

7/20/21 13:57

**Customer ID:** 

**Delivery Date:** 

7/21/21 09:49

Description: Gorgas Landfill - MW-6

Laboratory ID Number: BB13185

|   |         |                            |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| ı | BB13190 | Sulfate                    | mg/L  | -0.437 | 1.00  | 1000  | 1680 | 667       | 19.0     | 18.0 to 22.0 | 102  | 80.0 to 120 | 0.300 | 20.0          |
| 1 | BB13190 | Fluoride                   | mg/L  | 0.0205 | 0.100 | 2.50  | 2.84 | 0.286     | 2.59     | 2.25 to 2.75 | 103  | 80.0 to 120 | 6.50  | 20.0          |
| ı | BB13333 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 163       | 53.4     | 45.0 to 55.0 |      |             | 0.612 | 10.0          |
| 1 | BB13190 | Chloride                   | mg/L  | -0.107 | 1.00  | 10.0  | 13.3 | 3.46      | 9.89     | 9.00 to 11.0 | 96.6 | 80.0 to 120 | 5.07  | 20.0          |
| - | BB13190 | Solids, Dissolved          | mg/L  | -2.00  | 25.0  |       |      | 1060      | 55.0     | 40.0 to 60.0 |      |             | 0.935 | 5.00          |
|   |         |                            |       |        |       |       |      |           |          |              |      |             |       |               |

## Certificate Of Analysis



Description: Gorgas Landfill - MW-6 DUPLocation Code:WMWGORLFCollected:7/20/21 13:57

Customer ID:

Laboratory ID Number: BB13186 Submittal Date: 7/21/21 09:49

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units       | MDL      | RL         | Q |
|------------------------------|---------------|--------------|-------------|--------------|-------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             | Preparati    | ion Method: | EPA 1638 |            |   |
| * Boron, Total               | 7/21/21 13:33 | 7/22/21 19:2 | 25 1.015    | 0.0631       | mg/L        | 0.030000 | 0.1015     | J |
| * Calcium, Total             | 7/28/21 08:00 | 7/28/21 13:5 | 50 10.15    | 351          | mg/L        | 0.70035  | 4.06       |   |
| * Iron, Total                | 7/21/21 13:33 | 7/27/21 16:0 | 02 10.15    | 23.7         | mg/L        | 0.08120  | 0.406      |   |
| * Lithium, Total             | 7/21/21 13:33 | 7/22/21 19:2 | 25 1.015    | 0.180        | mg/L        | 0.007105 | 0.01999956 | 6 |
| * Magnesium, Total           | 7/21/21 13:33 | 7/27/21 16:0 | 02 10.15    | 291          | mg/L        | 0.21315  | 4.06       |   |
| * Sodium, Total              | 7/21/21 13:33 | 7/27/21 16:0 | 02 10.15    | 57.2         | mg/L        | 0.3045   | 4.06       |   |
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             |              |             |          |            |   |
| * Iron, Dissolved            | 7/28/21 09:25 | 7/28/21 13:0 | 10.15       | 23.3         | mg/L        | 0.08120  | 0.406      |   |
| Analytical Method: EPA 200.8 | Anal          | yst: ABB     |             | Preparati    | on Method:  | EPA 1638 |            |   |
| * Antimony, Total            | 7/23/21 13:00 | 7/26/21 14:1 | 4 1.015     | Not Detected | mg/L        | 0.000508 | 0.001015   | U |
| * Arsenic, Total             | 7/23/21 13:00 | 7/26/21 14:1 | 4 1.015     | 0.00451      | mg/L        | 0.000068 | 0.000203   |   |
| * Barium, Total              | 7/23/21 13:00 | 7/26/21 14:1 | 4 1.015     | 0.0137       | mg/L        | 0.000102 | 0.000203   |   |
| * Beryllium, Total           | 7/23/21 13:00 | 7/26/21 14:1 | 4 1.015     | 0.000453     | mg/L        | 0.000406 | 0.001015   | J |
| * Cadmium, Total             | 7/23/21 13:00 | 7/26/21 14:1 | 4 1.015     | 0.000626     | mg/L        | 0.000068 | 0.000203   |   |
| * Chromium, Total            | 7/23/21 13:00 | 7/26/21 14:1 | 4 1.015     | Not Detected | mg/L        | 0.000203 | 0.001015   | U |
| * Cobalt, Total              | 7/23/21 13:00 | 7/26/21 14:1 | 4 1.015     | 0.216        | mg/L        | 0.000068 | 0.000203   |   |
| * Lead, Total                | 7/23/21 13:00 | 7/26/21 14:1 | 4 1.015     | Not Detected | mg/L        | 0.000068 | 0.000203   | U |
| * Molybdenum, Total          | 7/23/21 13:00 | 7/26/21 14:1 | 4 1.015     | 0.0000827    | mg/L        | 0.000068 | 0.000203   | J |
| * Potassium, Total           | 7/23/21 13:00 | 7/26/21 14:1 | 4 1.015     | 6.38         | mg/L        | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 7/23/21 13:00 | 7/26/21 22:4 | 92.365      | 25.9         | mg/L        | 0.006188 | 0.018473   |   |
| * Selenium, Total            | 7/23/21 13:00 | 7/26/21 14:1 | 4 1.015     | Not Detected | mg/L        | 0.000508 | 0.001015   | U |
| * Thallium, Total            | 7/23/21 13:00 | 7/26/21 14:1 | 4 1.015     | Not Detected | mg/L        | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             |              |             |          |            |   |
| * Manganese, Dissolved       | 7/23/21 13:21 | 7/26/21 21:3 | 92.365      | 27.9         | mg/L        | 0.006188 | 0.018473   |   |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB     |             |              |             |          |            |   |
| * Mercury, Total by CVAA     | 7/22/21 15:11 | 7/22/21 19:3 | 37 1        | Not Detected | mg/L        | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |              |             |          |            |   |
| Alkalinity, Total as CaCO3   | 7/30/21 10:55 | 7/30/21 11:5 | 58 1        | 135          | mg/L        |          | 0.1        |   |
| Analytical Method: SM 2540C  | Anal          | yst: CNJ     |             |              |             |          |            |   |
| * Solids, Dissolved          | 7/22/21 12:06 | •            | ) 1         | 2980         | mg/L        |          | 147.1      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Landfill - MW-6 DUP

**Location Code:** 

WMWGORLF 7/20/21 13:57

Collected: Customer ID:

Submittal Date:

7/21/21 09:49

Laboratory ID Number: BB13186

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |          |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 7/30/21 10:55 | 7/30/21 11:5 | 58 1     |    | 135     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 7/30/21 10:55 | 7/30/21 11:5 | 58 1     |    | 0.01    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Chloride                            | 7/26/21 10:24 | 7/26/21 10:2 | 24 1     |    | 4.05    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Fluoride                            | 7/26/21 13:29 | 7/26/21 13:2 | .9 1     |    | 0.138   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Sulfate                             | 7/23/21 13:37 | 7/23/21 13:3 | 37 1     | 60 | 2000    | mg/L  | 80.00 | 160 |    |
| Analytical Method: Field Measurements | Ana           | lyst: DKG    |          |    |         |       |       |     |    |
| Conductivity                          | 7/20/21 13:54 | 7/20/21 13:5 | 54       |    | 3020.13 | uS/cm |       |     | FA |
| рН                                    | 7/20/21 13:54 | 7/20/21 13:5 | 54       |    | 5.99    | SU    |       |     | FA |
| Temperature                           | 7/20/21 13:54 | 7/20/21 13:5 | 54       |    | 21.06   | С     |       |     | FA |
| Turbidity                             | 7/20/21 13:54 | 7/20/21 13:5 | 54       |    | 1.09    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 7/20/21 13:57

Customer ID:

**Delivery Date:** 7/21/21 09:49

Description: Gorgas Landfill - MW-6 DUP

Laboratory ID Number: BB13186

|         |                        |       |            | MB       |       |         |         |          | Standard           |       | Rec         |       | Pred         |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------|--------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mi |
| 3B13190 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.0963  | 0.0976  | 0.103    | 0.0850 to 0.115    | 95.3  | 70.0 to 130 | 1.34  | 20.0         |
| 3B13190 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0990  | 0.0993  | 0.0929   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 0.303 | 20.0         |
| 3B13190 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.108   | 0.109   | 0.112    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 0.922 | 20.0         |
| 3B13190 | Lithium, Total         | mg/L  | 4.400E-06  | 0.0154   | 0.200 | 0.436   | 0.437   | 0.197    | 0.170 to 0.230     | 120   | 70.0 to 130 | 0.229 | 20.0         |
| 3B13190 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.0984  | 0.103   | 0.0998   | 0.0850 to 0.115    | 98.2  | 70.0 to 130 | 4.57  | 20.0         |
| 3B13190 | Magnesium, Total       | mg/L  | 0.0146     | 0.0462   | 5.00  | 78.6    | 78.8    | 5.02     | 4.25 to 5.75       | 46.0  | 70.0 to 130 | 0.254 | 20.0         |
| 3B13190 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.122   | 0.122   | 0.0990   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.00  | 20.0         |
| 3B13190 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.3    | 16.2    | 10.5     | 8.50 to 11.5       | 105   | 70.0 to 130 | 0.615 | 20.0         |
| 3B13190 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.00388 | 0.00388 | 0.00389  | 0.00340 to 0.00460 | 97.0  | 70.0 to 130 | 0.00  | 20.0         |
| 3B13190 | Sodium, Total          | mg/L  | 0.00987    | 0.0660   | 5.00  | 68.8    | 68.5    | 4.98     | 4.25 to 5.75       | 64.0  | 70.0 to 130 | 0.437 | 20.0         |
| 3B13190 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.111   | 0.114   | 0.101    | 0.0850 to 0.115    | 97.9  | 70.0 to 130 | 2.67  | 20.0         |
| 3B13190 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.73    | 1.74    | 0.100    | 0.0850 to 0.115    | 100   | 70.0 to 130 | 0.576 | 20.0         |
| 3B13190 | Boron, Total           | mg/L  | 0.00843    | 0.0650   | 1.00  | 1.22    | 1.22    | 0.982    | 0.850 to 1.15      | 102   | 70.0 to 130 | 0.00  | 20.0         |
| 3B13189 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334     | 335     | 4.97     | 4.25 to 5.75       | 80.0  | 70.0 to 130 | 0.299 | 20.0         |
| 3B13190 | Iron, Total            | mg/L  | 0.00365    | 0.0176   | 0.2   | 8.54    | 8.58    | 0.201    | 0.170 to 0.230     | -65.0 | 70.0 to 130 | 0.467 | 20.0         |
| 3B13190 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.0928  | 0.0941  | 0.0982   | 0.0850 to 0.115    | 92.7  | 70.0 to 130 | 1.39  | 20.0         |
| 3B13190 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.103   | 0.106   | 0.110    | 0.0850 to 0.115    | 103   | 70.0 to 130 | 2.87  | 20.0         |
| 3B13191 | Manganese, Dissolved   | mg/L  | 0.0000146  | 0.000147 | 0.100 | 3.05    | 3.03    | 0.108    | 0.0850 to 0.115    | 10.0  | 70.0 to 130 | 0.658 | 20.0         |
| 3B13190 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0961  | 0.0967  | 0.0988   | 0.0850 to 0.115    | 96.0  | 70.0 to 130 | 0.622 | 20.0         |
| 3B13190 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.107   | 0.109   | 0.106    | 0.0850 to 0.115    | 106   | 70.0 to 130 | 1.85  | 20.0         |
| 3B13191 | Iron, Dissolved        | mg/L  | -0.000913  | 0.0176   | 0.2   | 2.15    | 2.11    | 0.197    | 0.170 to 0.230     | 95.0  | 70.0 to 130 | 1.88  | 20.0         |
| 3B13190 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0902  | 0.0876  | 0.0932   | 0.0850 to 0.115    | 89.2  | 70.0 to 130 | 2.92  | 20.0         |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

7/20/21 13:57

**Customer ID:** 

**Delivery Date:** 

7/21/21 09:49

Description: Gorgas Landfill - MW-6 DUP

Laboratory ID Number: BB13186

|   |         |                            |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| E | BB13190 | Sulfate                    | mg/L  | -0.437 | 1.00  | 1000  | 1680 | 667       | 19.0     | 18.0 to 22.0 | 102  | 80.0 to 120 | 0.300 | 20.0          |
| E | BB13190 | Fluoride                   | mg/L  | 0.0205 | 0.100 | 2.50  | 2.84 | 0.286     | 2.59     | 2.25 to 2.75 | 103  | 80.0 to 120 | 6.50  | 20.0          |
| E | BB13333 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 163       | 53.4     | 45.0 to 55.0 |      |             | 0.612 | 10.0          |
| E | BB13190 | Chloride                   | mg/L  | -0.107 | 1.00  | 10.0  | 13.3 | 3.46      | 9.89     | 9.00 to 11.0 | 96.6 | 80.0 to 120 | 5.07  | 20.0          |
| E | BB13190 | Solids, Dissolved          | mg/L  | -2.00  | 25.0  |       |      | 1060      | 55.0     | 40.0 to 60.0 |      |             | 0.935 | 5.00          |
|   |         |                            |       |        |       |       |      |           |          |              |      |             |       |               |

## Certificate Of Analysis



Description: Gorgas Landfill - MW-8Location Code:WMWGORLFCollected:7/20/21 15:25

Customer ID:

Laboratory ID Number: BB13187 Submittal Date: 7/21/21 09:49

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units       | MDL      | RL         | Q |
|------------------------------|---------------|--------------|-------------|--------------|-------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             | Preparat     | ion Method: | EPA 1638 |            |   |
| * Boron, Total               | 7/21/21 13:33 | 7/22/21 19:2 | 8 1.015     | 0.0656       | mg/L        | 0.030000 | 0.1015     | J |
| * Calcium, Total             | 7/28/21 08:00 | 7/28/21 13:5 | 4 10.15     | 281          | mg/L        | 0.70035  | 4.06       |   |
| * Iron, Total                | 7/21/21 13:33 | 7/22/21 19:2 | 8 1.015     | 1.98         | mg/L        | 0.008120 | 0.0406     |   |
| * Lithium, Total             | 7/21/21 13:33 | 7/22/21 19:2 | 8 1.015     | 0.151        | mg/L        | 0.007105 | 0.01999956 | ô |
| * Magnesium, Total           | 7/21/21 13:33 | 7/27/21 16:0 | 5 10.15     | 274          | mg/L        | 0.21315  | 4.06       |   |
| * Sodium, Total              | 7/21/21 13:33 | 7/27/21 16:0 | 5 10.15     | 38.0         | mg/L        | 0.3045   | 4.06       |   |
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             |              |             |          |            |   |
| * Iron, Dissolved            | 7/28/21 09:25 | 7/28/21 10:5 | 0 1.015     | 1.29         | mg/L        | 0.008120 | 0.0406     |   |
| Analytical Method: EPA 200.8 | Anal          | yst: ABB     |             | Preparat     | ion Method: | EPA 1638 |            |   |
| * Antimony, Total            | 7/23/21 13:00 | 7/26/21 14:1 | 8 1.015     | Not Detected | mg/L        | 0.000508 | 0.001015   | U |
| * Arsenic, Total             | 7/23/21 13:00 | 7/26/21 14:1 | 8 1.015     | 0.00111      | mg/L        | 0.000068 | 0.000203   |   |
| * Barium, Total              | 7/23/21 13:00 | 7/26/21 14:1 | 8 1.015     | 0.0141       | mg/L        | 0.000102 | 0.000203   |   |
| * Beryllium, Total           | 7/23/21 13:00 | 7/26/21 14:1 | 8 1.015     | Not Detected | mg/L        | 0.000406 | 0.001015   | U |
| * Cadmium, Total             | 7/23/21 13:00 | 7/26/21 14:1 | 8 1.015     | Not Detected | mg/L        | 0.000068 | 0.000203   | U |
| * Chromium, Total            | 7/23/21 13:00 | 7/26/21 14:1 | 8 1.015     | Not Detected | mg/L        | 0.000203 | 0.001015   | U |
| * Cobalt, Total              | 7/23/21 13:00 | 7/26/21 14:1 | 8 1.015     | 0.00714      | mg/L        | 0.000068 | 0.000203   |   |
| * Lead, Total                | 7/23/21 13:00 | 7/26/21 14:1 | 8 1.015     | 0.0000944    | mg/L        | 0.000068 | 0.000203   | J |
| * Molybdenum, Total          | 7/23/21 13:00 | 7/26/21 14:1 | 8 1.015     | 0.000329     | mg/L        | 0.000068 | 0.000203   |   |
| * Potassium, Total           | 7/23/21 13:00 | 7/26/21 14:1 | 8 1.015     | 8.14         | mg/L        | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 7/23/21 13:00 | 7/26/21 14:1 | 8 1.015     | 0.929        | mg/L        | 0.000068 | 0.000203   |   |
| * Selenium, Total            | 7/23/21 13:00 | 7/26/21 14:1 | 8 1.015     | Not Detected | mg/L        | 0.000508 | 0.001015   | U |
| * Thallium, Total            | 7/23/21 13:00 | 7/26/21 14:1 | 8 1.015     | Not Detected | mg/L        | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             |              |             |          |            |   |
| * Manganese, Dissolved       | 7/23/21 13:21 | 7/26/21 12:3 | 1 1.015     | 0.917        | mg/L        | 0.000068 | 0.000203   |   |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB     |             |              |             |          |            |   |
| * Mercury, Total by CVAA     | 7/22/21 15:11 | 7/22/21 19:4 | 0 1         | Not Detected | mg/L        | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |              |             |          |            |   |
| Alkalinity, Total as CaCO3   | 7/30/21 10:55 |              | 8 1         | 321          | mg/L        |          | 0.1        |   |
| Analytical Method: SM 2540C  | Anal          | yst: CNJ     |             |              |             |          |            |   |
| * Solids, Dissolved          | 7/22/21 12:06 | •            | 1           | 2420         | mg/L        |          | 125        |   |

MDL's and RL's are adjusted for sample dilution, as applicable

#### Certificate Of Analysis



FΑ

FΑ

FΑ

Description: Gorgas Landfill - MW-8

Laboratory ID Number: BB13187

Temperature

Turbidity

Location Code: Collected:

WMWGORLF 7/20/21 15:25

Customer ID:

Submittal Date:

SU

NTU

С

6.64

22.63

6.59

7/21/21 09:49

| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|-------------|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |             |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 7/30/21 10:55 | 7/30/21 11:5 | 8 1         | 321     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 7/30/21 10:55 | 7/30/21 11:5 | 8 1         | 0.20    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |             |         |       |       |     |    |
| * Chloride                            | 7/26/21 10:26 | 7/26/21 10:2 | 6 1         | 14.3    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |             |         |       |       |     |    |
| * Fluoride                            | 7/26/21 13:30 | 7/26/21 13:3 | 0 1         | 0.262   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |             |         |       |       |     |    |
| * Sulfate                             | 7/23/21 13:35 | 7/23/21 13:3 | 5 40        | 1500    | mg/L  | 20.00 | 40  |    |
| Analytical Method: Field Measurements | Ana           | lyst: DKG    |             |         |       |       |     |    |
| Conductivity                          | 7/20/21 15:22 | 7/20/21 15:2 | 2           | 2503.35 | uS/cm |       |     | FA |

7/20/21 15:22 7/20/21 15:22

7/20/21 15:22 7/20/21 15:22

7/20/21 15:22 7/20/21 15:22

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 7/20/21 15:25

Customer ID:

**Delivery Date:** 7/21/21 09:49

Description: Gorgas Landfill - MW-8

Laboratory ID Number: BB13187

|        |                        |       |            | MB       |       |         |         |          | Standard           |       | Rec         |       | Prec          |
|--------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------|---------------|
| Sample | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| B13190 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0990  | 0.0993  | 0.0929   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 0.303 | 20.0          |
| B13190 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.108   | 0.109   | 0.112    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 0.922 | 20.0          |
| B13190 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.73    | 1.74    | 0.100    | 0.0850 to 0.115    | 100   | 70.0 to 130 | 0.576 | 20.0          |
| B13190 | Boron, Total           | mg/L  | 0.00843    | 0.0650   | 1.00  | 1.22    | 1.22    | 0.982    | 0.850 to 1.15      | 102   | 70.0 to 130 | 0.00  | 20.0          |
| B13189 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334     | 335     | 4.97     | 4.25 to 5.75       | 80.0  | 70.0 to 130 | 0.299 | 20.0          |
| B13190 | Iron, Total            | mg/L  | 0.00365    | 0.0176   | 0.2   | 8.54    | 8.58    | 0.201    | 0.170 to 0.230     | -65.0 | 70.0 to 130 | 0.467 | 20.0          |
| B13190 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.0963  | 0.0976  | 0.103    | 0.0850 to 0.115    | 95.3  | 70.0 to 130 | 1.34  | 20.0          |
| B13190 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.0928  | 0.0941  | 0.0982   | 0.0850 to 0.115    | 92.7  | 70.0 to 130 | 1.39  | 20.0          |
| B13190 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.103   | 0.106   | 0.110    | 0.0850 to 0.115    | 103   | 70.0 to 130 | 2.87  | 20.0          |
| B13191 | Manganese, Dissolved   | mg/L  | 0.0000146  | 0.000147 | 0.100 | 3.05    | 3.03    | 0.108    | 0.0850 to 0.115    | 10.0  | 70.0 to 130 | 0.658 | 20.0          |
| B13190 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0961  | 0.0967  | 0.0988   | 0.0850 to 0.115    | 96.0  | 70.0 to 130 | 0.622 | 20.0          |
| B13190 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.107   | 0.109   | 0.106    | 0.0850 to 0.115    | 106   | 70.0 to 130 | 1.85  | 20.0          |
| B13191 | Iron, Dissolved        | mg/L  | -0.000913  | 0.0176   | 0.2   | 2.15    | 2.11    | 0.197    | 0.170 to 0.230     | 95.0  | 70.0 to 130 | 1.88  | 20.0          |
| B13190 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0902  | 0.0876  | 0.0932   | 0.0850 to 0.115    | 89.2  | 70.0 to 130 | 2.92  | 20.0          |
| B13190 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.122   | 0.122   | 0.0990   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.00  | 20.0          |
| B13190 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.3    | 16.2    | 10.5     | 8.50 to 11.5       | 105   | 70.0 to 130 | 0.615 | 20.0          |
| B13190 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.00388 | 0.00388 | 0.00389  | 0.00340 to 0.00460 | 97.0  | 70.0 to 130 | 0.00  | 20.0          |
| B13190 | Sodium, Total          | mg/L  | 0.00987    | 0.0660   | 5.00  | 68.8    | 68.5    | 4.98     | 4.25 to 5.75       | 64.0  | 70.0 to 130 | 0.437 | 20.0          |
| B13190 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.111   | 0.114   | 0.101    | 0.0850 to 0.115    | 97.9  | 70.0 to 130 | 2.67  | 20.0          |
| B13190 | Lithium, Total         | mg/L  | 4.400E-06  | 0.0154   | 0.200 | 0.436   | 0.437   | 0.197    | 0.170 to 0.230     | 120   | 70.0 to 130 | 0.229 | 20.0          |
| B13190 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.0984  | 0.103   | 0.0998   | 0.0850 to 0.115    | 98.2  | 70.0 to 130 | 4.57  | 20.0          |
| B13190 | Magnesium, Total       | mg/L  | 0.0146     | 0.0462   | 5.00  | 78.6    | 78.8    | 5.02     | 4.25 to 5.75       | 46.0  | 70.0 to 130 | 0.254 | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

7/20/21 15:25

Customer ID:

**Delivery Date:** 7/21/21 09:49

Description: Gorgas Landfill - MW-8

Laboratory ID Number: BB13187

|   |         |                            |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| E | 3B13190 | Sulfate                    | mg/L  | -0.437 | 1.00  | 1000  | 1680 | 667       | 19.0     | 18.0 to 22.0 | 102  | 80.0 to 120 | 0.300 | 20.0          |
| E | 3B13190 | Chloride                   | mg/L  | -0.107 | 1.00  | 10.0  | 13.3 | 3.46      | 9.89     | 9.00 to 11.0 | 96.6 | 80.0 to 120 | 5.07  | 20.0          |
| E | 3B13190 | Solids, Dissolved          | mg/L  | -2.00  | 25.0  |       |      | 1060      | 55.0     | 40.0 to 60.0 |      |             | 0.935 | 5.00          |
| E | 3B13190 | Fluoride                   | mg/L  | 0.0205 | 0.100 | 2.50  | 2.84 | 0.286     | 2.59     | 2.25 to 2.75 | 103  | 80.0 to 120 | 6.50  | 20.0          |
| E | 3B13333 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 163       | 53.4     | 45.0 to 55.0 |      |             | 0.612 | 10.0          |
|   |         |                            |       |        |       |       |      |           |          |              |      |             |       |               |

## **Certificate Of Analysis**



Description: Gorgas Landfill Field Blank-2Location Code:WMWGORLFFBCollected:7/20/21 16:05

Customer ID:

**Submittal Date:** 7/21/21 09:49

Laboratory ID Number: BB13188

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF    | Results      | Units          | MDL      | RL         | Q |
|---------------------------------------|---------------|--------------|----------|-------|--------------|----------------|----------|------------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: ABB     |          |       | Preparati    | on Method: EPA | 1638     |            |   |
| * Boron, Total                        | 7/21/21 13:33 | 7/22/21 19:3 | 31 1     | 1.015 | Not Detected | mg/L           | 0.030000 | 0.1015     | U |
| * Calcium, Total                      | 7/28/21 08:00 | 7/28/21 13:  | 57 1     | 1.015 | Not Detected | mg/L           | 0.070035 | 0.406      | U |
| * Iron, Total                         | 7/21/21 13:33 | 7/22/21 19:  | 31 1     | 1.015 | Not Detected | mg/L           | 0.008120 | 0.0406     | U |
| * Lithium, Total                      | 7/21/21 13:33 | 7/22/21 19:3 | 31 1     | 1.015 | Not Detected | mg/L           | 0.007105 | 0.01999956 | U |
| * Magnesium, Total                    | 7/21/21 13:33 | 7/22/21 19:  | 31 1     | 1.015 | Not Detected | mg/L           | 0.021315 | 0.406      | U |
| * Sodium, Total                       | 7/21/21 13:33 | 7/22/21 19:  | 31 1     | 1.015 | Not Detected | mg/L           | 0.03045  | 0.406      | U |
| Analytical Method: EPA 200.8          | Anal          | yst: ABB     |          |       | Preparati    | on Method: EPA | 1638     |            |   |
| * Antimony, Total                     | 7/23/21 13:00 | 7/26/21 14:2 | 22 1     | 1.015 | Not Detected | mg/L           | 0.000508 | 0.001015   | U |
| * Arsenic, Total                      | 7/23/21 13:00 | 7/26/21 14:2 | 22 1     | 1.015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Barium, Total                       | 7/23/21 13:00 | 7/26/21 14:2 | 22 1     | 1.015 | Not Detected | mg/L           | 0.000102 | 0.000203   | U |
| * Beryllium, Total                    | 7/23/21 13:00 | 7/26/21 14:2 | 22 1     | 1.015 | Not Detected | mg/L           | 0.000406 | 0.001015   | U |
| * Cadmium, Total                      | 7/23/21 13:00 | 7/26/21 14:2 | 22 1     | 1.015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Chromium, Total                     | 7/23/21 13:00 | 7/26/21 14:2 | 22 1     | 1.015 | Not Detected | mg/L           | 0.000203 | 0.001015   | U |
| * Cobalt, Total                       | 7/23/21 13:00 | 7/26/21 14:2 | 22 1     | 1.015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Lead, Total                         | 7/23/21 13:00 | 7/26/21 14:2 | 22 1     | 1.015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 7/23/21 13:00 | 7/26/21 14:2 | 22 1     | 1.015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Manganese, Total                    | 7/23/21 13:00 | 7/26/21 14:2 | 22 1     | 1.015 | 0.000115     | mg/L           | 0.000068 | 0.000203   | J |
| * Potassium, Total                    | 7/23/21 13:00 | 7/26/21 14:2 | 22 1     | 1.015 | Not Detected | mg/L           | 0.169505 | 0.5075     | U |
| * Selenium, Total                     | 7/23/21 13:00 | 7/26/21 14:2 | 22 1     | 1.015 | Not Detected | mg/L           | 0.000508 | 0.001015   | U |
| * Thallium, Total                     | 7/23/21 13:00 | 7/26/21 14:2 | 22 1     | 1.015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 245.1          | Anal          | yst: ABB     |          |       |              |                |          |            |   |
| * Mercury, Total by CVAA              | 7/22/21 15:11 | 7/22/21 19:4 | 44 1     | l     | Not Detected | mg/L           | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2540C           | Anal          | yst: CNJ     |          |       |              |                |          |            |   |
| * Solids, Dissolved                   | 7/22/21 12:06 | 8/2/21 08:20 | 0 1      |       | Not Detected | mg/L           |          | 25         | U |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |          |       |              |                |          |            |   |
| * Chloride                            | 7/26/21 10:27 | 7/26/21 10:2 | 27 1     |       | Not Detected | mg/L           | 0.50     | 1          | U |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |          |       |              |                |          |            |   |
| * Fluoride                            | 7/26/21 13:31 | 7/26/21 13:  | 31 1     |       | Not Detected | mg/L           | 0.06     | 0.1        | U |
| Analytical Method: SM4500SO4 E 2011   | Anai          | lyst: JCC    |          |       |              |                |          |            |   |
| * Sulfate                             | 7/23/21 13:39 | •            | 39 1     | 1     | Not Detected | ma/L           | 0.50     | 1          | U |

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

## **Batch QC Summary**



Customer Account: WMWGORLFFB

**Sample Date:** 7/20/21 16:05

**Customer ID:** 

**Delivery Date:** 7/21/21 09:49

Description: Gorgas Landfill Field Blank-2

Laboratory ID Number: BB13188

|         |                        |       |            | MB       |       |         |         |          | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| BB13190 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0990  | 0.0993  | 0.0929   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 0.303 | 20.0          |
| BB13190 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.108   | 0.109   | 0.112    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 0.922 | 20.0          |
| BB13190 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.107   | 0.109   | 0.106    | 0.0850 to 0.115    | 106   | 70.0 to 130 | 1.85  | 20.0          |
| BB13190 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0902  | 0.0876  | 0.0932   | 0.0850 to 0.115    | 89.2  | 70.0 to 130 | 2.92  | 20.0          |
| BB13190 | Sodium, Total          | mg/L  | 0.00987    | 0.0660   | 5.00  | 68.8    | 68.5    | 4.98     | 4.25 to 5.75       | 64.0  | 70.0 to 130 | 0.437 | 20.0          |
| BB13190 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.111   | 0.114   | 0.101    | 0.0850 to 0.115    | 97.9  | 70.0 to 130 | 2.67  | 20.0          |
| BB13190 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.122   | 0.122   | 0.0990   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.00  | 20.0          |
| BB13190 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.3    | 16.2    | 10.5     | 8.50 to 11.5       | 105   | 70.0 to 130 | 0.615 | 20.0          |
| BB13190 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.00388 | 0.00388 | 0.00389  | 0.00340 to 0.00460 | 97.0  | 70.0 to 130 | 0.00  | 20.0          |
| BB13190 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.0963  | 0.0976  | 0.103    | 0.0850 to 0.115    | 95.3  | 70.0 to 130 | 1.34  | 20.0          |
| BB13190 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.0928  | 0.0941  | 0.0982   | 0.0850 to 0.115    | 92.7  | 70.0 to 130 | 1.39  | 20.0          |
| BB13190 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.103   | 0.106   | 0.110    | 0.0850 to 0.115    | 103   | 70.0 to 130 | 2.87  | 20.0          |
| BB13190 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0961  | 0.0967  | 0.0988   | 0.0850 to 0.115    | 96.0  | 70.0 to 130 | 0.622 | 20.0          |
| BB13190 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.73    | 1.74    | 0.100    | 0.0850 to 0.115    | 100   | 70.0 to 130 | 0.576 | 20.0          |
| BB13190 | Boron, Total           | mg/L  | 0.00843    | 0.0650   | 1.00  | 1.22    | 1.22    | 0.982    | 0.850 to 1.15      | 102   | 70.0 to 130 | 0.00  | 20.0          |
| BB13189 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334     | 335     | 4.97     | 4.25 to 5.75       | 80.0  | 70.0 to 130 | 0.299 | 20.0          |
| BB13190 | Iron, Total            | mg/L  | 0.00365    | 0.0176   | 0.2   | 8.54    | 8.58    | 0.201    | 0.170 to 0.230     | -65.0 | 70.0 to 130 | 0.467 | 20.0          |
| BB13190 | Lithium, Total         | mg/L  | 4.400E-06  | 0.0154   | 0.200 | 0.436   | 0.437   | 0.197    | 0.170 to 0.230     | 120   | 70.0 to 130 | 0.229 | 20.0          |
| BB13190 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.0984  | 0.103   | 0.0998   | 0.0850 to 0.115    | 98.2  | 70.0 to 130 | 4.57  | 20.0          |
| BB13190 | Magnesium, Total       | mg/L  | 0.0146     | 0.0462   | 5.00  | 78.6    | 78.8    | 5.02     | 4.25 to 5.75       | 46.0  | 70.0 to 130 | 0.254 | 20.0          |

Comments:

## **Batch QC Summary**



Customer Account: WMWGORLFFB

Sample Date:

7/20/21 16:05

**Customer ID:** 

**Delivery Date:** 

7/21/21 09:49

Description: Gorgas Landfill Field Blank-2

Laboratory ID Number: BB13188

|         |                   |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|-------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis          | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | l Limit      | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB13190 | Sulfate           | mg/L  | -0.437 | 1.00  | 1000  | 1680 | 667       | 19.0     | 18.0 to 22.0 | 102  | 80.0 to 120 | 0.300 | 20.0          |
| BB13190 | Chloride          | mg/L  | -0.107 | 1.00  | 10.0  | 13.3 | 3.46      | 9.89     | 9.00 to 11.0 | 96.6 | 80.0 to 120 | 5.07  | 20.0          |
| BB13190 | Solids, Dissolved | mg/L  | -2.00  | 25.0  |       |      | 1060      | 55.0     | 40.0 to 60.0 |      |             | 0.935 | 5.00          |
| BB13190 | Fluoride          | mg/L  | 0.0205 | 0.100 | 2.50  | 2.84 | 0.286     | 2.59     | 2.25 to 2.75 | 103  | 80.0 to 120 | 6.50  | 20.0          |

Comments:

# Certificate Of Analysis



Description: Gorgas Landfill - MW-12Location Code:WMWGORLFCollected:7/20/21 11:53

**Customer ID:** 

Laboratory ID Number: BB13189 Submittal Date: 7/21/21 09:49

| Name                         | Prepared      | Analyzed    | Vio Spec | DF     | Results      | Units        | MDL      | RL         | Q |
|------------------------------|---------------|-------------|----------|--------|--------------|--------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Anal          | yst: ABB    |          |        | Preparati    | on Method: E | PA 1638  |            |   |
| * Boron, Total               | 7/21/21 13:33 | 7/22/21 19: | 35       | 1.015  | 0.227        | mg/L         | 0.030000 | 0.1015     |   |
| * Calcium, Total             | 7/28/21 08:00 | 7/28/21 14: | 04       | 10.15  | 330          | mg/L         | 0.70035  | 4.06       |   |
| * Iron, Total                | 7/21/21 13:33 | 7/27/21 15: | 42       | 101.5  | 173          | mg/L         | 0.8120   | 4.06       |   |
| * Lithium, Total             | 7/21/21 13:33 | 7/22/21 19: | 35       | 1.015  | 0.0769       | mg/L         | 0.007105 | 0.01999956 |   |
| * Magnesium, Total           | 7/21/21 13:33 | 7/27/21 16: | 09       | 10.15  | 360          | mg/L         | 0.21315  | 4.06       |   |
| * Sodium, Total              | 7/21/21 13:33 | 7/27/21 16: | 09       | 10.15  | 46.0         | mg/L         | 0.3045   | 4.06       |   |
| Analytical Method: EPA 200.7 | Anal          | yst: ABB    |          |        |              |              |          |            |   |
| * Iron, Dissolved            | 7/28/21 09:25 | 7/28/21 13: | 04       | 101.5  | 181          | mg/L         | 0.8120   | 4.06       |   |
| Analytical Method: EPA 200.8 | Anal          | yst: ABB    |          |        | Preparati    | on Method: E | PA 1638  |            |   |
| * Antimony, Total            | 7/23/21 13:00 | 7/26/21 14: | 25       | 1.015  | Not Detected | mg/L         | 0.000508 | 0.001015   | U |
| * Arsenic, Total             | 7/23/21 13:00 | 7/26/21 14: | 25       | 1.015  | 0.0668       | mg/L         | 0.000068 | 0.000203   |   |
| * Barium, Total              | 7/23/21 13:00 | 7/26/21 14: | 25       | 1.015  | 0.0120       | mg/L         | 0.000102 | 0.000203   |   |
| * Beryllium, Total           | 7/23/21 13:00 | 7/26/21 14: | 25       | 1.015  | Not Detected | mg/L         | 0.000406 | 0.001015   | U |
| * Cadmium, Total             | 7/23/21 13:00 | 7/26/21 14: | 25       | 1.015  | Not Detected | mg/L         | 0.000068 | 0.000203   | U |
| * Chromium, Total            | 7/23/21 13:00 | 7/26/21 14: | 25       | 1.015  | 0.000276     | mg/L         | 0.000203 | 0.001015   | J |
| * Cobalt, Total              | 7/23/21 13:00 | 7/26/21 14: | 25       | 1.015  | 0.0460       | mg/L         | 0.000068 | 0.000203   |   |
| * Lead, Total                | 7/23/21 13:00 | 7/26/21 14: | 25       | 1.015  | 0.000231     | mg/L         | 0.000068 | 0.000203   |   |
| * Molybdenum, Total          | 7/23/21 13:00 | 7/26/21 14: | 25       | 1.015  | 0.000169     | mg/L         | 0.000068 | 0.000203   | J |
| * Potassium, Total           | 7/23/21 13:00 | 7/26/21 14: | 25       | 1.015  | 23.0         | mg/L         | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 7/23/21 13:00 | 7/26/21 23: | 03       | 92.365 | 21.3         | mg/L         | 0.006188 | 0.018473   |   |
| * Selenium, Total            | 7/23/21 13:00 | 7/26/21 14: | 25       | 1.015  | Not Detected | mg/L         | 0.000508 | 0.001015   | U |
| * Thallium, Total            | 7/23/21 13:00 | 7/26/21 14: | 25       | 1.015  | Not Detected | mg/L         | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ    |          |        |              |              |          |            |   |
| * Manganese, Dissolved       | 7/23/21 13:21 | 7/26/21 21: | 41       | 92.365 | 20.6         | mg/L         | 0.006188 | 0.018473   |   |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB    |          |        |              |              |          |            |   |
| * Mercury, Total by CVAA     | 7/22/21 15:11 | -           | 48       | 1      | Not Detected | mg/L         | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B | Anai          | yst: JAG    |          |        |              |              |          |            |   |
| Alkalinity, Total as CaCO3   | 7/30/21 10:55 | 7/30/21 11: | 58       | 1      | 206          | mg/L         |          | 0.1        |   |
| Analytical Method: SM 2540C  | Anai          | lyst: CNJ   |          |        |              |              |          |            |   |
| * Solids, Dissolved          | 7/22/21 12:06 | -           | 0        | 1      | 3680         | mg/L         |          | 178.6      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Landfill - MW-12

Location Code: Collected:

WMWGORLF 7/20/21 11:53

Customer ID:

Submittal Date:

7/21/21 09:49

| Laboratory ID Number: BB13189         |               |            |          |     | Subii   | iillai Dale: | 7/21/21 09 | .49 |    |
|---------------------------------------|---------------|------------|----------|-----|---------|--------------|------------|-----|----|
| Name                                  | Prepared      | Analyzed   | Vio Spec | DF  | Results | Units        | MDL        | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG  |          |     |         |              |            |     |    |
| Bicarbonate Alkalinity, (calc.)       | 7/30/21 10:55 | 7/30/21 11 | :58      | 1   | 206     | mg/L         |            |     |    |
| Carbonate Alkalinity, (calc.)         | 7/30/21 10:55 | 7/30/21 11 | :58      | 1   | 0.01    | mg/L         |            |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC  |          |     |         |              |            |     |    |
| * Chloride                            | 7/26/21 10:28 | 7/26/21 10 | :28      | 1   | 9.85    | mg/L         | 0.50       | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC  |          |     |         |              |            |     |    |
| * Fluoride                            | 7/26/21 13:32 | 7/26/21 13 | :32      | 1   | 0.219   | mg/L         | 0.06       | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC  |          |     |         |              |            |     |    |
| * Sulfate                             | 7/23/21 13:40 | 7/23/21 13 | :40      | 160 | 2500    | mg/L         | 80.00      | 160 |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD  |          |     |         |              |            |     |    |
| Conductivity                          | 7/20/21 11:50 | 7/20/21 11 | :50      |     | 3168.03 | uS/cm        |            |     | FA |
| рН                                    | 7/20/21 11:50 | 7/20/21 11 | :50      |     | 5.53    | SU           |            |     | FA |
| Temperature                           | 7/20/21 11:50 | 7/20/21 11 | :50      |     | 22.65   | С            |            |     | FA |
| Turbidity                             | 7/20/21 11:50 | 7/20/21 11 | :50      |     | 4.23    | NTU          |            |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

#### **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 7/20/21 11:53

Customer ID:
Delivery Date: 7/21/21 09:49

**Description**: Gorgas Landfill - MW-12

Laboratory ID Number: BB13189

|         |                        |       |            | MB       |       |         |         |          | Standard           |       | Rec         |       | Pred         |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------|--------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mi |
| 3B13190 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.107   | 0.109   | 0.106    | 0.0850 to 0.115    | 106   | 70.0 to 130 | 1.85  | 20.0         |
| 3B13191 | Iron, Dissolved        | mg/L  | -0.000913  | 0.0176   | 0.2   | 2.15    | 2.11    | 0.197    | 0.170 to 0.230     | 95.0  | 70.0 to 130 | 1.88  | 20.0         |
| 3B13190 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0902  | 0.0876  | 0.0932   | 0.0850 to 0.115    | 89.2  | 70.0 to 130 | 2.92  | 20.0         |
| 3B13190 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.73    | 1.74    | 0.100    | 0.0850 to 0.115    | 100   | 70.0 to 130 | 0.576 | 20.0         |
| 3B13190 | Boron, Total           | mg/L  | 0.00843    | 0.0650   | 1.00  | 1.22    | 1.22    | 0.982    | 0.850 to 1.15      | 102   | 70.0 to 130 | 0.00  | 20.0         |
| 3B13189 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334     | 335     | 4.97     | 4.25 to 5.75       | 80.0  | 70.0 to 130 | 0.299 | 20.0         |
| 3B13190 | Iron, Total            | mg/L  | 0.00365    | 0.0176   | 0.2   | 8.54    | 8.58    | 0.201    | 0.170 to 0.230     | -65.0 | 70.0 to 130 | 0.467 | 20.0         |
| 3B13190 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0990  | 0.0993  | 0.0929   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 0.303 | 20.0         |
| 3B13190 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.108   | 0.109   | 0.112    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 0.922 | 20.0         |
| 3B13190 | Sodium, Total          | mg/L  | 0.00987    | 0.0660   | 5.00  | 68.8    | 68.5    | 4.98     | 4.25 to 5.75       | 64.0  | 70.0 to 130 | 0.437 | 20.0         |
| 3B13190 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.111   | 0.114   | 0.101    | 0.0850 to 0.115    | 97.9  | 70.0 to 130 | 2.67  | 20.0         |
| 3B13190 | Lithium, Total         | mg/L  | 4.400E-06  | 0.0154   | 0.200 | 0.436   | 0.437   | 0.197    | 0.170 to 0.230     | 120   | 70.0 to 130 | 0.229 | 20.0         |
| 3B13190 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.0984  | 0.103   | 0.0998   | 0.0850 to 0.115    | 98.2  | 70.0 to 130 | 4.57  | 20.0         |
| 3B13190 | Magnesium, Total       | mg/L  | 0.0146     | 0.0462   | 5.00  | 78.6    | 78.8    | 5.02     | 4.25 to 5.75       | 46.0  | 70.0 to 130 | 0.254 | 20.0         |
| 3B13190 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.0963  | 0.0976  | 0.103    | 0.0850 to 0.115    | 95.3  | 70.0 to 130 | 1.34  | 20.0         |
| 3B13190 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.122   | 0.122   | 0.0990   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.00  | 20.0         |
| 3B13190 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.3    | 16.2    | 10.5     | 8.50 to 11.5       | 105   | 70.0 to 130 | 0.615 | 20.0         |
| 3B13190 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.00388 | 0.00388 | 0.00389  | 0.00340 to 0.00460 | 97.0  | 70.0 to 130 | 0.00  | 20.0         |
| 3B13190 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.0928  | 0.0941  | 0.0982   | 0.0850 to 0.115    | 92.7  | 70.0 to 130 | 1.39  | 20.0         |
| 3B13190 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.103   | 0.106   | 0.110    | 0.0850 to 0.115    | 103   | 70.0 to 130 | 2.87  | 20.0         |
| 3B13191 | Manganese, Dissolved   | mg/L  | 0.0000146  | 0.000147 | 0.100 | 3.05    | 3.03    | 0.108    | 0.0850 to 0.115    | 10.0  | 70.0 to 130 | 0.658 | 20.0         |
| 3B13190 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0961  | 0.0967  | 0.0988   | 0.0850 to 0.115    | 96.0  | 70.0 to 130 | 0.622 | 20.0         |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

7/20/21 11:53

**Customer ID:** 

**Delivery Date:** 

7/21/21 09:49

Description: Gorgas Landfill - MW-12

Laboratory ID Number: BB13189

|         |                            |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | l Limit      | Rec  | Limit       | Prec  | <u>Li</u> mit |
| BB13190 | Sulfate                    | mg/L  | -0.437 | 1.00  | 1000  | 1680 | 667       | 19.0     | 18.0 to 22.0 | 102  | 80.0 to 120 | 0.300 | 20.0          |
| BB13190 | Fluoride                   | mg/L  | 0.0205 | 0.100 | 2.50  | 2.84 | 0.286     | 2.59     | 2.25 to 2.75 | 103  | 80.0 to 120 | 6.50  | 20.0          |
| BB13333 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 163       | 53.4     | 45.0 to 55.0 |      |             | 0.612 | 10.0          |
| BB13190 | Chloride                   | mg/L  | -0.107 | 1.00  | 10.0  | 13.3 | 3.46      | 9.89     | 9.00 to 11.0 | 96.6 | 80.0 to 120 | 5.07  | 20.0          |
| BB13190 | Solids, Dissolved          | mg/L  | -2.00  | 25.0  |       |      | 1060      | 55.0     | 40.0 to 60.0 |      |             | 0.935 | 5.00          |

## Certificate Of Analysis



Description: Gorgas Landfill - MW-10Location Code:WMWGORLFCollected:7/20/21 13:15

Customer ID:

Laboratory ID Number: BB13190 Submittal Date: 7/21/21 09:49

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units        | MDL      | RL         | Q  |
|------------------------------|---------------|--------------|-------------|--------------|--------------|----------|------------|----|
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             | Prepara      | tion Method: | EPA 1638 |            |    |
| * Boron, Total               | 7/21/21 13:33 | 7/22/21 19:3 | 8 1.015     | 0.201        | mg/L         | 0.030000 | 0.1015     |    |
| * Calcium, Total             | 7/28/21 08:00 | 7/28/21 14:0 | 1 10.15     | 149          | mg/L         | 0.70035  | 4.06       |    |
| * Iron, Total                | 7/21/21 13:33 | 7/27/21 16:1 | 2 10.15     | 8.67         | mg/L         | 0.08120  | 0.406      | RA |
| * Lithium, Total             | 7/21/21 13:33 | 7/22/21 19:3 | 8 1.015     | 0.196        | mg/L         | 0.007105 | 0.01999956 |    |
| * Magnesium, Total           | 7/21/21 13:33 | 7/27/21 16:1 | 2 10.15     | 76.3         | mg/L         | 0.21315  | 4.06       | RA |
| * Sodium, Total              | 7/21/21 13:33 | 7/27/21 16:1 | 2 10.15     | 65.6         | mg/L         | 0.3045   | 4.06       | RA |
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             |              |              |          |            |    |
| * Iron, Dissolved            | 7/28/21 09:25 | 7/28/21 13:0 | 10.15       | 10.1         | mg/L         | 0.08120  | 0.406      |    |
| Analytical Method: EPA 200.8 | Anal          | yst: ABB     |             | Preparat     | tion Method: | EPA 1638 |            |    |
| * Antimony, Total            | 7/23/21 13:00 | 7/26/21 14:2 | 9 1.015     | Not Detected | mg/L         | 0.000508 | 0.001015   | U  |
| * Arsenic, Total             | 7/23/21 13:00 | 7/26/21 14:2 | 9 1.015     | 0.00102      | mg/L         | 0.000068 | 0.000203   |    |
| * Barium, Total              | 7/23/21 13:00 | 7/26/21 14:2 | 9 1.015     | 0.0208       | mg/L         | 0.000102 | 0.000203   |    |
| * Beryllium, Total           | 7/23/21 13:00 | 7/26/21 14:2 | 9 1.015     | 0.000951     | mg/L         | 0.000406 | 0.001015   | J  |
| * Cadmium, Total             | 7/23/21 13:00 | 7/26/21 14:2 | 9 1.015     | 0.0000807    | mg/L         | 0.000068 | 0.000203   | J  |
| * Chromium, Total            | 7/23/21 13:00 | 7/26/21 14:2 | 9 1.015     | 0.000213     | mg/L         | 0.000203 | 0.001015   | J  |
| * Cobalt, Total              | 7/23/21 13:00 | 7/26/21 14:2 | 9 1.015     | 0.0131       | mg/L         | 0.000068 | 0.000203   |    |
| * Lead, Total                | 7/23/21 13:00 | 7/26/21 14:2 | 9 1.015     | 0.0000767    | mg/L         | 0.000068 | 0.000203   | J  |
| * Molybdenum, Total          | 7/23/21 13:00 | 7/26/21 14:2 | 9 1.015     | 0.0000769    | mg/L         | 0.000068 | 0.000203   | J  |
| * Potassium, Total           | 7/23/21 13:00 | 7/26/21 14:2 | 9 1.015     | 5.81         | mg/L         | 0.169505 | 0.5075     |    |
| * Manganese, Total           | 7/23/21 13:00 | 7/26/21 23:0 | 7 5.075     | 1.63         | mg/L         | 0.000340 | 0.001015   |    |
| * Selenium, Total            | 7/23/21 13:00 | 7/26/21 14:2 | 9 1.015     | 0.000982     | mg/L         | 0.000508 | 0.001015   | J  |
| * Thallium, Total            | 7/23/21 13:00 | 7/26/21 14:2 | 9 1.015     | Not Detected | mg/L         | 0.000068 | 0.000203   | U  |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             |              |              |          |            |    |
| * Manganese, Dissolved       | 7/23/21 13:21 | 7/26/21 21:4 | 5 5.075     | 1.87         | mg/L         | 0.000340 | 0.001015   |    |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB     |             |              |              |          |            |    |
| * Mercury, Total by CVAA     | 7/22/21 15:11 | 7/22/21 19:5 | 2 1         | Not Detected | mg/L         | 0.0003   | 0.0005     | U  |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |              |              |          |            |    |
| Alkalinity, Total as CaCO3   | 7/30/21 10:55 |              | 8 1         | 123          | mg/L         |          | 0.1        |    |
| Analytical Method: SM 2540C  | Anal          | yst: CNJ     |             |              |              |          |            |    |
| * Solids, Dissolved          | 7/22/21 12:06 | •            | 1           | 1080         | mg/L         |          | 75.8       |    |

MDL's and RL's are adjusted for sample dilution, as applicable

#### Certificate Of Analysis



Description: Gorgas Landfill - MW-10

**Location Code:** 

WMWGORLF 7/20/21 13:15

Collected: Customer ID:

Submittal Date:

7/21/21 09:49

|               |                                                                                                                                 |                                                                                                                                                                                                                                                             | Subr                                                                                                                                                                                                                                                                                       | nittai Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7/21/21 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prepared      | Analyzed                                                                                                                        | Vio Spec DF                                                                                                                                                                                                                                                 | Results                                                                                                                                                                                                                                                                                    | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ana           | lyst: JAG                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7/30/21 10:55 | 7/30/21 11:                                                                                                                     | 58 1                                                                                                                                                                                                                                                        | 123                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7/30/21 10:55 | 7/30/21 11:                                                                                                                     | 58 1                                                                                                                                                                                                                                                        | 0.04                                                                                                                                                                                                                                                                                       | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ana           | lyst: JCC                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7/26/21 10:29 | 7/26/21 10:                                                                                                                     | 29 1                                                                                                                                                                                                                                                        | 3.64                                                                                                                                                                                                                                                                                       | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ana           | lyst: JCC                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7/26/21 13:34 | 7/26/21 13:                                                                                                                     | 34 1                                                                                                                                                                                                                                                        | 0.268                                                                                                                                                                                                                                                                                      | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ana           | lyst: JCC                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7/23/21 13:41 | 7/23/21 13:                                                                                                                     | 41 50                                                                                                                                                                                                                                                       | 665                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ana           | lyst: TJD                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7/20/21 13:11 | 7/20/21 13:                                                                                                                     | 11                                                                                                                                                                                                                                                          | 1257.92                                                                                                                                                                                                                                                                                    | uS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7/20/21 13:11 | 7/20/21 13:                                                                                                                     | 11                                                                                                                                                                                                                                                          | 6.46                                                                                                                                                                                                                                                                                       | SU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7/20/21 13:11 | 7/20/21 13:                                                                                                                     | 11                                                                                                                                                                                                                                                          | 20.67                                                                                                                                                                                                                                                                                      | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7/20/21 13:11 | 7/20/21 13:                                                                                                                     | 11                                                                                                                                                                                                                                                          | 5.42                                                                                                                                                                                                                                                                                       | NTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | 7/30/21 10:55 7/30/21 10:55 7/30/21 10:55 Ana 7/26/21 10:29 Ana 7/26/21 13:34 Ana 7/23/21 13:41 Ana 7/20/21 13:11 7/20/21 13:11 | Analyst: JAG  7/30/21 10:55 7/30/21 11: 7/30/21 10:55 7/30/21 11: Analyst: JCC  7/26/21 10:29 7/26/21 10: Analyst: JCC  7/26/21 13:34 7/26/21 13: Analyst: JCC  7/23/21 13:41 7/23/21 13: Analyst: TJD  7/20/21 13:11 7/20/21 13: 7/20/21 13:11 7/20/21 13: | Analyst: JAG  7/30/21 10:55 7/30/21 11:58 1  7/30/21 10:55 7/30/21 11:58 1  Analyst: JCC  7/26/21 10:29 7/26/21 10:29 1  Analyst: JCC  7/26/21 13:34 7/26/21 13:34 1  Analyst: JCC  7/23/21 13:41 7/23/21 13:41 50  Analyst: TJD  7/20/21 13:11 7/20/21 13:11  7/20/21 13:11 7/20/21 13:11 | Prepared         Analyzed         Vio Spec         DF         Results           Analyst: JAG           7/30/21 10:55         7/30/21 11:58         1         123           7/30/21 10:55         7/30/21 11:58         1         0.04           Analyst: JCC           7/26/21 10:29         7/26/21 10:29         1         3.64           Analyst: JCC           7/26/21 13:34         7/26/21 13:34         1         0.268           Analyst: JCC           7/23/21 13:41         7/23/21 13:41         50         665           Analyst: TJD         7/20/21 13:11         1257.92           7/20/21 13:11         7/20/21 13:11         6.46           7/20/21 13:11         7/20/21 13:11         6.46           7/20/21 13:11         7/20/21 13:11         20.67 | Analyst: JAG         7/30/21 10:55       7/30/21 11:58       1       123       mg/L         7/30/21 10:55       7/30/21 11:58       1       0.04       mg/L         Analyst: JCC         7/26/21 10:29       7/26/21 10:29       1       3.64       mg/L         Analyst: JCC         7/26/21 13:34       7/26/21 13:34       1       0.268       mg/L         Analyst: JCC         7/23/21 13:41       7/23/21 13:41       50       665       mg/L         Analyst: TJD         7/20/21 13:11       7/20/21 13:11       1257.92       uS/cm         7/20/21 13:11       7/20/21 13:11       6.46       SU         7/20/21 13:11       7/20/21 13:11       20.67       C | Prepared         Analyzed         Vio Spec         DF         Results         Units         MDL           Analyst: JAG           7/30/21 10:55         7/30/21 11:58         1         123         mg/L           7/30/21 10:55         7/30/21 11:58         1         0.04         mg/L           Analyst: JCC         7/26/21 10:29         1         3.64         mg/L         0.50           Analyst: JCC         7/26/21 13:34         1         0.268         mg/L         0.06           Analyst: JCC         7/23/21 13:41         7/23/21 13:41         50         665         mg/L         25.00           Analyst: TJD         7/20/21 13:11         1257.92         uS/cm           7/20/21 13:11         7/20/21 13:11         6.46         SU           7/20/21 13:11         7/20/21 13:11         20.67         C | Prepared         Analyzed         Vio Spec         DF         Results         Units         MDL         RL           Analyst: JAG           7/30/21 10:55         7/30/21 11:58         1         123         mg/L           7/30/21 10:55         7/30/21 11:58         1         0.04         mg/L           Analyst: JCC           7/26/21 10:29         1         3.64         mg/L         0.50         1           Analyst: JCC         7/26/21 13:34         1         0.268         mg/L         0.06         0.1           Analyst: JCC         7/23/21 13:41         50         665         mg/L         25.00         50           Analyst: TJD         7/20/21 13:11         1257.92         uS/cm           7/20/21 13:11         7/20/21 13:11         6.46         SU           7/20/21 13:11         7/20/21 13:11         20.67         C |

MDL's and RL's are adjusted for sample dilution, as applicable

#### **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 7/20/21 13:15

**Customer ID:** 

**Delivery Date:** 7/21/21 09:49

Description: Gorgas Landfill - MW-10

Laboratory ID Number: BB13190

|         |                        |       |            | MB       |       |         |         |          | Standard           |       | Rec         |       | Pred         |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------|--------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mi |
| BB13190 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.0963  | 0.0976  | 0.103    | 0.0850 to 0.115    | 95.3  | 70.0 to 130 | 1.34  | 20.0         |
| BB13190 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.122   | 0.122   | 0.0990   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 0.00  | 20.0         |
| BB13190 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.3    | 16.2    | 10.5     | 8.50 to 11.5       | 105   | 70.0 to 130 | 0.615 | 20.0         |
| BB13190 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.00388 | 0.00388 | 0.00389  | 0.00340 to 0.00460 | 97.0  | 70.0 to 130 | 0.00  | 20.0         |
| 3B13190 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.107   | 0.109   | 0.106    | 0.0850 to 0.115    | 106   | 70.0 to 130 | 1.85  | 20.0         |
| 3B13191 | Iron, Dissolved        | mg/L  | -0.000913  | 0.0176   | 0.2   | 2.15    | 2.11    | 0.197    | 0.170 to 0.230     | 95.0  | 70.0 to 130 | 1.88  | 20.0         |
| BB13190 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0902  | 0.0876  | 0.0932   | 0.0850 to 0.115    | 89.2  | 70.0 to 130 | 2.92  | 20.0         |
| BB13190 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.73    | 1.74    | 0.100    | 0.0850 to 0.115    | 100   | 70.0 to 130 | 0.576 | 20.0         |
| BB13190 | Boron, Total           | mg/L  | 0.00843    | 0.0650   | 1.00  | 1.22    | 1.22    | 0.982    | 0.850 to 1.15      | 102   | 70.0 to 130 | 0.00  | 20.0         |
| BB13189 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334     | 335     | 4.97     | 4.25 to 5.75       | 80.0  | 70.0 to 130 | 0.299 | 20.0         |
| BB13190 | Iron, Total            | mg/L  | 0.00365    | 0.0176   | 0.2   | 8.54    | 8.58    | 0.201    | 0.170 to 0.230     | -65.0 | 70.0 to 130 | 0.467 | 20.0         |
| BB13190 | Sodium, Total          | mg/L  | 0.00987    | 0.0660   | 5.00  | 68.8    | 68.5    | 4.98     | 4.25 to 5.75       | 64.0  | 70.0 to 130 | 0.437 | 20.0         |
| BB13190 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.111   | 0.114   | 0.101    | 0.0850 to 0.115    | 97.9  | 70.0 to 130 | 2.67  | 20.0         |
| BB13190 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.0928  | 0.0941  | 0.0982   | 0.0850 to 0.115    | 92.7  | 70.0 to 130 | 1.39  | 20.0         |
| BB13190 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.103   | 0.106   | 0.110    | 0.0850 to 0.115    | 103   | 70.0 to 130 | 2.87  | 20.0         |
| BB13191 | Manganese, Dissolved   | mg/L  | 0.0000146  | 0.000147 | 0.100 | 3.05    | 3.03    | 0.108    | 0.0850 to 0.115    | 10.0  | 70.0 to 130 | 0.658 | 20.0         |
| BB13190 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0961  | 0.0967  | 0.0988   | 0.0850 to 0.115    | 96.0  | 70.0 to 130 | 0.622 | 20.0         |
| BB13190 | Lithium, Total         | mg/L  | 4.400E-06  | 0.0154   | 0.200 | 0.436   | 0.437   | 0.197    | 0.170 to 0.230     | 120   | 70.0 to 130 | 0.229 | 20.0         |
| BB13190 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.0984  | 0.103   | 0.0998   | 0.0850 to 0.115    | 98.2  | 70.0 to 130 | 4.57  | 20.0         |
| BB13190 | Magnesium, Total       | mg/L  | 0.0146     | 0.0462   | 5.00  | 78.6    | 78.8    | 5.02     | 4.25 to 5.75       | 46.0  | 70.0 to 130 | 0.254 | 20.0         |
| 3B13190 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0990  | 0.0993  | 0.0929   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 0.303 | 20.0         |
| 3B13190 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.108   | 0.109   | 0.112    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 0.922 | 20.0         |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

7/20/21 13:15

**Customer ID:** 

**Delivery Date:** 

7/21/21 09:49

Description: Gorgas Landfill - MW-10

Laboratory ID Number: BB13190

|   |         |                            |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| ı | BB13190 | Sulfate                    | mg/L  | -0.437 | 1.00  | 1000  | 1680 | 667       | 19.0     | 18.0 to 22.0 | 102  | 80.0 to 120 | 0.300 | 20.0          |
| ı | BB13190 | Fluoride                   | mg/L  | 0.0205 | 0.100 | 2.50  | 2.84 | 0.286     | 2.59     | 2.25 to 2.75 | 103  | 80.0 to 120 | 6.50  | 20.0          |
| ı | BB13190 | Chloride                   | mg/L  | -0.107 | 1.00  | 10.0  | 13.3 | 3.46      | 9.89     | 9.00 to 11.0 | 96.6 | 80.0 to 120 | 5.07  | 20.0          |
| ı | BB13190 | Solids, Dissolved          | mg/L  | -2.00  | 25.0  |       |      | 1060      | 55.0     | 40.0 to 60.0 |      |             | 0.935 | 5.00          |
| ı | BB13333 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 163       | 53.4     | 45.0 to 55.0 |      |             | 0.612 | 10.0          |
|   |         |                            |       |        |       |       |      |           |          |              |      |             |       |               |

## Certificate Of Analysis



Description: Gorgas Landfill - MW-7Location Code:WMWGORLFCollected:7/20/21 14:30

Customer ID:

Laboratory ID Number: BB13191 Submittal Date: 7/21/21 09:49

| Name                                  | Prepared      | Analyzed     | Vio Spec D | DF   | Results      | Units         | MDL      | RL         | Q |
|---------------------------------------|---------------|--------------|------------|------|--------------|---------------|----------|------------|---|
| Analytical Method: EPA 200.7          | Anal          | lyst: ABB    |            |      | Preparati    | on Method: EF | A 1638   |            | _ |
| * Boron, Total                        | 7/28/21 08:00 | 7/28/21 14:2 | 21 1.0     | 015  | 0.0721       | mg/L          | 0.030000 | 0.1015     | J |
| * Calcium, Total                      | 7/28/21 08:00 | 7/28/21 15:4 | 1 10       | ).15 | 254          | mg/L          | 0.70035  | 4.06       |   |
| * Iron, Total                         | 7/28/21 08:00 | 7/28/21 14:2 | 21 1.0     | 015  | 2.01         | mg/L          | 0.008120 | 0.0406     |   |
| * Lithium, Total                      | 7/28/21 08:00 | 7/28/21 14:2 | 21 1.0     | 015  | 0.0960       | mg/L          | 0.007105 | 0.01999956 |   |
| * Magnesium, Total                    | 7/28/21 08:00 | 7/28/21 15:4 | 1 10       | ).15 | 229          | mg/L          | 0.21315  | 4.06       |   |
| * Sodium, Total                       | 7/28/21 08:00 | 7/28/21 14:2 | 21 1.0     | 015  | 38.4         | mg/L          | 0.03045  | 0.406      |   |
| Analytical Method: EPA 200.7          | Anal          | lyst: ABB    |            |      |              |               |          |            |   |
| * Iron, Dissolved                     | 7/28/21 09:25 | 7/28/21 11:0 | 00 1.0     | 015  | 1.96         | mg/L          | 0.008120 | 0.0406     |   |
| Analytical Method: EPA 200.8          | Anal          | lyst: ABB    |            |      | Preparati    | on Method: EF | A 1638   |            |   |
| * Antimony, Total                     | 7/23/21 13:00 | 7/26/21 14:5 | 50 1.0     | 015  | Not Detected | mg/L          | 0.000508 | 0.001015   | U |
| * Arsenic, Total                      | 7/23/21 13:00 | 7/26/21 14:5 | 50 1.0     | 015  | 0.00164      | mg/L          | 0.000068 | 0.000203   |   |
| * Barium, Total                       | 7/23/21 13:00 | 7/26/21 14:5 | 50 1.0     | 015  | 0.0142       | mg/L          | 0.000102 | 0.000203   |   |
| * Beryllium, Total                    | 7/23/21 13:00 | 7/26/21 14:5 | 50 1.0     | 015  | Not Detected | mg/L          | 0.000406 | 0.001015   | U |
| * Cadmium, Total                      | 7/23/21 13:00 | 7/26/21 14:5 | 50 1.0     | 015  | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Chromium, Total                     | 7/23/21 13:00 | 7/26/21 14:5 | 50 1.0     | 015  | Not Detected | mg/L          | 0.000203 | 0.001015   | U |
| * Cobalt, Total                       | 7/23/21 13:00 | 7/26/21 14:5 | 50 1.0     | 015  | 0.00561      | mg/L          | 0.000068 | 0.000203   |   |
| * Lead, Total                         | 7/23/21 13:00 | 7/26/21 14:5 | 50 1.0     | 015  | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 7/23/21 13:00 | 7/26/21 14:5 | 50 1.0     | 015  | 0.000860     | mg/L          | 0.000068 | 0.000203   |   |
| * Potassium, Total                    | 7/23/21 13:00 | 7/26/21 14:5 | 50 1.0     | 015  | 6.84         | mg/L          | 0.169505 | 0.5075     |   |
| * Manganese, Total                    | 7/23/21 13:00 | 7/26/21 23:2 | 21 5.0     | 075  | 2.97         | mg/L          | 0.000340 | 0.001015   |   |
| * Selenium, Total                     | 7/23/21 13:00 | 7/26/21 14:5 | 50 1.0     | 015  | Not Detected | mg/L          | 0.000508 | 0.001015   | U |
| * Thallium, Total                     | 7/23/21 13:00 | 7/26/21 14:5 | 50 1.0     | 015  | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8          | Anal          | lyst: DLJ    |            |      |              |               |          |            |   |
| * Manganese, Dissolved                | 7/23/21 13:21 | 7/26/21 21:4 | 8 5.0      | 075  | 3.04         | mg/L          | 0.000340 | 0.001015   | R |
| Analytical Method: EPA 245.1          | Anal          | yst: ABB     |            |      |              |               |          |            |   |
| * Mercury, Total by CVAA              | 7/22/21 15:11 | 7/22/21 20:2 | 20 1       |      | Not Detected | mg/L          | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B          | Anal          | lyst: JAG    |            |      |              |               |          |            |   |
| Alkalinity, Total as CaCO3            | 7/30/21 10:55 | 7/30/21 11:5 | i8 1       |      | 275          | mg/L          |          | 0.1        |   |
| Analytical Method: SM 2540C           |               | lyst: CNJ    |            |      |              |               |          |            |   |
| * Solids, Dissolved                   | 7/22/21 12:06 | •            | ) 1        |      | 2110         | mg/L          |          | 125        |   |

MDL's and RL's are adjusted for sample dilution, as applicable

#### Certificate Of Analysis



Description: Gorgas Landfill - MW-7

Location Code: Collected:

WMWGORLF 7/20/21 14:30

Customer ID:

Submittal Date:

7/21/21 09:49

| Name                                  | Prepared      | Analyzed    | Vio Spec | DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|-------------|----------|----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG   |          |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 7/30/21 10:55 | 7/30/21 11: | :58      | 1  | 275     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 7/30/21 10:55 | 7/30/21 11: | :58      | 1  | 0.16    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC   |          |    |         |       |       |     |    |
| * Chloride                            | 7/26/21 10:43 | 7/26/21 10: | :43      | 1  | 6.35    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC   |          |    |         |       |       |     |    |
| * Fluoride                            | 7/26/21 13:45 | 7/26/21 13: | :45      | 1  | 0.286   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC   |          |    |         |       |       |     |    |
| * Sulfate                             | 7/23/21 14:25 | 7/23/21 14  | :25      | 40 | 1170    | mg/L  | 20.00 | 40  |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD   |          |    |         |       |       |     |    |
| Conductivity                          | 7/20/21 14:27 | 7/20/21 14  | :27      |    | 2199.04 | uS/cm |       |     | FA |
| рН                                    | 7/20/21 14:27 | 7/20/21 14  | :27      |    | 6.58    | SU    |       |     | FA |
| Temperature                           | 7/20/21 14:27 | 7/20/21 14  | :27      |    | 20.48   | С     |       |     | FA |
| Turbidity                             | 7/20/21 14:27 | 7/20/21 14: | :27      |    | 1.57    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



Customer Account: WMWGORLF Sample Date: 7/20/21 14:30

**Customer ID:** 

7/21/21 09:49 **Delivery Date:** 

Description: Gorgas Landfill - MW-7

Laboratory ID Number: BB13191

|         |                        |       |            | MB       |       |        |        |          | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|--------|--------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS     | MSD    | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| BB13332 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.115  | 0.120  | 0.0990   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 4.26  | 20.0          |
| BB13191 | Iron, Dissolved        | mg/L  | -0.000913  | 0.0176   | 0.2   | 2.15   | 2.11   | 0.197    | 0.170 to 0.230     | 95.0  | 70.0 to 130 | 1.88  | 20.0          |
| BB13332 | Boron, Total           | mg/L  | 0.000162   | 0.0650   | 1.00  | 1.11   | 1.11   | 0.979    | 0.850 to 1.15      | 101   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.102  | 0.102  | 0.103    | 0.0850 to 0.115    | 102   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Sodium, Total          | mg/L  | -0.000208  | 0.0660   | 5.00  | 138    | 141    | 4.85     | 4.25 to 5.75       | 40.0  | 70.0 to 130 | 2.15  | 20.0          |
| BB13332 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.100  | 0.0983 | 0.0998   | 0.0850 to 0.115    | 100   | 70.0 to 130 | 1.71  | 20.0          |
| BB13332 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0866 | 0.0884 | 0.0932   | 0.0850 to 0.115    | 86.6  | 70.0 to 130 | 2.06  | 20.0          |
| BB13332 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.110  | 0.110  | 0.112    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Iron, Total            | mg/L  | -0.000465  | 0.0176   | 0.2   | 6.85   | 7.00   | 0.197    | 0.170 to 0.230     | 20.0  | 70.0 to 130 | 2.17  | 20.0          |
| BB13332 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334    | 342    | 4.97     | 4.25 to 5.75       | -40.0 | 70.0 to 130 | 2.37  | 20.0          |
| BB13332 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.0996 | 0.0984 | 0.101    | 0.0850 to 0.115    | 99.4  | 70.0 to 130 | 1.21  | 20.0          |
| BB13332 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.24   | 1.24   | 0.100    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.102  | 0.0992 | 0.0982   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.78  | 20.0          |
| BB13191 | Manganese, Dissolved   | mg/L  | 0.0000146  | 0.000147 | 0.100 | 3.05   | 3.03   | 0.108    | 0.0850 to 0.115    | 10.0  | 70.0 to 130 | 0.658 | 20.0          |
| BB13332 | Magnesium, Total       | mg/L  | -0.00978   | 0.0462   | 5.00  | 174    | 177    | 4.88     | 4.25 to 5.75       | 20.0  | 70.0 to 130 | 1.71  | 20.0          |
| BB13332 | Lithium, Total         | mg/L  | -9.150E-05 | 0.0154   | 0.200 | 0.492  | 0.492  | 0.196    | 0.170 to 0.230     | 126   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.0039 | 0.0039 | 0.00386  | 0.00340 to 0.00460 | 97.5  | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0986 | 0.0959 | 0.0988   | 0.0850 to 0.115    | 98.6  | 70.0 to 130 | 2.78  | 20.0          |
| BB13332 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.108  | 0.106  | 0.110    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 1.87  | 20.0          |
| BB13332 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.108  | 0.107  | 0.106    | 0.0850 to 0.115    | 107   | 70.0 to 130 | 0.930 | 20.0          |
| BB13332 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.5   | 16.1   | 10.5     | 8.50 to 11.5       | 104   | 70.0 to 130 | 2.45  | 20.0          |
| BB13332 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0993 | 0.101  | 0.0929   | 0.0850 to 0.115    | 99.3  | 70.0 to 130 | 1.70  | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

7/20/21 14:30

**Customer ID:** 

**Delivery Date:** 

7/21/21 09:49

Description: Gorgas Landfill - MW-7

Laboratory ID Number: BB13191

|   |         |                            |       |         | MB    |       |      | Sample    |          | Standard     |     | Rec         |       | Prec          |
|---|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|-----|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec | Limit       | Prec  | <u>Li</u> mit |
| ı | BB13191 | Solids, Dissolved          | mg/L  | -2.00   | 25.0  |       |      | 2180      | 55.0     | 40.0 to 60.0 |     |             | 1.63  | 5.00          |
| ı | BB13332 | Sulfate                    | mg/L  | -0.454  | 1.00  | 1600  | 3090 | 1470      | 18.4     | 18.0 to 22.0 | 101 | 80.0 to 120 | 0.678 | 20.0          |
| ı | BB13332 | Chloride                   | mg/L  | -0.0654 | 1.00  | 160   | 232  | 68.5      | 9.92     | 9.00 to 11.0 | 103 | 80.0 to 120 | 0.880 | 20.0          |
| ı | BB13333 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 163       | 53.4     | 45.0 to 55.0 |     |             | 0.612 | 10.0          |
| ı | BB13332 | Fluoride                   | mg/L  | 0.0225  | 0.100 | 2.50  | 2.79 | 0.149     | 2.63     | 2.25 to 2.75 | 106 | 80.0 to 120 | 4.11  | 20.0          |
|   |         |                            |       |         |       |       |      |           |          |              |     |             |       |               |

## Certificate Of Analysis



Description: Gorgas Landfill - MW-5Location Code:WMWGORLFCollected:7/21/21 10:53

Customer ID:

Laboratory ID Number: BB13324 Submittal Date: 7/22/21 10:16

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units         | MDL      | RL         | Q  |
|------------------------------|---------------|--------------|-------------|--------------|---------------|----------|------------|----|
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             | Preparati    | ion Method:   | EPA 1638 |            |    |
| * Boron, Total               | 7/28/21 08:00 | 7/28/21 14:2 | 4 1.015     | 0.0319       | mg/L          | 0.030000 | 0.1015     | J  |
| * Calcium, Total             | 7/28/21 08:00 | 7/28/21 15:4 | 5 10.15     | 384          | mg/L          | 0.70035  | 4.06       |    |
| * Iron, Total                | 7/28/21 08:00 | 7/28/21 14:2 | 4 1.015     | 2.62         | mg/L          | 0.008120 | 0.0406     |    |
| * Lithium, Total             | 7/28/21 08:00 | 7/28/21 14:2 | 4 1.015     | 0.113        | mg/L          | 0.007105 | 0.01999956 | ວີ |
| * Magnesium, Total           | 7/28/21 08:00 | 7/28/21 15:4 | 5 10.15     | 383          | mg/L          | 0.21315  | 4.06       |    |
| * Sodium, Total              | 7/28/21 08:00 | 7/28/21 15:4 | 5 10.15     | 52.3         | mg/L          | 0.3045   | 4.06       |    |
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             |              |               |          |            |    |
| * Iron, Dissolved            | 7/28/21 09:25 | 7/28/21 11:1 | 7 1.015     | 2.08         | mg/L          | 0.008120 | 0.0406     |    |
| Analytical Method: EPA 200.8 | Anal          | yst: ABB     |             | Preparati    | ion Method: l | EPA 1638 |            |    |
| * Antimony, Total            | 7/23/21 13:00 | 7/26/21 14:5 | 4 1.015     | Not Detected | mg/L          | 0.000508 | 0.001015   | U  |
| * Arsenic, Total             | 7/23/21 13:00 | 7/26/21 14:5 | 4 1.015     | 0.000461     | mg/L          | 0.000068 | 0.000203   |    |
| * Barium, Total              | 7/23/21 13:00 | 7/26/21 14:5 | 4 1.015     | 0.0116       | mg/L          | 0.000102 | 0.000203   |    |
| * Beryllium, Total           | 7/23/21 13:00 | 7/26/21 14:5 | 4 1.015     | Not Detected | mg/L          | 0.000406 | 0.001015   | U  |
| * Cadmium, Total             | 7/23/21 13:00 | 7/26/21 14:5 | 4 1.015     | Not Detected | mg/L          | 0.000068 | 0.000203   | U  |
| * Chromium, Total            | 7/23/21 13:00 | 7/26/21 14:5 | 4 1.015     | Not Detected | mg/L          | 0.000203 | 0.001015   | U  |
| * Cobalt, Total              | 7/23/21 13:00 | 7/26/21 14:5 | 4 1.015     | 0.00127      | mg/L          | 0.000068 | 0.000203   |    |
| * Lead, Total                | 7/23/21 13:00 | 7/26/21 14:5 | 4 1.015     | Not Detected | mg/L          | 0.000068 | 0.000203   | U  |
| * Molybdenum, Total          | 7/23/21 13:00 | 7/26/21 14:5 | 4 1.015     | 0.00126      | mg/L          | 0.000068 | 0.000203   |    |
| * Potassium, Total           | 7/23/21 13:00 | 7/26/21 14:5 | 4 1.015     | 6.47         | mg/L          | 0.169505 | 0.5075     |    |
| * Manganese, Total           | 7/23/21 13:00 | 7/26/21 14:5 | 4 1.015     | 0.366        | mg/L          | 0.000068 | 0.000203   |    |
| * Selenium, Total            | 7/23/21 13:00 | 7/26/21 14:5 | 4 1.015     | 0.00178      | mg/L          | 0.000508 | 0.001015   |    |
| * Thallium, Total            | 7/23/21 13:00 | 7/26/21 14:5 | 4 1.015     | Not Detected | mg/L          | 0.000068 | 0.000203   | U  |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             |              |               |          |            |    |
| * Manganese, Dissolved       | 7/23/21 13:21 | 7/26/21 13:0 | 3 1.015     | 0.416        | mg/L          | 0.000068 | 0.000203   |    |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB     |             |              |               |          |            |    |
| * Mercury, Total by CVAA     | 7/22/21 15:11 | 7/22/21 20:2 | 4 1         | Not Detected | mg/L          | 0.0003   | 0.0005     | U  |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |              |               |          |            |    |
| Alkalinity, Total as CaCO3   | 7/30/21 10:55 |              | 8 1         | 318          | mg/L          |          | 0.1        |    |
| Analytical Method: SM 2540C  | Anal          | yst: CNJ     |             |              |               |          |            |    |
| * Solids, Dissolved          | 7/23/21 10:25 | 7/27/21 10:2 | 5 1         | 3570         | mg/L          |          | 178.6      |    |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Landfill - MW-5

**Location Code:** 

WMWGORLF 7/21/21 10:53

Collected: Customer ID:

Submittal Date:

7/22/21 10:16

| Name                                  | Prepared      | Analyzed    | Vio Spec | DF  | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|-------------|----------|-----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG   |          |     |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 7/30/21 10:55 | 7/30/21 11: | 58       | 1   | 318     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 7/30/21 10:55 | 7/30/21 11: | 58       | 1   | 0.13    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC   |          |     |         |       |       |     |    |
| * Chloride                            | 7/26/21 10:44 | 7/26/21 10: | 44       | 1   | 6.73    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC   |          |     |         |       |       |     |    |
| * Fluoride                            | 7/26/21 13:46 | 7/26/21 13: | 46       | 1   | 0.331   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC   |          |     |         |       |       |     |    |
| * Sulfate                             | 7/23/21 14:27 | 7/23/21 14: | 27       | 100 | 2240    | mg/L  | 50.00 | 100 |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD   |          |     |         |       |       |     |    |
| Conductivity                          | 7/21/21 10:49 | 7/21/21 10: | 49       |     | 3105.06 | uS/cm |       |     | FA |
| рН                                    | 7/21/21 10:49 | 7/21/21 10: | 49       |     | 6.40    | SU    |       |     | FA |
| Temperature                           | 7/21/21 10:49 | 7/21/21 10: | 49       |     | 22.24   | С     |       |     | FA |
| Turbidity                             | 7/21/21 10:49 | 7/21/21 10: | 49       |     | 2.99    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 7/21/21 10:53

Customer ID:

**Delivery Date:** 7/22/21 10:16

Description: Gorgas Landfill - MW-5

Laboratory ID Number: BB13324

| <u></u> |                        |       | ·          | MB       | ·     | ·      |        |          | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|--------|--------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS     | MSD    | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| BB13332 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.100  | 0.0983 | 0.0998   | 0.0850 to 0.115    | 100   | 70.0 to 130 | 1.71  | 20.0          |
| 3B13332 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.115  | 0.120  | 0.0990   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 4.26  | 20.0          |
| 3B13332 | Boron, Total           | mg/L  | 0.000162   | 0.0650   | 1.00  | 1.11   | 1.11   | 0.979    | 0.850 to 1.15      | 101   | 70.0 to 130 | 0.00  | 20.0          |
| 3B13332 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.102  | 0.102  | 0.103    | 0.0850 to 0.115    | 102   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Sodium, Total          | mg/L  | -0.000208  | 0.0660   | 5.00  | 138    | 141    | 4.85     | 4.25 to 5.75       | 40.0  | 70.0 to 130 | 2.15  | 20.0          |
| BB13332 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0866 | 0.0884 | 0.0932   | 0.0850 to 0.115    | 86.6  | 70.0 to 130 | 2.06  | 20.0          |
| BB13332 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.110  | 0.110  | 0.112    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Iron, Total            | mg/L  | -0.000465  | 0.0176   | 0.2   | 6.85   | 7.00   | 0.197    | 0.170 to 0.230     | 20.0  | 70.0 to 130 | 2.17  | 20.0          |
| BB13332 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334    | 342    | 4.97     | 4.25 to 5.75       | -40.0 | 70.0 to 130 | 2.37  | 20.0          |
| BB13332 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.0996 | 0.0984 | 0.101    | 0.0850 to 0.115    | 99.4  | 70.0 to 130 | 1.21  | 20.0          |
| 3B13333 | Iron, Dissolved        | mg/L  | -0.000913  | 0.0176   | 0.2   | 2.09   | 2.06   | 0.197    | 0.170 to 0.230     | 105   | 70.0 to 130 | 1.45  | 20.0          |
| 3B13333 | Manganese, Dissolved   | mg/L  | 0.0000146  | 0.000147 | 0.100 | 1.61   | 1.60   | 0.108    | 0.0850 to 0.115    | 60.0  | 70.0 to 130 | 0.623 | 20.0          |
| BB13332 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.0039 | 0.0039 | 0.00386  | 0.00340 to 0.00460 | 97.5  | 70.0 to 130 | 0.00  | 20.0          |
| 3B13332 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0986 | 0.0959 | 0.0988   | 0.0850 to 0.115    | 98.6  | 70.0 to 130 | 2.78  | 20.0          |
| BB13332 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.108  | 0.106  | 0.110    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 1.87  | 20.0          |
| BB13332 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.108  | 0.107  | 0.106    | 0.0850 to 0.115    | 107   | 70.0 to 130 | 0.930 | 20.0          |
| BB13332 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.5   | 16.1   | 10.5     | 8.50 to 11.5       | 104   | 70.0 to 130 | 2.45  | 20.0          |
| BB13332 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0993 | 0.101  | 0.0929   | 0.0850 to 0.115    | 99.3  | 70.0 to 130 | 1.70  | 20.0          |
| BB13332 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.24   | 1.24   | 0.100    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.102  | 0.0992 | 0.0982   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.78  | 20.0          |
| 3B13332 | Magnesium, Total       | mg/L  | -0.00978   | 0.0462   | 5.00  | 174    | 177    | 4.88     | 4.25 to 5.75       | 20.0  | 70.0 to 130 | 1.71  | 20.0          |
| BB13332 | Lithium, Total         | mg/L  | -9.150E-05 | 0.0154   | 0.200 | 0.492  | 0.492  | 0.196    | 0.170 to 0.230     | 126   | 70.0 to 130 | 0.00  | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

7/21/21 10:53

**Customer ID:** 

**Delivery Date:** 

7/22/21 10:16

Description: Gorgas Landfill - MW-5

Laboratory ID Number: BB13324

|   |         |                            |       |         | MB    |       |      | Sample    |          | Standard     |     | Rec         |       | Prec          |
|---|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|-----|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec | Limit       | Prec  | <u>Li</u> mit |
| E | BB13332 | Chloride                   | mg/L  | -0.0654 | 1.00  | 160   | 232  | 68.5      | 9.92     | 9.00 to 11.0 | 103 | 80.0 to 120 | 0.880 | 20.0          |
| E | BB13332 | Sulfate                    | mg/L  | -0.454  | 1.00  | 1600  | 3090 | 1470      | 18.4     | 18.0 to 22.0 | 101 | 80.0 to 120 | 0.678 | 20.0          |
| E | BB13333 | Solids, Dissolved          | mg/L  | 1.00    | 25.0  |       |      | 3060      | 57.0     | 40.0 to 60.0 |     |             | 1.13  | 5.00          |
| E | BB13333 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 163       | 53.4     | 45.0 to 55.0 |     |             | 0.612 | 10.0          |
| E | BB13332 | Fluoride                   | mg/L  | 0.0225  | 0.100 | 2.50  | 2.79 | 0.149     | 2.63     | 2.25 to 2.75 | 106 | 80.0 to 120 | 4.11  | 20.0          |
|   |         |                            |       |         |       |       |      |           |          |              |     |             |       |               |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Reported: 8/23/2021 Version: 3.4 COA\_CCR

# Certificate Of Analysis



Description: Gorgas Landfill - MW-16Location Code:WMWGORLFCollected:7/21/21 12:10

Customer ID:

Laboratory ID Number: BB13325 Submittal Date: 7/22/21 10:16

| Name                         | Prepared      | Analyzed          | Vio Spec DF | Results      | Units         | MDL      | RL         | Q   |
|------------------------------|---------------|-------------------|-------------|--------------|---------------|----------|------------|-----|
| Analytical Method: EPA 200.7 | Anal          | yst: ABB          |             | Preparati    | ion Method: I | EPA 1638 |            |     |
| * Boron, Total               | 7/28/21 08:00 | 7/28/21 14:2      | 8 1.015     | 0.0437       | mg/L          | 0.030000 | 0.1015     | J   |
| * Calcium, Total             | 7/28/21 08:00 | 7/28/21 15:4      | 8 10.15     | 295          | mg/L          | 0.70035  | 4.06       |     |
| * Iron, Total                | 7/28/21 08:00 | 7/28/21 14:2      | 8 1.015     | 2.68         | mg/L          | 0.008120 | 0.0406     |     |
| * Lithium, Total             | 7/28/21 08:00 | 7/28/21 14:2      | 8 1.015     | 0.0179       | mg/L          | 0.007105 | 0.01999956 | ; J |
| * Magnesium, Total           | 7/28/21 08:00 | 7/28/21 15:4      | 8 10.15     | 242          | mg/L          | 0.21315  | 4.06       |     |
| * Sodium, Total              | 7/28/21 08:00 | 7/28/21 14:2      | 8 1.015     | 31.0         | mg/L          | 0.03045  | 0.406      |     |
| Analytical Method: EPA 200.7 | Anal          | yst: ABB          |             |              |               |          |            |     |
| * Iron, Dissolved            | 7/28/21 09:25 | 7/28/21 11:2      | 0 1.015     | 2.57         | mg/L          | 0.008120 | 0.0406     |     |
| Analytical Method: EPA 200.8 | Anal          | yst: ABB          |             | Preparati    | ion Method: I | EPA 1638 |            |     |
| * Antimony, Total            | 7/23/21 13:00 | 7/26/21 14:5      | 7 1.015     | Not Detected | mg/L          | 0.000508 | 0.001015   | U   |
| * Arsenic, Total             | 7/23/21 13:00 | 7/26/21 14:5      | 7 1.015     | 0.00269      | mg/L          | 0.000068 | 0.000203   |     |
| * Barium, Total              | 7/23/21 13:00 | 7/26/21 14:5      | 7 1.015     | 0.0132       | mg/L          | 0.000102 | 0.000203   |     |
| * Beryllium, Total           | 7/23/21 13:00 | 7/26/21 14:5      | 7 1.015     | Not Detected | mg/L          | 0.000406 | 0.001015   | U   |
| * Cadmium, Total             | 7/23/21 13:00 | 7/26/21 14:5      | 7 1.015     | Not Detected | mg/L          | 0.000068 | 0.000203   | U   |
| * Chromium, Total            | 7/23/21 13:00 | 7/26/21 14:5      | 7 1.015     | Not Detected | mg/L          | 0.000203 | 0.001015   | U   |
| * Cobalt, Total              | 7/23/21 13:00 | 7/26/21 14:5      | 7 1.015     | 0.00887      | mg/L          | 0.000068 | 0.000203   |     |
| * Lead, Total                | 7/23/21 13:00 | 7/26/21 14:5      | 7 1.015     | Not Detected | mg/L          | 0.000068 | 0.000203   | U   |
| * Molybdenum, Total          | 7/23/21 13:00 | 7/26/21 14:5      | 7 1.015     | 0.000426     | mg/L          | 0.000068 | 0.000203   |     |
| * Potassium, Total           | 7/23/21 13:00 | 7/26/21 14:5      | 7 1.015     | 8.11         | mg/L          | 0.169505 | 0.5075     |     |
| * Manganese, Total           | 7/23/21 13:00 | 7/26/21 23:2      | 5 5.075     | 2.70         | mg/L          | 0.000340 | 0.001015   |     |
| * Selenium, Total            | 7/23/21 13:00 | 7/26/21 14:5      | 7 1.015     | Not Detected | mg/L          | 0.000508 | 0.001015   | U   |
| * Thallium, Total            | 7/23/21 13:00 | 7/26/21 14:5      | 7 1.015     | Not Detected | mg/L          | 0.000068 | 0.000203   | U   |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ          |             |              |               |          |            |     |
| * Manganese, Dissolved       | 7/23/21 13:21 | 7/26/21 22:1      | 0 5.075     | 2.60         | mg/L          | 0.000340 | 0.001015   |     |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB          |             |              |               |          |            |     |
| * Mercury, Total by CVAA     | 7/22/21 15:11 | 7/22/21 20:2      | 8 1         | Not Detected | mg/L          | 0.0003   | 0.0005     | U   |
| Analytical Method: SM 2320 B | Anal          | yst: JAG          |             |              |               |          |            |     |
| Alkalinity, Total as CaCO3   | 7/30/21 10:55 |                   | 8 1         | 357          | mg/L          |          | 0.1        |     |
| Analytical Method: SM 2540C  | Anal          | yst: CNJ          |             |              |               |          |            |     |
| * Solids, Dissolved          |               | ,<br>7/27/21 10:2 | 5 1         | 2290         | mg/L          |          | 125        |     |

MDL's and RL's are adjusted for sample dilution, as applicable

#### Certificate Of Analysis



**Description:** Gorgas Landfill - MW-16

**Location Code:** 

WMWGORLF

Collected:

Customer ID: Submittal Date:

7/21/21 12:10

7/22/21 10:16

Laboratory ID Number: BB13325

| Laboratory ID Number: BB13325         |               |              |          |    |         |       |       |     |    |
|---------------------------------------|---------------|--------------|----------|----|---------|-------|-------|-----|----|
| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results | Units | MDL   | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |          |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 7/30/21 10:55 | 7/30/21 11:5 | 58       | 1  | 357     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 7/30/21 10:55 | 7/30/21 11:5 | 58       | 1  | 0.13    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Chloride                            | 7/26/21 10:46 | 7/26/21 10:4 | 16       | 1  | 2.97    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Fluoride                            | 7/26/21 13:48 | 7/26/21 13:4 | 18       | 1  | 0.201   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Sulfate                             | 7/23/21 14:28 | 7/23/21 14:2 | 28       | 40 | 1370    | mg/L  | 20.00 | 40  |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD    |          |    |         |       |       |     |    |
| Conductivity                          | 7/21/21 12:07 | 7/21/21 12:0 | )7       |    | 2259.08 | uS/cm |       |     | FA |
| рН                                    | 7/21/21 12:07 | 7/21/21 12:0 | )7       |    | 6.24    | SU    |       |     | FA |
| Temperature                           | 7/21/21 12:07 | 7/21/21 12:0 | )7       |    | 20.85   | С     |       |     | FA |
| Turbidity                             | 7/21/21 12:07 | 7/21/21 12:0 | )7       |    | 0.1     | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 7/21/21 12:10

Customer ID:

**Delivery Date:** 7/22/21 10:16

Description: Gorgas Landfill - MW-16

Laboratory ID Number: BB13325

|         |                        |       |            | MB       |       |        |        |          | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|--------|--------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS     | MSD    | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| BB13332 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.115  | 0.120  | 0.0990   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 4.26  | 20.0          |
| BB13332 | Boron, Total           | mg/L  | 0.000162   | 0.0650   | 1.00  | 1.11   | 1.11   | 0.979    | 0.850 to 1.15      | 101   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.102  | 0.102  | 0.103    | 0.0850 to 0.115    | 102   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Sodium, Total          | mg/L  | -0.000208  | 0.0660   | 5.00  | 138    | 141    | 4.85     | 4.25 to 5.75       | 40.0  | 70.0 to 130 | 2.15  | 20.0          |
| BB13332 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0866 | 0.0884 | 0.0932   | 0.0850 to 0.115    | 86.6  | 70.0 to 130 | 2.06  | 20.0          |
| BB13332 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.110  | 0.110  | 0.112    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.100  | 0.0983 | 0.0998   | 0.0850 to 0.115    | 100   | 70.0 to 130 | 1.71  | 20.0          |
| BB13332 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.0039 | 0.0039 | 0.00386  | 0.00340 to 0.00460 | 97.5  | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0986 | 0.0959 | 0.0988   | 0.0850 to 0.115    | 98.6  | 70.0 to 130 | 2.78  | 20.0          |
| BB13332 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.108  | 0.106  | 0.110    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 1.87  | 20.0          |
| BB13332 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.108  | 0.107  | 0.106    | 0.0850 to 0.115    | 107   | 70.0 to 130 | 0.930 | 20.0          |
| BB13332 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.5   | 16.1   | 10.5     | 8.50 to 11.5       | 104   | 70.0 to 130 | 2.45  | 20.0          |
| BB13332 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0993 | 0.101  | 0.0929   | 0.0850 to 0.115    | 99.3  | 70.0 to 130 | 1.70  | 20.0          |
| BB13333 | Manganese, Dissolved   | mg/L  | 0.0000146  | 0.000147 | 0.100 | 1.61   | 1.60   | 0.108    | 0.0850 to 0.115    | 60.0  | 70.0 to 130 | 0.623 | 20.0          |
| BB13332 | Iron, Total            | mg/L  | -0.000465  | 0.0176   | 0.2   | 6.85   | 7.00   | 0.197    | 0.170 to 0.230     | 20.0  | 70.0 to 130 | 2.17  | 20.0          |
| BB13332 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334    | 342    | 4.97     | 4.25 to 5.75       | -40.0 | 70.0 to 130 | 2.37  | 20.0          |
| BB13332 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.0996 | 0.0984 | 0.101    | 0.0850 to 0.115    | 99.4  | 70.0 to 130 | 1.21  | 20.0          |
| BB13333 | Iron, Dissolved        | mg/L  | -0.000913  | 0.0176   | 0.2   | 2.09   | 2.06   | 0.197    | 0.170 to 0.230     | 105   | 70.0 to 130 | 1.45  | 20.0          |
| BB13332 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.24   | 1.24   | 0.100    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.102  | 0.0992 | 0.0982   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.78  | 20.0          |
| BB13332 | Magnesium, Total       | mg/L  | -0.00978   | 0.0462   | 5.00  | 174    | 177    | 4.88     | 4.25 to 5.75       | 20.0  | 70.0 to 130 | 1.71  | 20.0          |
| BB13332 | Lithium, Total         | mg/L  | -9.150E-05 | 0.0154   | 0.200 | 0.492  | 0.492  | 0.196    | 0.170 to 0.230     | 126   | 70.0 to 130 | 0.00  | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

7/21/21 12:10

**Customer ID:** 

**Delivery Date:** 

7/22/21 10:16

Description: Gorgas Landfill - MW-16

Laboratory ID Number: BB13325

|   |         |                            |       |         | MB    |       |      | Sample    |          | Standard     |     | Rec         |       | Prec  |
|---|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|-----|-------------|-------|-------|
|   | Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec | Limit       | Prec  | Limit |
| E | 3B13332 | Sulfate                    | mg/L  | -0.454  | 1.00  | 1600  | 3090 | 1470      | 18.4     | 18.0 to 22.0 | 101 | 80.0 to 120 | 0.678 | 20.0  |
| E | 3B13332 | Chloride                   | mg/L  | -0.0654 | 1.00  | 160   | 232  | 68.5      | 9.92     | 9.00 to 11.0 | 103 | 80.0 to 120 | 0.880 | 20.0  |
| E | 3B13333 | Solids, Dissolved          | mg/L  | 1.00    | 25.0  |       |      | 3060      | 57.0     | 40.0 to 60.0 |     |             | 1.13  | 5.00  |
| E | 3B13333 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 163       | 53.4     | 45.0 to 55.0 |     |             | 0.612 | 10.0  |
| E | 3B13332 | Fluoride                   | mg/L  | 0.0225  | 0.100 | 2.50  | 2.79 | 0.149     | 2.63     | 2.25 to 2.75 | 106 | 80.0 to 120 | 4.11  | 20.0  |
|   |         |                            |       |         |       |       |      |           |          |              |     |             |       |       |

## Certificate Of Analysis



Description: Gorgas Landfill - MW-16 DUPLocation Code:WMWGORLFCollected:7/21/21 12:10

Customer ID:

**Submittal Date:** 7/22/21 10:16

Laboratory ID Number: BB13326

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units         | MDL      | RL         | Q   |
|------------------------------|---------------|--------------|-------------|--------------|---------------|----------|------------|-----|
| Analytical Method: EPA 200.7 | Analy         | yst: ABB     |             | Preparati    | ion Method: l | EPA 1638 |            |     |
| * Boron, Total               | 7/28/21 08:00 | 7/28/21 14:3 | 1 1.015     | 0.0433       | mg/L          | 0.030000 | 0.1015     | J   |
| * Calcium, Total             | 7/28/21 08:00 | 7/28/21 15:5 | 1 10.15     | 295          | mg/L          | 0.70035  | 4.06       |     |
| * Iron, Total                | 7/28/21 08:00 | 7/28/21 14:3 | 1 1.015     | 2.70         | mg/L          | 0.008120 | 0.0406     |     |
| * Lithium, Total             | 7/28/21 08:00 | 7/28/21 14:3 | 1 1.015     | 0.0179       | mg/L          | 0.007105 | 0.01999956 | 3 J |
| * Magnesium, Total           | 7/28/21 08:00 | 7/28/21 15:5 | 1 10.15     | 244          | mg/L          | 0.21315  | 4.06       |     |
| * Sodium, Total              | 7/28/21 08:00 | 7/28/21 14:3 | 1 1.015     | 31.2         | mg/L          | 0.03045  | 0.406      |     |
| Analytical Method: EPA 200.7 | Analy         | yst: ABB     |             |              |               |          |            |     |
| * Iron, Dissolved            | 7/28/21 09:25 | 7/28/21 11:2 | 4 1.015     | 2.61         | mg/L          | 0.008120 | 0.0406     |     |
| Analytical Method: EPA 200.8 | Analy         | yst: ABB     |             | Preparati    | ion Method: l | EPA 1638 |            |     |
| * Antimony, Total            | 7/23/21 13:00 | 7/26/21 15:0 | 1 1.015     | Not Detected | mg/L          | 0.000508 | 0.001015   | U   |
| * Arsenic, Total             | 7/23/21 13:00 | 7/26/21 15:0 | 1 1.015     | 0.00257      | mg/L          | 0.000068 | 0.000203   |     |
| * Barium, Total              | 7/23/21 13:00 | 7/26/21 15:0 | 1 1.015     | 0.0127       | mg/L          | 0.000102 | 0.000203   |     |
| * Beryllium, Total           | 7/23/21 13:00 | 7/26/21 15:0 | 1 1.015     | Not Detected | mg/L          | 0.000406 | 0.001015   | U   |
| * Cadmium, Total             | 7/23/21 13:00 | 7/26/21 15:0 | 1 1.015     | Not Detected | mg/L          | 0.000068 | 0.000203   | U   |
| * Chromium, Total            | 7/23/21 13:00 | 7/26/21 15:0 | 1 1.015     | Not Detected | mg/L          | 0.000203 | 0.001015   | U   |
| * Cobalt, Total              | 7/23/21 13:00 | 7/26/21 15:0 | 1 1.015     | 0.00887      | mg/L          | 0.000068 | 0.000203   |     |
| * Lead, Total                | 7/23/21 13:00 | 7/26/21 15:0 | 1 1.015     | Not Detected | mg/L          | 0.000068 | 0.000203   | U   |
| * Molybdenum, Total          | 7/23/21 13:00 | 7/26/21 15:0 | 1 1.015     | 0.000479     | mg/L          | 0.000068 | 0.000203   |     |
| * Potassium, Total           | 7/23/21 13:00 | 7/26/21 15:0 | 1 1.015     | 8.03         | mg/L          | 0.169505 | 0.5075     |     |
| * Manganese, Total           | 7/23/21 13:00 | 7/26/21 23:2 | 8 5.075     | 2.75         | mg/L          | 0.000340 | 0.001015   |     |
| * Selenium, Total            | 7/23/21 13:00 | 7/26/21 15:0 | 1 1.015     | Not Detected | mg/L          | 0.000508 | 0.001015   | U   |
| * Thallium, Total            | 7/23/21 13:00 | 7/26/21 15:0 | 1 1.015     | Not Detected | mg/L          | 0.000068 | 0.000203   | U   |
| Analytical Method: EPA 200.8 | Analy         | yst: DLJ     |             |              |               |          |            |     |
| * Manganese, Dissolved       | 7/23/21 13:21 | 7/26/21 22:1 | 3 5.075     | 2.63         | mg/L          | 0.000340 | 0.001015   |     |
| Analytical Method: EPA 245.1 | Analy         | yst: ABB     |             |              |               |          |            |     |
| * Mercury, Total by CVAA     | 7/22/21 15:11 | 7/22/21 20:3 | 2 1         | Not Detected | mg/L          | 0.0003   | 0.0005     | U   |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |              |               |          |            |     |
| Alkalinity, Total as CaCO3   | 7/30/21 10:55 |              | 8 1         | 327          | mg/L          |          | 0.1        |     |
| Analytical Method: SM 2540C  | Anal          | yst: CNJ     |             |              |               |          |            |     |
| * Solids, Dissolved          | 7/23/21 10:25 | 7/27/21 10:2 | 5 1         | 2340         | mg/L          |          | 125        |     |

MDL's and RL's are adjusted for sample dilution, as applicable

Laboratory ID Number: BB13326

## Certificate Of Analysis



Description: Gorgas Landfill - MW-16 DUP

**Location Code:** 

**WMWGORLF** 

Collected:

7/21/21 12:10

**Customer ID:** 

Submittal Date:

7/22/21 10:16

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |          |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 7/30/21 10:55 | 7/30/21 11:5 | 58       | 1  | 327     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 7/30/21 10:55 | 7/30/21 11:5 | 58       | 1  | 0.13    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Chloride                            | 7/26/21 10:47 | 7/26/21 10:4 | 47       | 1  | 2.95    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Fluoride                            | 7/26/21 13:49 | 7/26/21 13:4 | 49       | 1  | 0.202   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Sulfate                             | 7/23/21 14:32 | 7/23/21 14:3 | 32       | 40 | 1290    | mg/L  | 20.00 | 40  |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD    |          |    |         |       |       |     |    |
| Conductivity                          | 7/21/21 12:07 | 7/21/21 12:0 | 07       |    | 2259.08 | uS/cm |       |     | FA |
| рН                                    | 7/21/21 12:07 | 7/21/21 12:0 | 07       |    | 6.24    | SU    |       |     | FA |
| Temperature                           | 7/21/21 12:07 | 7/21/21 12:0 | 07       |    | 20.85   | С     |       |     | FA |
| Turbidity                             | 7/21/21 12:07 | 7/21/21 12:0 | 07       |    | 0.1     | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

#### **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 7/21/21 12:10

**Customer ID:** 

**Delivery Date:** 7/22/21 10:16

Description: Gorgas Landfill - MW-16 DUP

Laboratory ID Number: BB13326

|         |                        |       |            | MB       |       |        |        |          | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|--------|--------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS     | MSD    | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| BB13332 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0866 | 0.0884 | 0.0932   | 0.0850 to 0.115    | 86.6  | 70.0 to 130 | 2.06  | 20.0          |
| BB13332 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.110  | 0.110  | 0.112    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.100  | 0.0983 | 0.0998   | 0.0850 to 0.115    | 100   | 70.0 to 130 | 1.71  | 20.0          |
| BB13333 | Manganese, Dissolved   | mg/L  | 0.0000146  | 0.000147 | 0.100 | 1.61   | 1.60   | 0.108    | 0.0850 to 0.115    | 60.0  | 70.0 to 130 | 0.623 | 20.0          |
| BB13332 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.0039 | 0.0039 | 0.00386  | 0.00340 to 0.00460 | 97.5  | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0986 | 0.0959 | 0.0988   | 0.0850 to 0.115    | 98.6  | 70.0 to 130 | 2.78  | 20.0          |
| BB13332 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.108  | 0.106  | 0.110    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 1.87  | 20.0          |
| BB13332 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.108  | 0.107  | 0.106    | 0.0850 to 0.115    | 107   | 70.0 to 130 | 0.930 | 20.0          |
| BB13332 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.5   | 16.1   | 10.5     | 8.50 to 11.5       | 104   | 70.0 to 130 | 2.45  | 20.0          |
| BB13332 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0993 | 0.101  | 0.0929   | 0.0850 to 0.115    | 99.3  | 70.0 to 130 | 1.70  | 20.0          |
| BB13332 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.24   | 1.24   | 0.100    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.102  | 0.0992 | 0.0982   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.78  | 20.0          |
| BB13332 | Magnesium, Total       | mg/L  | -0.00978   | 0.0462   | 5.00  | 174    | 177    | 4.88     | 4.25 to 5.75       | 20.0  | 70.0 to 130 | 1.71  | 20.0          |
| BB13332 | Lithium, Total         | mg/L  | -9.150E-05 | 0.0154   | 0.200 | 0.492  | 0.492  | 0.196    | 0.170 to 0.230     | 126   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Iron, Total            | mg/L  | -0.000465  | 0.0176   | 0.2   | 6.85   | 7.00   | 0.197    | 0.170 to 0.230     | 20.0  | 70.0 to 130 | 2.17  | 20.0          |
| BB13332 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334    | 342    | 4.97     | 4.25 to 5.75       | -40.0 | 70.0 to 130 | 2.37  | 20.0          |
| BB13332 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.0996 | 0.0984 | 0.101    | 0.0850 to 0.115    | 99.4  | 70.0 to 130 | 1.21  | 20.0          |
| BB13333 | Iron, Dissolved        | mg/L  | -0.000913  | 0.0176   | 0.2   | 2.09   | 2.06   | 0.197    | 0.170 to 0.230     | 105   | 70.0 to 130 | 1.45  | 20.0          |
| BB13332 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.115  | 0.120  | 0.0990   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 4.26  | 20.0          |
| BB13332 | Boron, Total           | mg/L  | 0.000162   | 0.0650   | 1.00  | 1.11   | 1.11   | 0.979    | 0.850 to 1.15      | 101   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.102  | 0.102  | 0.103    | 0.0850 to 0.115    | 102   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Sodium, Total          | mg/L  | -0.000208  | 0.0660   | 5.00  | 138    | 141    | 4.85     | 4.25 to 5.75       | 40.0  | 70.0 to 130 | 2.15  | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

7/21/21 12:10

**Customer ID:** 

**Delivery Date:** 

7/22/21 10:16

Description: Gorgas Landfill - MW-16 DUP

Laboratory ID Number: BB13326

|         |                            |       |         | MB    |       |      | Sample    |          | Standard     |     | Rec         |       | Prec          |
|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|-----|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec | Limit       | Prec  | <u>Li</u> mit |
| BB13332 | Sulfate                    | mg/L  | -0.454  | 1.00  | 1600  | 3090 | 1470      | 18.4     | 18.0 to 22.0 | 101 | 80.0 to 120 | 0.678 | 20.0          |
| BB13333 | Solids, Dissolved          | mg/L  | 1.00    | 25.0  |       |      | 3060      | 57.0     | 40.0 to 60.0 |     |             | 1.13  | 5.00          |
| BB13333 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 163       | 53.4     | 45.0 to 55.0 |     |             | 0.612 | 10.0          |
| BB13332 | Fluoride                   | mg/L  | 0.0225  | 0.100 | 2.50  | 2.79 | 0.149     | 2.63     | 2.25 to 2.75 | 106 | 80.0 to 120 | 4.11  | 20.0          |
| BB13332 | Chloride                   | mg/L  | -0.0654 | 1.00  | 160   | 232  | 68.5      | 9.92     | 9.00 to 11.0 | 103 | 80.0 to 120 | 0.880 | 20.0          |
|         |                            |       |         |       |       |      |           |          |              |     |             |       |               |

# Certificate Of Analysis



Description: Gorgas Landfill - MW-17RLocation Code:WMWGORLFCollected:7/21/21 13:30

Customer ID:

**Submittal Date:** 7/22/21 10:16

Laboratory ID Number: BB13327

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units         | MDL      | RL         | Q |
|------------------------------|---------------|--------------|-------------|--------------|---------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             | Preparat     | ion Method: I | EPA 1638 |            |   |
| * Boron, Total               | 7/28/21 08:00 | 7/28/21 14:3 | 1.015       | 0.0549       | mg/L          | 0.030000 | 0.1015     | J |
| * Calcium, Total             | 7/28/21 08:00 | 7/28/21 15:5 | 5 10.15     | 380          | mg/L          | 0.70035  | 4.06       |   |
| * Iron, Total                | 7/28/21 08:00 | 7/28/21 15:5 | 5 10.15     | 23.5         | mg/L          | 0.08120  | 0.406      |   |
| * Lithium, Total             | 7/28/21 08:00 | 7/28/21 14:3 | 1.015       | 0.0504       | mg/L          | 0.007105 | 0.01999956 | 6 |
| * Magnesium, Total           | 7/28/21 08:00 | 7/28/21 15:3 | 8 101.5     | 405          | mg/L          | 2.1315   | 40.6       |   |
| * Sodium, Total              | 7/28/21 08:00 | 7/28/21 15:5 | 5 10.15     | 36.4         | mg/L          | 0.3045   | 4.06       |   |
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             |              |               |          |            |   |
| * Iron, Dissolved            | 7/28/21 09:25 | 7/28/21 13:1 | 1 10.15     | 20.3         | mg/L          | 0.08120  | 0.406      |   |
| Analytical Method: EPA 200.8 | Anal          | yst: ABB     |             | Preparat     | ion Method: I | EPA 1638 |            |   |
| * Antimony, Total            | 7/23/21 13:00 | 7/26/21 15:0 | 1.015       | Not Detected | mg/L          | 0.000508 | 0.001015   | U |
| * Arsenic, Total             | 7/23/21 13:00 | 7/26/21 15:0 | 4 1.015     | 0.00196      | mg/L          | 0.000068 | 0.000203   |   |
| * Barium, Total              | 7/23/21 13:00 | 7/26/21 15:0 | 4 1.015     | 0.0140       | mg/L          | 0.000102 | 0.000203   |   |
| * Beryllium, Total           | 7/23/21 13:00 | 7/26/21 15:0 | 4 1.015     | Not Detected | mg/L          | 0.000406 | 0.001015   | U |
| * Cadmium, Total             | 7/23/21 13:00 | 7/26/21 15:0 | 1.015       | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Chromium, Total            | 7/23/21 13:00 | 7/26/21 15:0 | 1.015       | 0.000360     | mg/L          | 0.000203 | 0.001015   | J |
| * Cobalt, Total              | 7/23/21 13:00 | 7/26/21 15:0 | 4 1.015     | 0.329        | mg/L          | 0.000068 | 0.000203   |   |
| * Lead, Total                | 7/23/21 13:00 | 7/26/21 15:0 | 1.015       | 0.0000922    | mg/L          | 0.000068 | 0.000203   | J |
| * Molybdenum, Total          | 7/23/21 13:00 | 7/26/21 15:0 | 1.015       | 0.000172     | mg/L          | 0.000068 | 0.000203   | J |
| * Potassium, Total           | 7/23/21 13:00 | 7/26/21 15:0 | 4 1.015     | 7.34         | mg/L          | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 7/23/21 13:00 | 7/26/21 23:3 | 2 92.365    | 22.0         | mg/L          | 0.006188 | 0.018473   |   |
| * Selenium, Total            | 7/23/21 13:00 | 7/26/21 15:0 | 1.015       | 0.000666     | mg/L          | 0.000508 | 0.001015   | J |
| * Thallium, Total            | 7/23/21 13:00 | 7/26/21 15:0 | 1.015       | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             |              |               |          |            |   |
| * Manganese, Dissolved       | 7/23/21 13:21 | 7/26/21 22:1 | 7 92.365    | 18.9         | mg/L          | 0.006188 | 0.018473   |   |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB     |             |              |               |          |            |   |
| * Mercury, Total by CVAA     | 7/22/21 15:11 | 7/22/21 20:3 | 6 1         | Not Detected | mg/L          | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |              |               |          |            |   |
| Alkalinity, Total as CaCO3   | 7/30/21 10:55 |              | 8 1         | 157          | mg/L          |          | 0.1        |   |
| Analytical Method: SM 2540C  |               | yst: CNJ     |             |              |               |          |            |   |
| * Solids, Dissolved          | 7/23/21 10:25 | •            | 25 1        | 3860         | mg/L          |          | 178.6      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



**Description:** Gorgas Landfill - MW-17R

**Location Code:** 

WMWGORLF

Collected: Customer ID:

Submittal Date:

7/21/21 13:30 7/22/21 10:16

Laboratory ID Number: BB13327

| Name                                  | Prepared      | Analyzed     | Vio Spec D | )F | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|------------|----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |            |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 7/30/21 10:55 | 7/30/21 11:5 | 8 1        |    | 157     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 7/30/21 10:55 | 7/30/21 11:5 | 8 1        |    | 0.08    | mg/L  |       |     |    |
| Analytical Method: SM4500CI E         | Ana           | lyst: JCC    |            |    |         |       |       |     |    |
| * Chloride                            | 7/26/21 10:48 | 7/26/21 10:4 | 8 1        |    | 2.38    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |            |    |         |       |       |     |    |
| * Fluoride                            | 7/26/21 13:50 | 7/26/21 13:5 | 0 1        |    | 0.183   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |            |    |         |       |       |     |    |
| * Sulfate                             | 7/23/21 14:30 | 7/23/21 14:3 | 0 10       | 00 | 2450    | mg/L  | 50.00 | 100 |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD    |            |    |         |       |       |     |    |
| Conductivity                          | 7/21/21 13:26 | 7/21/21 13:2 | :6         |    | 3081.80 | uS/cm |       |     | FA |
| рН                                    | 7/21/21 13:26 | 7/21/21 13:2 | 16         |    | 5.79    | SU    |       |     | FA |
| Temperature                           | 7/21/21 13:26 | 7/21/21 13:2 | 16         |    | 22.47   | С     |       |     | FA |
| Turbidity                             | 7/21/21 13:26 | 7/21/21 13:2 | 16         |    | 0.27    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

#### **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 7/21/21 13:30

Customer ID:

**Delivery Date:** 7/22/21 10:16

Description: Gorgas Landfill - MW-17R

Laboratory ID Number: BB13327

|         |                        |       |            | MB       |       |        |        |          | Standard           |       | Rec         |       | Pred         |
|---------|------------------------|-------|------------|----------|-------|--------|--------|----------|--------------------|-------|-------------|-------|--------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS     | MSD    | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mi |
| BB13332 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.100  | 0.0983 | 0.0998   | 0.0850 to 0.115    | 100   | 70.0 to 130 | 1.71  | 20.0         |
| BB13332 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0866 | 0.0884 | 0.0932   | 0.0850 to 0.115    | 86.6  | 70.0 to 130 | 2.06  | 20.0         |
| 3B13332 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.110  | 0.110  | 0.112    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0         |
| BB13332 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.115  | 0.120  | 0.0990   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 4.26  | 20.0         |
| 3B13332 | Boron, Total           | mg/L  | 0.000162   | 0.0650   | 1.00  | 1.11   | 1.11   | 0.979    | 0.850 to 1.15      | 101   | 70.0 to 130 | 0.00  | 20.0         |
| BB13332 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.102  | 0.102  | 0.103    | 0.0850 to 0.115    | 102   | 70.0 to 130 | 0.00  | 20.0         |
| BB13332 | Sodium, Total          | mg/L  | -0.000208  | 0.0660   | 5.00  | 138    | 141    | 4.85     | 4.25 to 5.75       | 40.0  | 70.0 to 130 | 2.15  | 20.0         |
| BB13333 | Manganese, Dissolved   | mg/L  | 0.0000146  | 0.000147 | 0.100 | 1.61   | 1.60   | 0.108    | 0.0850 to 0.115    | 60.0  | 70.0 to 130 | 0.623 | 20.0         |
| BB13332 | Iron, Total            | mg/L  | -0.000465  | 0.0176   | 0.2   | 6.85   | 7.00   | 0.197    | 0.170 to 0.230     | 20.0  | 70.0 to 130 | 2.17  | 20.0         |
| BB13332 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334    | 342    | 4.97     | 4.25 to 5.75       | -40.0 | 70.0 to 130 | 2.37  | 20.0         |
| BB13332 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.0996 | 0.0984 | 0.101    | 0.0850 to 0.115    | 99.4  | 70.0 to 130 | 1.21  | 20.0         |
| BB13333 | Iron, Dissolved        | mg/L  | -0.000913  | 0.0176   | 0.2   | 2.09   | 2.06   | 0.197    | 0.170 to 0.230     | 105   | 70.0 to 130 | 1.45  | 20.0         |
| BB13332 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.24   | 1.24   | 0.100    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0         |
| BB13332 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.102  | 0.0992 | 0.0982   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.78  | 20.0         |
| BB13332 | Magnesium, Total       | mg/L  | -0.00978   | 0.0462   | 5.00  | 174    | 177    | 4.88     | 4.25 to 5.75       | 20.0  | 70.0 to 130 | 1.71  | 20.0         |
| BB13332 | Lithium, Total         | mg/L  | -9.150E-05 | 0.0154   | 0.200 | 0.492  | 0.492  | 0.196    | 0.170 to 0.230     | 126   | 70.0 to 130 | 0.00  | 20.0         |
| BB13332 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.0039 | 0.0039 | 0.00386  | 0.00340 to 0.00460 | 97.5  | 70.0 to 130 | 0.00  | 20.0         |
| BB13332 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0986 | 0.0959 | 0.0988   | 0.0850 to 0.115    | 98.6  | 70.0 to 130 | 2.78  | 20.0         |
| BB13332 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.108  | 0.106  | 0.110    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 1.87  | 20.0         |
| BB13332 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.108  | 0.107  | 0.106    | 0.0850 to 0.115    | 107   | 70.0 to 130 | 0.930 | 20.0         |
| BB13332 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.5   | 16.1   | 10.5     | 8.50 to 11.5       | 104   | 70.0 to 130 | 2.45  | 20.0         |
| 3B13332 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0993 | 0.101  | 0.0929   | 0.0850 to 0.115    | 99.3  | 70.0 to 130 | 1.70  | 20.0         |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

7/21/21 13:30

**Customer ID:** 

**Delivery Date:** 

7/22/21 10:16

Description: Gorgas Landfill - MW-17R

Laboratory ID Number: BB13327

|   |         |                            |       |         | MB    |       |      | Sample    |          | Standard     |     | Rec         |       | Prec  |
|---|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|-----|-------------|-------|-------|
|   | Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec | Limit       | Prec  | Limit |
| E | 3B13332 | Sulfate                    | mg/L  | -0.454  | 1.00  | 1600  | 3090 | 1470      | 18.4     | 18.0 to 22.0 | 101 | 80.0 to 120 | 0.678 | 20.0  |
| E | 3B13332 | Chloride                   | mg/L  | -0.0654 | 1.00  | 160   | 232  | 68.5      | 9.92     | 9.00 to 11.0 | 103 | 80.0 to 120 | 0.880 | 20.0  |
| E | 3B13333 | Solids, Dissolved          | mg/L  | 1.00    | 25.0  |       |      | 3060      | 57.0     | 40.0 to 60.0 |     |             | 1.13  | 5.00  |
| E | 3B13333 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 163       | 53.4     | 45.0 to 55.0 |     |             | 0.612 | 10.0  |
| E | 3B13332 | Fluoride                   | mg/L  | 0.0225  | 0.100 | 2.50  | 2.79 | 0.149     | 2.63     | 2.25 to 2.75 | 106 | 80.0 to 120 | 4.11  | 20.0  |
|   |         |                            |       |         |       |       |      |           |          |              |     |             |       |       |

## Certificate Of Analysis



Description: Gorgas Landfill - MW-18Location Code:WMWGORLFCollected:7/21/21 14:28

Customer ID:

Laboratory ID Number: BB13328 Submittal Date: 7/22/21 10:16

| Name                         | Prepared      | Analyzed     | Vio Spec D | F   | Results      | Units          | MDL      | RL         | Q |
|------------------------------|---------------|--------------|------------|-----|--------------|----------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |            |     | Preparati    | on Method: EPA | A 1638   |            |   |
| * Boron, Total               | 7/28/21 08:00 | 7/28/21 14:3 | 38 1.0     | )15 | 0.0318       | mg/L           | 0.030000 | 0.1015     | J |
| * Calcium, Total             | 7/28/21 08:00 | 7/28/21 15:5 | 58 10.     | .15 | 289          | mg/L           | 0.70035  | 4.06       |   |
| * Iron, Total                | 7/28/21 08:00 | 7/28/21 14:3 | 8 1.0      | )15 | 0.0676       | mg/L           | 0.008120 | 0.0406     |   |
| * Lithium, Total             | 7/28/21 08:00 | 7/28/21 14:3 | 38 1.0     | )15 | 0.0574       | mg/L           | 0.007105 | 0.01999956 |   |
| * Magnesium, Total           | 7/28/21 08:00 | 7/28/21 15:5 | 58 10.     | .15 | 292          | mg/L           | 0.21315  | 4.06       |   |
| * Sodium, Total              | 7/28/21 08:00 | 7/28/21 14:3 | 1.0        | )15 | 32.1         | mg/L           | 0.03045  | 0.406      |   |
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |            |     |              |                |          |            |   |
| * Iron, Dissolved            | 7/28/21 09:25 | 7/28/21 11:3 | 30 1.0     | )15 | Not Detected | mg/L           | 0.008120 | 0.0406     | U |
| Analytical Method: EPA 200.8 | Anal          | yst: ABB     |            |     | Preparati    | on Method: EPA | A 1638   |            |   |
| * Antimony, Total            | 7/23/21 13:00 | 7/26/21 15:0 | 1.0        | )15 | Not Detected | mg/L           | 0.000508 | 0.001015   | U |
| * Arsenic, Total             | 7/23/21 13:00 | 7/26/21 15:0 | 1.0        | )15 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Barium, Total              | 7/23/21 13:00 | 7/26/21 15:0 | 1.0        | )15 | 0.0105       | mg/L           | 0.000102 | 0.000203   |   |
| * Beryllium, Total           | 7/23/21 13:00 | 7/26/21 15:0 | 1.0        | )15 | Not Detected | mg/L           | 0.000406 | 0.001015   | U |
| * Cadmium, Total             | 7/23/21 13:00 | 7/26/21 15:0 | 1.0        | )15 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Chromium, Total            | 7/23/21 13:00 | 7/26/21 15:0 | 1.0        | )15 | Not Detected | mg/L           | 0.000203 | 0.001015   | U |
| * Cobalt, Total              | 7/23/21 13:00 | 7/26/21 15:0 | 1.0        | )15 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Lead, Total                | 7/23/21 13:00 | 7/26/21 15:0 | 1.0        | )15 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Molybdenum, Total          | 7/23/21 13:00 | 7/26/21 15:0 | 1.0        | )15 | 0.000103     | mg/L           | 0.000068 | 0.000203   | J |
| * Potassium, Total           | 7/23/21 13:00 | 7/26/21 15:0 | 08 1.0     | )15 | 6.91         | mg/L           | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 7/23/21 13:00 | 7/26/21 15:0 | 08 1.0     | )15 | 0.00122      | mg/L           | 0.000068 | 0.000203   |   |
| * Selenium, Total            | 7/23/21 13:00 | 7/26/21 15:0 | 08 1.0     | )15 | 0.00294      | mg/L           | 0.000508 | 0.001015   |   |
| * Thallium, Total            | 7/23/21 13:00 | 7/26/21 15:0 | 08 1.0     | )15 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |            |     |              |                |          |            |   |
| * Manganese, Dissolved       | 7/23/21 13:21 | 7/26/21 13:1 | 8 1.0      | )15 | 0.000340     | mg/L           | 0.000068 | 0.000203   |   |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB     |            |     |              |                |          |            |   |
| * Mercury, Total by CVAA     | 7/22/21 15:11 |              | 0 1        |     | Not Detected | mg/L           | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |            |     |              |                |          |            |   |
| Alkalinity, Total as CaCO3   | 7/30/21 10:55 | 7/30/21 11:5 | i8 1       |     | 151          | mg/L           |          | 0.1        |   |
| Analytical Method: SM 2540C  |               | yst: CNJ     | ·          |     |              | =              |          |            |   |
| * Solids, Dissolved          | 7/23/21 10:25 | •            | 25 1       |     | 2620         | mg/L           |          | 125        |   |

MDL's and RL's are adjusted for sample dilution, as applicable

# Certificate Of Analysis



**Description:** Gorgas Landfill - MW-18

Location Code:

WMWGORLF 7/21/21 14:28

Collected: Customer ID:

Submittal Date:

7/22/21 10:16

Laboratory ID Number: BB13328

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anal          | yst: JAG     |          |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 7/30/21 10:55 | 7/30/21 11:5 | i8 ^     | 1  | 151     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 7/30/21 10:55 | 7/30/21 11:5 | i8 ′     | 1  | 0.10    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |          |    |         |       |       |     |    |
| * Chloride                            | 7/26/21 10:49 | 7/26/21 10:4 | 9 ′      | 1  | 1.40    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |          |    |         |       |       |     |    |
| * Fluoride                            | 7/26/21 13:51 | 7/26/21 13:5 | 51 ′     | I  | 0.348   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Anal          | yst: JCC     |          |    |         |       |       |     |    |
| * Sulfate                             | 7/23/21 14:33 | 7/23/21 14:3 | 33 8     | 30 | 1650    | mg/L  | 40.00 | 80  |    |
| Analytical Method: Field Measurements | Anal          | yst: TJD     |          |    |         |       |       |     |    |
| Conductivity                          | 7/21/21 14:24 | 7/21/21 14:2 | 24       |    | 2357.17 | uS/cm |       |     | FA |
| рН                                    | 7/21/21 14:24 | 7/21/21 14:2 | 24       |    | 6.33    | SU    |       |     | FA |
| Temperature                           | 7/21/21 14:24 | 7/21/21 14:2 | 24       |    | 22.33   | С     |       |     | FA |
| Turbidity                             | 7/21/21 14:24 | 7/21/21 14:2 | 24       |    | 0.23    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 7/21/21 14:28

**Customer ID:** 

**Delivery Date:** 7/22/21 10:16

Description: Gorgas Landfill - MW-18

Laboratory ID Number: BB13328

|         |                        |       |            | MB       |       | ·      | ·      |          | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|--------|--------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS     | MSD    | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| BB13332 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0866 | 0.0884 | 0.0932   | 0.0850 to 0.115    | 86.6  | 70.0 to 130 | 2.06  | 20.0          |
| 3B13332 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.110  | 0.110  | 0.112    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0          |
| 3B13332 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.100  | 0.0983 | 0.0998   | 0.0850 to 0.115    | 100   | 70.0 to 130 | 1.71  | 20.0          |
| 3B13332 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.0039 | 0.0039 | 0.00386  | 0.00340 to 0.00460 | 97.5  | 70.0 to 130 | 0.00  | 20.0          |
| 3B13332 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0986 | 0.0959 | 0.0988   | 0.0850 to 0.115    | 98.6  | 70.0 to 130 | 2.78  | 20.0          |
| BB13332 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.108  | 0.106  | 0.110    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 1.87  | 20.0          |
| BB13332 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.108  | 0.107  | 0.106    | 0.0850 to 0.115    | 107   | 70.0 to 130 | 0.930 | 20.0          |
| 3B13332 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.5   | 16.1   | 10.5     | 8.50 to 11.5       | 104   | 70.0 to 130 | 2.45  | 20.0          |
| 3B13332 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0993 | 0.101  | 0.0929   | 0.0850 to 0.115    | 99.3  | 70.0 to 130 | 1.70  | 20.0          |
| 3B13333 | Manganese, Dissolved   | mg/L  | 0.0000146  | 0.000147 | 0.100 | 1.61   | 1.60   | 0.108    | 0.0850 to 0.115    | 60.0  | 70.0 to 130 | 0.623 | 20.0          |
| 3B13332 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.24   | 1.24   | 0.100    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0          |
| 3B13332 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.102  | 0.0992 | 0.0982   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.78  | 20.0          |
| 3B13332 | Magnesium, Total       | mg/L  | -0.00978   | 0.0462   | 5.00  | 174    | 177    | 4.88     | 4.25 to 5.75       | 20.0  | 70.0 to 130 | 1.71  | 20.0          |
| 3B13332 | Lithium, Total         | mg/L  | -9.150E-05 | 0.0154   | 0.200 | 0.492  | 0.492  | 0.196    | 0.170 to 0.230     | 126   | 70.0 to 130 | 0.00  | 20.0          |
| 3B13332 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.115  | 0.120  | 0.0990   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 4.26  | 20.0          |
| 3B13332 | Boron, Total           | mg/L  | 0.000162   | 0.0650   | 1.00  | 1.11   | 1.11   | 0.979    | 0.850 to 1.15      | 101   | 70.0 to 130 | 0.00  | 20.0          |
| 3B13332 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.102  | 0.102  | 0.103    | 0.0850 to 0.115    | 102   | 70.0 to 130 | 0.00  | 20.0          |
| 3B13332 | Sodium, Total          | mg/L  | -0.000208  | 0.0660   | 5.00  | 138    | 141    | 4.85     | 4.25 to 5.75       | 40.0  | 70.0 to 130 | 2.15  | 20.0          |
| BB13332 | Iron, Total            | mg/L  | -0.000465  | 0.0176   | 0.2   | 6.85   | 7.00   | 0.197    | 0.170 to 0.230     | 20.0  | 70.0 to 130 | 2.17  | 20.0          |
| BB13332 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334    | 342    | 4.97     | 4.25 to 5.75       | -40.0 | 70.0 to 130 | 2.37  | 20.0          |
| BB13332 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.0996 | 0.0984 | 0.101    | 0.0850 to 0.115    | 99.4  | 70.0 to 130 | 1.21  | 20.0          |
| BB13333 | Iron, Dissolved        | mg/L  | -0.000913  | 0.0176   | 0.2   | 2.09   | 2.06   | 0.197    | 0.170 to 0.230     | 105   | 70.0 to 130 | 1.45  | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

7/21/21 14:28

**Customer ID:** 

**Delivery Date:** 

7/22/21 10:16

Description: Gorgas Landfill - MW-18

Laboratory ID Number: BB13328

|         |                            |       |         | MB    |       |      | Sample    |          | Standard     |     | Rec         |       | Prec          |
|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|-----|-------------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec | Limit       | Prec  | <u>Li</u> mit |
| BB13333 | Solids, Dissolved          | mg/L  | 1.00    | 25.0  |       |      | 3060      | 57.0     | 40.0 to 60.0 |     |             | 1.13  | 5.00          |
| BB13332 | Sulfate                    | mg/L  | -0.454  | 1.00  | 1600  | 3090 | 1470      | 18.4     | 18.0 to 22.0 | 101 | 80.0 to 120 | 0.678 | 20.0          |
| BB13332 | Chloride                   | mg/L  | -0.0654 | 1.00  | 160   | 232  | 68.5      | 9.92     | 9.00 to 11.0 | 103 | 80.0 to 120 | 0.880 | 20.0          |
| BB13333 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 163       | 53.4     | 45.0 to 55.0 |     |             | 0.612 | 10.0          |
| BB13332 | Fluoride                   | mg/L  | 0.0225  | 0.100 | 2.50  | 2.79 | 0.149     | 2.63     | 2.25 to 2.75 | 106 | 80.0 to 120 | 4.11  | 20.0          |

## **Certificate Of Analysis**



Description: Gorgas Landfill Field Blank-1Location Code:WMWGORLFFBCollected:7/21/21 15:00

Customer ID:

Submittal Date: 7/22/21 10:16

Laboratory ID Number: BB13329

| Name                                  | Prepared      | Analyzed     | Vio Spec     | DF   | Results      | Units          | MDL      | RL         | Q |
|---------------------------------------|---------------|--------------|--------------|------|--------------|----------------|----------|------------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: ABB     |              |      | Preparati    | on Method: EPA | 1638     |            | _ |
| * Boron, Total                        | 7/28/21 08:00 | 7/28/21 14:4 | <b>1</b> 1 1 | .015 | Not Detected | mg/L           | 0.030000 | 0.1015     | U |
| * Calcium, Total                      | 7/28/21 08:00 | 7/28/21 14:4 | <b>1</b> 1 1 | .015 | Not Detected | mg/L           | 0.070035 | 0.406      | U |
| * Iron, Total                         | 7/28/21 08:00 | 7/28/21 14:4 | 11 1         | .015 | Not Detected | mg/L           | 0.008120 | 0.0406     | U |
| * Lithium, Total                      | 7/28/21 08:00 | 7/28/21 14:4 | <b>1</b> 1 1 | .015 | Not Detected | mg/L           | 0.007105 | 0.01999956 | U |
| * Magnesium, Total                    | 7/28/21 08:00 | 7/28/21 14:4 | 11 1         | .015 | Not Detected | mg/L           | 0.021315 | 0.406      | U |
| * Sodium, Total                       | 7/28/21 08:00 | 7/28/21 14:4 | 11 1         | .015 | Not Detected | mg/L           | 0.03045  | 0.406      | U |
| Analytical Method: EPA 200.8          | Anal          | yst: ABB     |              |      | Preparati    | on Method: EPA | 1638     |            |   |
| * Antimony, Total                     | 7/23/21 13:00 | 7/26/21 15:  | 11 1         | .015 | Not Detected | mg/L           | 0.000508 | 0.001015   | U |
| * Arsenic, Total                      | 7/23/21 13:00 | 7/26/21 15:  | 11 1         | .015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Barium, Total                       | 7/23/21 13:00 | 7/26/21 15:1 | 11 1         | .015 | Not Detected | mg/L           | 0.000102 | 0.000203   | U |
| * Beryllium, Total                    | 7/23/21 13:00 | 7/26/21 15:  | 11 1         | .015 | Not Detected | mg/L           | 0.000406 | 0.001015   | U |
| * Cadmium, Total                      | 7/23/21 13:00 | 7/26/21 15:  | 11 1         | .015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Chromium, Total                     | 7/23/21 13:00 | 7/26/21 15:  | 11 1         | .015 | Not Detected | mg/L           | 0.000203 | 0.001015   | U |
| * Cobalt, Total                       | 7/23/21 13:00 | 7/26/21 15:  | 11 1         | .015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Lead, Total                         | 7/23/21 13:00 | 7/26/21 15:  | 11 1         | .015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 7/23/21 13:00 | 7/26/21 15:  | 11 1         | .015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| * Manganese, Total                    | 7/23/21 13:00 | 7/26/21 15:  | 11 1         | .015 | 0.000102     | mg/L           | 0.000068 | 0.000203   | J |
| * Potassium, Total                    | 7/23/21 13:00 | 7/26/21 15:1 | 11 1         | .015 | Not Detected | mg/L           | 0.169505 | 0.5075     | U |
| * Selenium, Total                     | 7/23/21 13:00 | 7/26/21 15:  | 11 1         | .015 | Not Detected | mg/L           | 0.000508 | 0.001015   | U |
| * Thallium, Total                     | 7/23/21 13:00 | 7/26/21 15:1 | 11 1         | .015 | Not Detected | mg/L           | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 245.1          | Anal          | yst: ABB     |              |      |              |                |          |            |   |
| * Mercury, Total by CVAA              | 7/22/21 15:11 | 7/22/21 20:4 | 14 1         |      | Not Detected | mg/L           | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2540C           | Anal          | yst: CNJ     |              |      |              |                |          |            |   |
| * Solids, Dissolved                   | 7/23/21 10:25 | 7/27/21 10:2 | 25 1         |      | Not Detected | mg/L           |          | 25         | U |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |              |      |              |                |          |            |   |
| * Chloride                            | 7/26/21 10:50 | 7/26/21 10:5 | 50 1         |      | Not Detected | mg/L           | 0.50     | 1          | U |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |              |      |              |                |          |            |   |
| * Fluoride                            | 7/26/21 13:52 | 7/26/21 13:5 | 52 1         |      | Not Detected | mg/L           | 0.06     | 0.1        | U |
| Analytical Method: SM4500SO4 E 2011   | Anai          | yst: JCC     |              |      |              |                |          |            |   |
| * Sulfate                             | 7/23/21 14:34 | •            | 34 1         |      | Not Detected | ma/L           | 0.50     | 1          | U |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



Customer Account: WMWGORLFFB

Customer ID:

**Sample Date:** 7/21/21 15:00

Dallara Data

**Delivery Date:** 7/22/21 10:16

Description: Gorgas Landfill Field Blank-1

Laboratory ID Number: BB13329

|         |                        |       |            | MB       |       |        |        |          | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|--------|--------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS     | MSD    | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| BB13332 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0866 | 0.0884 | 0.0932   | 0.0850 to 0.115    | 86.6  | 70.0 to 130 | 2.06  | 20.0          |
| BB13332 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.110  | 0.110  | 0.112    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.115  | 0.120  | 0.0990   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 4.26  | 20.0          |
| BB13332 | Boron, Total           | mg/L  | 0.000162   | 0.0650   | 1.00  | 1.11   | 1.11   | 0.979    | 0.850 to 1.15      | 101   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.102  | 0.102  | 0.103    | 0.0850 to 0.115    | 102   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Sodium, Total          | mg/L  | -0.000208  | 0.0660   | 5.00  | 138    | 141    | 4.85     | 4.25 to 5.75       | 40.0  | 70.0 to 130 | 2.15  | 20.0          |
| BB13332 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.100  | 0.0983 | 0.0998   | 0.0850 to 0.115    | 100   | 70.0 to 130 | 1.71  | 20.0          |
| BB13332 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.24   | 1.24   | 0.100    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.102  | 0.0992 | 0.0982   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.78  | 20.0          |
| BB13332 | Magnesium, Total       | mg/L  | -0.00978   | 0.0462   | 5.00  | 174    | 177    | 4.88     | 4.25 to 5.75       | 20.0  | 70.0 to 130 | 1.71  | 20.0          |
| BB13332 | Lithium, Total         | mg/L  | -9.150E-05 | 0.0154   | 0.200 | 0.492  | 0.492  | 0.196    | 0.170 to 0.230     | 126   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.0039 | 0.0039 | 0.00386  | 0.00340 to 0.00460 | 97.5  | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0986 | 0.0959 | 0.0988   | 0.0850 to 0.115    | 98.6  | 70.0 to 130 | 2.78  | 20.0          |
| BB13332 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.108  | 0.106  | 0.110    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 1.87  | 20.0          |
| BB13332 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.108  | 0.107  | 0.106    | 0.0850 to 0.115    | 107   | 70.0 to 130 | 0.930 | 20.0          |
| BB13332 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.5   | 16.1   | 10.5     | 8.50 to 11.5       | 104   | 70.0 to 130 | 2.45  | 20.0          |
| BB13332 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0993 | 0.101  | 0.0929   | 0.0850 to 0.115    | 99.3  | 70.0 to 130 | 1.70  | 20.0          |
| BB13332 | Iron, Total            | mg/L  | -0.000465  | 0.0176   | 0.2   | 6.85   | 7.00   | 0.197    | 0.170 to 0.230     | 20.0  | 70.0 to 130 | 2.17  | 20.0          |
| BB13332 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334    | 342    | 4.97     | 4.25 to 5.75       | -40.0 | 70.0 to 130 | 2.37  | 20.0          |
| BB13332 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.0996 | 0.0984 | 0.101    | 0.0850 to 0.115    | 99.4  | 70.0 to 130 | 1.21  | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORLFFB

Sample Date:

7/21/21 15:00

**Customer ID:** 

**Delivery Date:** 

7/22/21 10:16

Description: Gorgas Landfill Field Blank-1

Laboratory ID Number: BB13329

|         |                   |       |         | MB    |       |      | Sample    |          | Standard     |     | Rec         |       | Prec          |
|---------|-------------------|-------|---------|-------|-------|------|-----------|----------|--------------|-----|-------------|-------|---------------|
| Sample  | Analysis          | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec | Limit       | Prec  | <u>Li</u> mit |
| BB13332 | Sulfate           | mg/L  | -0.454  | 1.00  | 1600  | 3090 | 1470      | 18.4     | 18.0 to 22.0 | 101 | 80.0 to 120 | 0.678 | 20.0          |
| BB13333 | Solids, Dissolved | mg/L  | 1.00    | 25.0  |       |      | 3060      | 57.0     | 40.0 to 60.0 |     |             | 1.13  | 5.00          |
| BB13332 | Fluoride          | mg/L  | 0.0225  | 0.100 | 2.50  | 2.79 | 0.149     | 2.63     | 2.25 to 2.75 | 106 | 80.0 to 120 | 4.11  | 20.0          |
| BB13332 | Chloride          | mg/L  | -0.0654 | 1.00  | 160   | 232  | 68.5      | 9.92     | 9.00 to 11.0 | 103 | 80.0 to 120 | 0.880 | 20.0          |

## **Certificate Of Analysis**



Description: Gorgas Landfill Equipment Blank-1Location Code:WMWGORLFEBCollected:7/21/21 15:10

**Customer ID:** 

Submittal Date: 7/22/21 10:16

Laboratory ID Number: BB13330

| Name                                  | Prepared      | Analyzed     | Vio Spec     | DF    | Results      | Units         | MDL      | RL         | Q |
|---------------------------------------|---------------|--------------|--------------|-------|--------------|---------------|----------|------------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: ABB     |              |       | Preparati    | on Method: EP | A 1638   |            |   |
| * Boron, Total                        | 7/28/21 08:00 | 7/28/21 14:4 | <b>4</b> 5 1 | 1.015 | Not Detected | mg/L          | 0.030000 | 0.1015     | U |
| * Calcium, Total                      | 7/28/21 08:00 | 7/28/21 14:4 | <b>4</b> 5 1 | 1.015 | Not Detected | mg/L          | 0.070035 | 0.406      | U |
| * Iron, Total                         | 7/28/21 08:00 | 7/28/21 14:4 | 45 1         | 1.015 | Not Detected | mg/L          | 0.008120 | 0.0406     | U |
| * Lithium, Total                      | 7/28/21 08:00 | 7/28/21 14:4 | 45 1         | 1.015 | Not Detected | mg/L          | 0.007105 | 0.01999956 | U |
| * Magnesium, Total                    | 7/28/21 08:00 | 7/28/21 14:4 | 45 1         | 1.015 | Not Detected | mg/L          | 0.021315 | 0.406      | U |
| * Sodium, Total                       | 7/28/21 08:00 | 7/28/21 14:4 | 45 1         | 1.015 | Not Detected | mg/L          | 0.03045  | 0.406      | U |
| Analytical Method: EPA 200.8          | Anal          | yst: ABB     |              |       | Preparati    | on Method: EP | A 1638   |            |   |
| * Antimony, Total                     | 7/23/21 13:00 | 7/26/21 15:  | 15 1         | 1.015 | Not Detected | mg/L          | 0.000508 | 0.001015   | U |
| * Arsenic, Total                      | 7/23/21 13:00 | 7/26/21 15:  | 15 1         | 1.015 | 0.0000837    | mg/L          | 0.000068 | 0.000203   | J |
| * Barium, Total                       | 7/23/21 13:00 | 7/26/21 15:  | 15 1         | 1.015 | Not Detected | mg/L          | 0.000102 | 0.000203   | U |
| * Beryllium, Total                    | 7/23/21 13:00 | 7/26/21 15:  | 15 1         | 1.015 | Not Detected | mg/L          | 0.000406 | 0.001015   | U |
| * Cadmium, Total                      | 7/23/21 13:00 | 7/26/21 15:  | 15 1         | 1.015 | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Chromium, Total                     | 7/23/21 13:00 | 7/26/21 15:  | 15 1         | 1.015 | Not Detected | mg/L          | 0.000203 | 0.001015   | U |
| * Cobalt, Total                       | 7/23/21 13:00 | 7/26/21 15:  | 15 1         | 1.015 | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Lead, Total                         | 7/23/21 13:00 | 7/26/21 15:  | 15 1         | 1.015 | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 7/23/21 13:00 | 7/26/21 15:  | 15 1         | 1.015 | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Manganese, Total                    | 7/23/21 13:00 | 7/26/21 15:  | 15 1         | 1.015 | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Potassium, Total                    | 7/23/21 13:00 | 7/26/21 15:  | 15 1         | 1.015 | Not Detected | mg/L          | 0.169505 | 0.5075     | U |
| * Selenium, Total                     | 7/23/21 13:00 | 7/26/21 15:  | 15 1         | 1.015 | Not Detected | mg/L          | 0.000508 | 0.001015   | U |
| * Thallium, Total                     | 7/23/21 13:00 | 7/26/21 15:  | 15 1         | 1.015 | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 245.1          | Anal          | yst: ABB     |              |       |              |               |          |            |   |
| * Mercury, Total by CVAA              | 7/22/21 15:11 | 7/22/21 20:4 | 48 1         | 1     | Not Detected | mg/L          | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2540C           | Anal          | yst: CNJ     |              |       |              |               |          |            |   |
| * Solids, Dissolved                   | 7/23/21 10:25 | 7/27/21 10:2 | 25 1         | 1     | Not Detected | mg/L          |          | 25         | U |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |              |       |              |               |          |            |   |
| * Chloride                            | 7/26/21 10:52 | 7/26/21 10:  | 52 1         | 1     | Not Detected | mg/L          | 0.50     | 1          | U |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |              |       |              |               |          |            |   |
| * Fluoride                            | 7/26/21 13:54 | 7/26/21 13:  | 54 1         | 1     | Not Detected | mg/L          | 0.06     | 0.1        | U |
| Analytical Method: SM4500SO4 E 2011   | Anai          | yst: JCC     |              |       |              |               |          |            |   |
| * Sulfate                             | 7/23/21 14:35 | •            | 35 ′         | 1     | Not Detected | ma/L          | 0.50     | 1          | U |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



Customer Account: WMWGORLFEB

Customer ID:

**Sample Date:** 7/21/21 15:10

Delivery Date:

7/22/21 10:16

Description: Gorgas Landfill Equipment Blank-1

Laboratory ID Number: BB13330

|         |                        |       |            | MB       |       |        |        |          | Standard           |       | Rec         | •     | Prec          |
|---------|------------------------|-------|------------|----------|-------|--------|--------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS     | MSD    | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| BB13332 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0866 | 0.0884 | 0.0932   | 0.0850 to 0.115    | 86.6  | 70.0 to 130 | 2.06  | 20.0          |
| BB13332 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.110  | 0.110  | 0.112    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.100  | 0.0983 | 0.0998   | 0.0850 to 0.115    | 100   | 70.0 to 130 | 1.71  | 20.0          |
| BB13332 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.115  | 0.120  | 0.0990   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 4.26  | 20.0          |
| BB13332 | Boron, Total           | mg/L  | 0.000162   | 0.0650   | 1.00  | 1.11   | 1.11   | 0.979    | 0.850 to 1.15      | 101   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.102  | 0.102  | 0.103    | 0.0850 to 0.115    | 102   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Sodium, Total          | mg/L  | -0.000208  | 0.0660   | 5.00  | 138    | 141    | 4.85     | 4.25 to 5.75       | 40.0  | 70.0 to 130 | 2.15  | 20.0          |
| BB13332 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.0039 | 0.0039 | 0.00386  | 0.00340 to 0.00460 | 97.5  | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0986 | 0.0959 | 0.0988   | 0.0850 to 0.115    | 98.6  | 70.0 to 130 | 2.78  | 20.0          |
| BB13332 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.108  | 0.106  | 0.110    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 1.87  | 20.0          |
| BB13332 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.108  | 0.107  | 0.106    | 0.0850 to 0.115    | 107   | 70.0 to 130 | 0.930 | 20.0          |
| BB13332 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.5   | 16.1   | 10.5     | 8.50 to 11.5       | 104   | 70.0 to 130 | 2.45  | 20.0          |
| BB13332 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0993 | 0.101  | 0.0929   | 0.0850 to 0.115    | 99.3  | 70.0 to 130 | 1.70  | 20.0          |
| BB13332 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.24   | 1.24   | 0.100    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.102  | 0.0992 | 0.0982   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.78  | 20.0          |
| BB13332 | Magnesium, Total       | mg/L  | -0.00978   | 0.0462   | 5.00  | 174    | 177    | 4.88     | 4.25 to 5.75       | 20.0  | 70.0 to 130 | 1.71  | 20.0          |
| BB13332 | Lithium, Total         | mg/L  | -9.150E-05 | 0.0154   | 0.200 | 0.492  | 0.492  | 0.196    | 0.170 to 0.230     | 126   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Iron, Total            | mg/L  | -0.000465  | 0.0176   | 0.2   | 6.85   | 7.00   | 0.197    | 0.170 to 0.230     | 20.0  | 70.0 to 130 | 2.17  | 20.0          |
| BB13332 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334    | 342    | 4.97     | 4.25 to 5.75       | -40.0 | 70.0 to 130 | 2.37  | 20.0          |
| BB13332 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.0996 | 0.0984 | 0.101    | 0.0850 to 0.115    | 99.4  | 70.0 to 130 | 1.21  | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORLFEB

Sample Date:

7/21/21 15:10

**Customer ID:** 

**Delivery Date:** 

7/22/21 10:16

Description: Gorgas Landfill Equipment Blank-1

Laboratory ID Number: BB13330

|         |                   |       |         | MB    |       |      | Sample    |          | Standard     |     | Rec         |       | Prec          |
|---------|-------------------|-------|---------|-------|-------|------|-----------|----------|--------------|-----|-------------|-------|---------------|
| Sample  | Analysis          | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec | Limit       | Prec  | <u>Li</u> mit |
| BB13332 | Sulfate           | mg/L  | -0.454  | 1.00  | 1600  | 3090 | 1470      | 18.4     | 18.0 to 22.0 | 101 | 80.0 to 120 | 0.678 | 20.0          |
| BB13333 | Solids, Dissolved | mg/L  | 1.00    | 25.0  |       |      | 3060      | 57.0     | 40.0 to 60.0 |     |             | 1.13  | 5.00          |
| BB13332 | Fluoride          | mg/L  | 0.0225  | 0.100 | 2.50  | 2.79 | 0.149     | 2.63     | 2.25 to 2.75 | 106 | 80.0 to 120 | 4.11  | 20.0          |
| BB13332 | Chloride          | mg/L  | -0.0654 | 1.00  | 160   | 232  | 68.5      | 9.92     | 9.00 to 11.0 | 103 | 80.0 to 120 | 0.880 | 20.0          |

## Certificate Of Analysis



Description: Gorgas Landfill - MW-11Location Code:WMWGORLFCollected:7/21/21 11:34

Customer ID:

Laboratory ID Number: BB13331 Submittal Date: 7/22/21 10:16

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units         | MDL      | RL         | Q |
|------------------------------|---------------|--------------|-------------|--------------|---------------|----------|------------|---|
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             | Preparat     | ion Method: E | EPA 1638 |            |   |
| * Boron, Total               | 7/28/21 08:00 | 7/28/21 14:4 | 8 1.015     | 0.104        | mg/L          | 0.030000 | 0.1015     |   |
| * Calcium, Total             | 7/28/21 08:00 | 7/28/21 16:0 | 1 10.15     | 322          | mg/L          | 0.70035  | 4.06       |   |
| * Iron, Total                | 7/28/21 08:00 | 7/28/21 14:4 | 8 1.015     | 3.97         | mg/L          | 0.008120 | 0.0406     |   |
| * Lithium, Total             | 7/28/21 08:00 | 7/28/21 14:4 | 8 1.015     | 0.271        | mg/L          | 0.007105 | 0.01999956 | ; |
| * Magnesium, Total           | 7/28/21 08:00 | 7/28/21 16:0 | 1 10.15     | 164          | mg/L          | 0.21315  | 4.06       |   |
| * Sodium, Total              | 7/28/21 08:00 | 7/28/21 16:0 | 1 10.15     | 143          | mg/L          | 0.3045   | 4.06       |   |
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             |              |               |          |            |   |
| * Iron, Dissolved            | 7/28/21 09:25 | 7/28/21 11:3 | 4 1.015     | 4.05         | mg/L          | 0.008120 | 0.0406     |   |
| Analytical Method: EPA 200.8 | Anal          | yst: ABB     |             | Preparati    | ion Method: E | EPA 1638 |            |   |
| * Antimony, Total            | 7/23/21 13:00 | 7/26/21 15:1 | 9 1.015     | Not Detected | mg/L          | 0.000508 | 0.001015   | U |
| * Arsenic, Total             | 7/23/21 13:00 | 7/26/21 15:1 | 9 1.015     | 0.000901     | mg/L          | 0.000068 | 0.000203   |   |
| * Barium, Total              | 7/23/21 13:00 | 7/26/21 15:1 | 9 1.015     | 0.0159       | mg/L          | 0.000102 | 0.000203   |   |
| * Beryllium, Total           | 7/23/21 13:00 | 7/26/21 15:1 | 9 1.015     | Not Detected | mg/L          | 0.000406 | 0.001015   | U |
| * Cadmium, Total             | 7/23/21 13:00 | 7/26/21 15:1 | 9 1.015     | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Chromium, Total            | 7/23/21 13:00 | 7/26/21 15:1 | 9 1.015     | Not Detected | mg/L          | 0.000203 | 0.001015   | U |
| * Cobalt, Total              | 7/23/21 13:00 | 7/26/21 15:1 | 9 1.015     | 0.000254     | mg/L          | 0.000068 | 0.000203   |   |
| * Lead, Total                | 7/23/21 13:00 | 7/26/21 15:1 | 9 1.015     | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| * Molybdenum, Total          | 7/23/21 13:00 | 7/26/21 15:1 | 9 1.015     | 0.00130      | mg/L          | 0.000068 | 0.000203   |   |
| * Potassium, Total           | 7/23/21 13:00 | 7/26/21 15:1 | 9 1.015     | 6.51         | mg/L          | 0.169505 | 0.5075     |   |
| * Manganese, Total           | 7/23/21 13:00 | 7/26/21 15:1 | 9 1.015     | 1.15         | mg/L          | 0.000068 | 0.000203   |   |
| * Selenium, Total            | 7/23/21 13:00 | 7/26/21 15:1 | 9 1.015     | Not Detected | mg/L          | 0.000508 | 0.001015   | U |
| * Thallium, Total            | 7/23/21 13:00 | 7/26/21 15:1 | 9 1.015     | Not Detected | mg/L          | 0.000068 | 0.000203   | U |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             |              |               |          |            |   |
| * Manganese, Dissolved       | 7/23/21 13:21 | 7/26/21 13:2 | 1 1.015     | 1.16         | mg/L          | 0.000068 | 0.000203   |   |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB     |             |              |               |          |            |   |
| * Mercury, Total by CVAA     | 7/22/21 15:11 | 7/22/21 20:5 | 1 1         | Not Detected | mg/L          | 0.0003   | 0.0005     | U |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |              |               |          |            |   |
| Alkalinity, Total as CaCO3   | 7/30/21 10:55 |              | 8 1         | 276          | mg/L          |          | 0.1        |   |
| Analytical Method: SM 2540C  | Anal          | yst: CNJ     |             |              |               |          |            |   |
| * Solids, Dissolved          | 7/23/21 10:25 | 7/27/21 10:2 | 5 1         | 2210         | mg/L          |          | 147.1      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Landfill - MW-11

Location Code: Collected:

WMWGORLF 7/21/21 11:34

Customer ID:

Submittal Date:

7/22/21 10:16

| Laboratory ID Number: BB13331         |               |            |          |    | Subii   | iillai Dale: | 1/22/21 10 | .10 |    |
|---------------------------------------|---------------|------------|----------|----|---------|--------------|------------|-----|----|
| Name                                  | Prepared      | Analyzed   | Vio Spec | DF | Results | Units        | MDL        | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG  |          |    |         |              |            |     | _  |
| Bicarbonate Alkalinity, (calc.)       | 7/30/21 10:55 | 7/30/21 11 | :58 1    |    | 276     | mg/L         |            |     |    |
| Carbonate Alkalinity, (calc.)         | 7/30/21 10:55 | 7/30/21 11 | :58 1    |    | 0.14    | mg/L         |            |     |    |
| Analytical Method: SM4500CI E         | Ana           | lyst: JCC  |          |    |         |              |            |     |    |
| * Chloride                            | 7/26/21 11:11 | 7/26/21 11 | :11 1    | 0  | 73.8    | mg/L         | 5.00       | 10  |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC  |          |    |         |              |            |     |    |
| * Fluoride                            | 7/26/21 13:55 | 7/26/21 13 | :55 1    |    | 0.160   | mg/L         | 0.06       | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC  |          |    |         |              |            |     |    |
| * Sulfate                             | 7/23/21 14:36 | 7/23/21 14 | :36 4    | 0  | 1420    | mg/L         | 20.00      | 40  |    |
| Analytical Method: Field Measurements | Ana           | lyst: DKG  |          |    |         |              |            |     |    |
| Conductivity                          | 7/21/21 11:31 | 7/21/21 11 | :31      |    | 2560.30 | uS/cm        |            |     | FA |
| рН                                    | 7/21/21 11:31 | 7/21/21 11 | :31      |    | 6.74    | SU           |            |     | FA |
| Temperature                           | 7/21/21 11:31 | 7/21/21 11 | :31      |    | 22.57   | С            |            |     | FA |
| Turbidity                             | 7/21/21 11:31 | 7/21/21 11 | :31      |    | 0.68    | NTU          |            |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



Customer Account: WMWGORLF Sample Date: 7/21/21 11:34

Customer ID:

**Delivery Date:** 7/22/21 10:16

Description: Gorgas Landfill - MW-11

Laboratory ID Number: BB13331

|         |                        |       |            | MB       |       |        |        |          | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|--------|--------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS     | MSD    | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| B13332  | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.115  | 0.120  | 0.0990   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 4.26  | 20.0          |
| B13332  | Boron, Total           | mg/L  | 0.000162   | 0.0650   | 1.00  | 1.11   | 1.11   | 0.979    | 0.850 to 1.15      | 101   | 70.0 to 130 | 0.00  | 20.0          |
| 3B13332 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.102  | 0.102  | 0.103    | 0.0850 to 0.115    | 102   | 70.0 to 130 | 0.00  | 20.0          |
| 3B13332 | Sodium, Total          | mg/L  | -0.000208  | 0.0660   | 5.00  | 138    | 141    | 4.85     | 4.25 to 5.75       | 40.0  | 70.0 to 130 | 2.15  | 20.0          |
| B13332  | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0866 | 0.0884 | 0.0932   | 0.0850 to 0.115    | 86.6  | 70.0 to 130 | 2.06  | 20.0          |
| B13332  | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.110  | 0.110  | 0.112    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0          |
| B13332  | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.100  | 0.0983 | 0.0998   | 0.0850 to 0.115    | 100   | 70.0 to 130 | 1.71  | 20.0          |
| B13333  | Manganese, Dissolved   | mg/L  | 0.0000146  | 0.000147 | 0.100 | 1.61   | 1.60   | 0.108    | 0.0850 to 0.115    | 60.0  | 70.0 to 130 | 0.623 | 20.0          |
| B13332  | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.0039 | 0.0039 | 0.00386  | 0.00340 to 0.00460 | 97.5  | 70.0 to 130 | 0.00  | 20.0          |
| B13332  | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0986 | 0.0959 | 0.0988   | 0.0850 to 0.115    | 98.6  | 70.0 to 130 | 2.78  | 20.0          |
| B13332  | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.108  | 0.106  | 0.110    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 1.87  | 20.0          |
| B13332  | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.108  | 0.107  | 0.106    | 0.0850 to 0.115    | 107   | 70.0 to 130 | 0.930 | 20.0          |
| B13332  | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.5   | 16.1   | 10.5     | 8.50 to 11.5       | 104   | 70.0 to 130 | 2.45  | 20.0          |
| B13332  | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0993 | 0.101  | 0.0929   | 0.0850 to 0.115    | 99.3  | 70.0 to 130 | 1.70  | 20.0          |
| B13332  | Iron, Total            | mg/L  | -0.000465  | 0.0176   | 0.2   | 6.85   | 7.00   | 0.197    | 0.170 to 0.230     | 20.0  | 70.0 to 130 | 2.17  | 20.0          |
| B13332  | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334    | 342    | 4.97     | 4.25 to 5.75       | -40.0 | 70.0 to 130 | 2.37  | 20.0          |
| B13332  | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.0996 | 0.0984 | 0.101    | 0.0850 to 0.115    | 99.4  | 70.0 to 130 | 1.21  | 20.0          |
| B13333  | Iron, Dissolved        | mg/L  | -0.000913  | 0.0176   | 0.2   | 2.09   | 2.06   | 0.197    | 0.170 to 0.230     | 105   | 70.0 to 130 | 1.45  | 20.0          |
| B13332  | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.24   | 1.24   | 0.100    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0          |
| B13332  | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.102  | 0.0992 | 0.0982   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.78  | 20.0          |
| B13332  | Magnesium, Total       | mg/L  | -0.00978   | 0.0462   | 5.00  | 174    | 177    | 4.88     | 4.25 to 5.75       | 20.0  | 70.0 to 130 | 1.71  | 20.0          |
| B13332  | Lithium, Total         | mg/L  | -9.150E-05 | 0.0154   | 0.200 | 0.492  | 0.492  | 0.196    | 0.170 to 0.230     | 126   | 70.0 to 130 | 0.00  | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

7/21/21 11:34

**Customer ID:** 

**Delivery Date:** 

7/22/21 10:16

Description: Gorgas Landfill - MW-11

Laboratory ID Number: BB13331

|   |         |                            |       |         | MB    |       |      | Sample    |          | Standard     |     | Rec         |       | Prec          |
|---|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|-----|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec | Limit       | Prec  | <u>Li</u> mit |
| E | BB13332 | Sulfate                    | mg/L  | -0.454  | 1.00  | 1600  | 3090 | 1470      | 18.4     | 18.0 to 22.0 | 101 | 80.0 to 120 | 0.678 | 20.0          |
| E | BB13333 | Solids, Dissolved          | mg/L  | 1.00    | 25.0  |       |      | 3060      | 57.0     | 40.0 to 60.0 |     |             | 1.13  | 5.00          |
| E | BB13332 | Chloride                   | mg/L  | -0.0654 | 1.00  | 160   | 232  | 68.5      | 9.92     | 9.00 to 11.0 | 103 | 80.0 to 120 | 0.880 | 20.0          |
| E | BB13333 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 163       | 53.4     | 45.0 to 55.0 |     |             | 0.612 | 10.0          |
| E | BB13332 | Fluoride                   | mg/L  | 0.0225  | 0.100 | 2.50  | 2.79 | 0.149     | 2.63     | 2.25 to 2.75 | 106 | 80.0 to 120 | 4.11  | 20.0          |
|   |         |                            |       |         |       |       |      |           |          |              |     |             |       |               |

## Certificate Of Analysis



Description: Gorgas Landfill - MW-20Location Code:WMWGORLFCollected:7/21/21 12:47

Customer ID:

**Submittal Date:** 7/22/21 10:16

Laboratory ID Number: BB13332

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units       | MDL      | RL         | Q  |
|------------------------------|---------------|--------------|-------------|--------------|-------------|----------|------------|----|
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             | Preparat     | ion Method: | EPA 1638 |            |    |
| * Boron, Total               | 7/28/21 08:00 | 7/28/21 14:5 | 1.015       | 0.0999       | mg/L        | 0.030000 | 0.1015     | J  |
| * Calcium, Total             | 7/28/21 08:00 | 7/28/21 16:0 | 05 10.15    | 336          | mg/L        | 0.70035  | 4.06       | R/ |
| * Iron, Total                | 7/28/21 08:00 | 7/28/21 16:0 | 05 10.15    | 6.81         | mg/L        | 0.08120  | 0.406      | R/ |
| * Lithium, Total             | 7/28/21 08:00 | 7/28/21 14:5 | 1.015       | 0.239        | mg/L        | 0.007105 | 0.01999956 |    |
| * Magnesium, Total           | 7/28/21 08:00 | 7/28/21 16:0 | 05 10.15    | 173          | mg/L        | 0.21315  | 4.06       | R/ |
| * Sodium, Total              | 7/28/21 08:00 | 7/28/21 16:0 | 05 10.15    | 136          | mg/L        | 0.3045   | 4.06       | R/ |
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             |              |             |          |            |    |
| * Iron, Dissolved            | 7/28/21 09:25 | 7/28/21 13:  | 14 10.15    | 6.83         | mg/L        | 0.08120  | 0.406      |    |
| Analytical Method: EPA 200.8 | Anal          | yst: ABB     |             | Preparat     | ion Method: | EPA 1638 |            |    |
| * Antimony, Total            | 7/23/21 13:00 | 7/26/21 15:2 | 22 1.015    | Not Detected | mg/L        | 0.000508 | 0.001015   | U  |
| * Arsenic, Total             | 7/23/21 13:00 | 7/26/21 15:2 | 22 1.015    | 0.000835     | mg/L        | 0.000068 | 0.000203   |    |
| * Barium, Total              | 7/23/21 13:00 | 7/26/21 15:2 | 22 1.015    | 0.0160       | mg/L        | 0.000102 | 0.000203   |    |
| * Beryllium, Total           | 7/23/21 13:00 | 7/26/21 15:2 | 22 1.015    | Not Detected | mg/L        | 0.000406 | 0.001015   | U  |
| * Cadmium, Total             | 7/23/21 13:00 | 7/26/21 15:2 | 22 1.015    | Not Detected | mg/L        | 0.000068 | 0.000203   | U  |
| * Chromium, Total            | 7/23/21 13:00 | 7/26/21 15:2 | 22 1.015    | Not Detected | mg/L        | 0.000203 | 0.001015   | U  |
| * Cobalt, Total              | 7/23/21 13:00 | 7/26/21 15:2 | 22 1.015    | 0.000231     | mg/L        | 0.000068 | 0.000203   |    |
| * Lead, Total                | 7/23/21 13:00 | 7/26/21 15:2 | 22 1.015    | Not Detected | mg/L        | 0.000068 | 0.000203   | U  |
| * Molybdenum, Total          | 7/23/21 13:00 | 7/26/21 15:2 | 22 1.015    | 0.00101      | mg/L        | 0.000068 | 0.000203   |    |
| * Potassium, Total           | 7/23/21 13:00 | 7/26/21 15:2 | 22 1.015    | 6.13         | mg/L        | 0.169505 | 0.5075     |    |
| * Manganese, Total           | 7/23/21 13:00 | 7/26/21 15:2 | 22 1.015    | 1.13         | mg/L        | 0.000068 | 0.000203   |    |
| * Selenium, Total            | 7/23/21 13:00 | 7/26/21 15:2 | 22 1.015    | Not Detected | mg/L        | 0.000508 | 0.001015   | U  |
| * Thallium, Total            | 7/23/21 13:00 | 7/26/21 15:2 | 22 1.015    | Not Detected | mg/L        | 0.000068 | 0.000203   | U  |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             |              |             |          |            |    |
| * Manganese, Dissolved       | 7/23/21 13:21 | 7/26/21 13:2 | 25 1.015    | 1.17         | mg/L        | 0.000068 | 0.000203   |    |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB     |             |              |             |          |            |    |
| * Mercury, Total by CVAA     | 7/22/21 15:11 | 7/22/21 20:5 | 55 1        | Not Detected | mg/L        | 0.0003   | 0.0005     | U  |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |              |             |          |            |    |
| Alkalinity, Total as CaCO3   | 7/30/21 10:55 |              | 58 1        | 288          | mg/L        |          | 0.1        |    |
| Analytical Method: SM 2540C  | Anal          | yst: CNJ     |             |              |             |          |            |    |
| * Solids, Dissolved          | 7/23/21 10:25 |              | 25 1        | 2320         | mg/L        |          | 147.1      |    |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Landfill - MW-20

Laboratory ID Number: BB13332

**Location Code:** 

WMWGORLF

Collected:

**Customer ID:** 

7/21/21 12:47

Submittal Date:

7/22/21 10:16

| Name                                  | Prepared      | Analyzed     | Vio Spec D | )F R | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|------------|------|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |            |      |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 7/30/21 10:55 | 7/30/21 11:5 | 58 1       | 2    | 288     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 7/30/21 10:55 | 7/30/21 11:5 | 58 1       | 0    | ).19    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |            |      |         |       |       |     |    |
| * Chloride                            | 7/26/21 11:12 | 7/26/21 11:1 | 12 16      | 6    | 67.9    | mg/L  | 8.00  | 16  |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |            |      |         |       |       |     |    |
| * Fluoride                            | 7/26/21 13:56 | 7/26/21 13:5 | 56 1       | 0    | ).143   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |            |      |         |       |       |     |    |
| * Sulfate                             | 7/23/21 14:38 | 7/23/21 14:3 | 88 80      | 1    | 480     | mg/L  | 40.00 | 80  |    |
| Analytical Method: Field Measurements | Ana           | lyst: DKG    |            |      |         |       |       |     |    |
| Conductivity                          | 7/21/21 12:43 | 7/21/21 12:4 | 13         | 2    | 2648.64 | uS/cm |       |     | FA |
| рН                                    | 7/21/21 12:43 | 7/21/21 12:4 | 13         | 6    | 6.60    | SU    |       |     | FA |
| Temperature                           | 7/21/21 12:43 | 7/21/21 12:4 | 13         | 2    | 20.65   | С     |       |     | FA |
| Turbidity                             | 7/21/21 12:43 | 7/21/21 12:4 | 13         | C    | ).81    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



Customer Account: WMWGORLF Sample Date:

7/21/21 12:47

**Customer ID:** 

**Delivery Date:** 7/22/21 10:16

Description: Gorgas Landfill - MW-20

Laboratory ID Number: BB13332

|         |                        |       |            | MB       |       |        |        |          | Standard           |       | Rec         |       | Prec          |
|---------|------------------------|-------|------------|----------|-------|--------|--------|----------|--------------------|-------|-------------|-------|---------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS     | MSD    | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mit |
| BB13332 | Beryllium, Total       | mg/L  | 0.0000379  | 0.000880 | 0.100 | 0.0866 | 0.0884 | 0.0932   | 0.0850 to 0.115    | 86.6  | 70.0 to 130 | 2.06  | 20.0          |
| BB13332 | Thallium, Total        | mg/L  | -0.000149  | 0.000147 | 0.100 | 0.110  | 0.110  | 0.112    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Barium, Total          | mg/L  | 0.0000005  | 0.000200 | 0.100 | 0.115  | 0.120  | 0.0990   | 0.0850 to 0.115    | 99.0  | 70.0 to 130 | 4.26  | 20.0          |
| BB13332 | Boron, Total           | mg/L  | 0.000162   | 0.0650   | 1.00  | 1.11   | 1.11   | 0.979    | 0.850 to 1.15      | 101   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Selenium, Total        | mg/L  | -0.0000428 | 0.00100  | 0.100 | 0.102  | 0.102  | 0.103    | 0.0850 to 0.115    | 102   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Sodium, Total          | mg/L  | -0.000208  | 0.0660   | 5.00  | 138    | 141    | 4.85     | 4.25 to 5.75       | 40.0  | 70.0 to 130 | 2.15  | 20.0          |
| BB13332 | Chromium, Total        | mg/L  | -0.000126  | 0.000440 | 0.100 | 0.100  | 0.0983 | 0.0998   | 0.0850 to 0.115    | 100   | 70.0 to 130 | 1.71  | 20.0          |
| BB13333 | Manganese, Dissolved   | mg/L  | 0.0000146  | 0.000147 | 0.100 | 1.61   | 1.60   | 0.108    | 0.0850 to 0.115    | 60.0  | 70.0 to 130 | 0.623 | 20.0          |
| BB13332 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.0039 | 0.0039 | 0.00386  | 0.00340 to 0.00460 | 97.5  | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0986 | 0.0959 | 0.0988   | 0.0850 to 0.115    | 98.6  | 70.0 to 130 | 2.78  | 20.0          |
| BB13332 | Lead, Total            | mg/L  | 0.0000005  | 0.000147 | 0.100 | 0.108  | 0.106  | 0.110    | 0.0850 to 0.115    | 108   | 70.0 to 130 | 1.87  | 20.0          |
| BB13332 | Arsenic, Total         | mg/L  | 0.0000404  | 0.000147 | 0.100 | 0.108  | 0.107  | 0.106    | 0.0850 to 0.115    | 107   | 70.0 to 130 | 0.930 | 20.0          |
| BB13332 | Potassium, Total       | mg/L  | 0.0209     | 0.367    | 10.0  | 16.5   | 16.1   | 10.5     | 8.50 to 11.5       | 104   | 70.0 to 130 | 2.45  | 20.0          |
| BB13332 | Antimony, Total        | mg/L  | 0.000065   | 0.00100  | 0.100 | 0.0993 | 0.101  | 0.0929   | 0.0850 to 0.115    | 99.3  | 70.0 to 130 | 1.70  | 20.0          |
| BB13332 | Iron, Total            | mg/L  | -0.000465  | 0.0176   | 0.2   | 6.85   | 7.00   | 0.197    | 0.170 to 0.230     | 20.0  | 70.0 to 130 | 2.17  | 20.0          |
| BB13332 | Calcium, Total         | mg/L  | 0.00423    | 0.152    | 5.00  | 334    | 342    | 4.97     | 4.25 to 5.75       | -40.0 | 70.0 to 130 | 2.37  | 20.0          |
| BB13332 | Cobalt, Total          | mg/L  | -0.000110  | 0.000147 | 0.100 | 0.0996 | 0.0984 | 0.101    | 0.0850 to 0.115    | 99.4  | 70.0 to 130 | 1.21  | 20.0          |
| BB13333 | Iron, Dissolved        | mg/L  | -0.000913  | 0.0176   | 0.2   | 2.09   | 2.06   | 0.197    | 0.170 to 0.230     | 105   | 70.0 to 130 | 1.45  | 20.0          |
| BB13332 | Manganese, Total       | mg/L  | 0.0000072  | 0.000147 | 0.100 | 1.24   | 1.24   | 0.100    | 0.0850 to 0.115    | 110   | 70.0 to 130 | 0.00  | 20.0          |
| BB13332 | Molybdenum, Total      | mg/L  | 0.0000058  | 0.000147 | 0.100 | 0.102  | 0.0992 | 0.0982   | 0.0850 to 0.115    | 101   | 70.0 to 130 | 2.78  | 20.0          |
| BB13332 | Magnesium, Total       | mg/L  | -0.00978   | 0.0462   | 5.00  | 174    | 177    | 4.88     | 4.25 to 5.75       | 20.0  | 70.0 to 130 | 1.71  | 20.0          |
| BB13332 | Lithium, Total         | mg/L  | -9.150E-05 | 0.0154   | 0.200 | 0.492  | 0.492  | 0.196    | 0.170 to 0.230     | 126   | 70.0 to 130 | 0.00  | 20.0          |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

7/21/21 12:47

**Customer ID:** 

**Delivery Date:** 

7/22/21 10:16

Description: Gorgas Landfill - MW-20

Laboratory ID Number: BB13332

|   |         |                            |       |         | MB    |       |      | Sample    |          | Standard     |     | Rec         |       | Prec  |
|---|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|-----|-------------|-------|-------|
|   | Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec | Limit       | Prec  | Limit |
| E | BB13333 | Solids, Dissolved          | mg/L  | 1.00    | 25.0  |       |      | 3060      | 57.0     | 40.0 to 60.0 |     |             | 1.13  | 5.00  |
| E | BB13332 | Chloride                   | mg/L  | -0.0654 | 1.00  | 160   | 232  | 68.5      | 9.92     | 9.00 to 11.0 | 103 | 80.0 to 120 | 0.880 | 20.0  |
| E | BB13332 | Sulfate                    | mg/L  | -0.454  | 1.00  | 1600  | 3090 | 1470      | 18.4     | 18.0 to 22.0 | 101 | 80.0 to 120 | 0.678 | 20.0  |
| E | BB13333 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 163       | 53.4     | 45.0 to 55.0 |     |             | 0.612 | 10.0  |
| E | BB13332 | Fluoride                   | mg/L  | 0.0225  | 0.100 | 2.50  | 2.79 | 0.149     | 2.63     | 2.25 to 2.75 | 106 | 80.0 to 120 | 4.11  | 20.0  |
|   |         |                            |       |         |       |       |      |           |          |              |     |             |       |       |

### Certificate Of Analysis



Description: Gorgas Landfill - MW-19Location Code:WMWGORLFCollected:7/21/21 14:01

Customer ID:

Laboratory ID Number: BB13333 Submittal Date: 7/22/21 10:16

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results     | Units         | MDL      | RL         | Q   |
|------------------------------|---------------|--------------|-------------|-------------|---------------|----------|------------|-----|
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             | Prepai      | ation Method: | EPA 1638 |            |     |
| * Boron, Total               | 7/28/21 08:00 | 7/28/21 15:  | 1.015       | 0.0350      | mg/L          | 0.030000 | 0.1015     | J   |
| * Calcium, Total             | 7/28/21 08:00 | 7/28/21 16:2 | 22 10.15    | 332         | mg/L          | 0.70035  | 4.06       | R/  |
| * Iron, Total                | 7/28/21 08:00 | 7/28/21 15:  | 1.015       | 2.55        | mg/L          | 0.008120 | 0.0406     |     |
| * Lithium, Total             | 7/28/21 08:00 | 7/28/21 15:  | 1.015       | 0.0617      | mg/L          | 0.007105 | 0.01999956 |     |
| * Magnesium, Total           | 7/28/21 08:00 | 7/28/21 16:2 | 22 10.15    | 344         | mg/L          | 0.21315  | 4.06       | R/  |
| * Sodium, Total              | 7/28/21 08:00 | 7/28/21 15:  | 1.015       | 35.3        | mg/L          | 0.03045  | 0.406      | R/  |
| Analytical Method: EPA 200.7 | Anal          | yst: ABB     |             |             |               |          |            |     |
| * Iron, Dissolved            | 7/28/21 09:25 | 7/28/21 11:4 | 1.015       | 1.88        | mg/L          | 0.008120 | 0.0406     |     |
| Analytical Method: EPA 200.8 | Anal          | yst: ABB     |             | Prepai      | ation Method: | EPA 1638 |            |     |
| * Antimony, Total            | 7/23/21 13:00 | 7/26/21 15:  | 51 1.015    | Not Detecte | ed mg/L       | 0.000508 | 0.001015   | U   |
| * Arsenic, Total             | 7/23/21 13:00 | 7/26/21 15:  | 51 1.015    | 0.000176    | mg/L          | 0.000068 | 0.000203   | J   |
| * Barium, Total              | 7/23/21 13:00 | 7/26/21 15:  | 51 1.015    | 0.0100      | mg/L          | 0.000102 | 0.000203   |     |
| * Beryllium, Total           | 7/23/21 13:00 | 7/26/21 15:  | 51 1.015    | Not Detecte | ed mg/L       | 0.000406 | 0.001015   | U   |
| * Cadmium, Total             | 7/23/21 13:00 | 7/26/21 15:  | 51 1.015    | Not Detecte | ed mg/L       | 0.000068 | 0.000203   | U   |
| * Chromium, Total            | 7/23/21 13:00 | 7/26/21 15:  | 51 1.015    | Not Detecte | ed mg/L       | 0.000203 | 0.001015   | U   |
| * Cobalt, Total              | 7/23/21 13:00 | 7/26/21 15:  | 51 1.015    | 0.0293      | mg/L          | 0.000068 | 0.000203   |     |
| * Lead, Total                | 7/23/21 13:00 | 7/26/21 15:  | 51 1.015    | Not Detecte | ed mg/L       | 0.000068 | 0.000203   | U   |
| * Molybdenum, Total          | 7/23/21 13:00 | 7/26/21 15:  | 51 1.015    | 0.000214    | mg/L          | 0.000068 | 0.000203   |     |
| * Potassium, Total           | 7/23/21 13:00 | 7/26/21 15:  | 51 1.015    | 6.12        | mg/L          | 0.169505 | 0.5075     |     |
| * Manganese, Total           | 7/23/21 13:00 | 7/26/21 23:3 | 35 5.075    | 1.52        | mg/L          | 0.000340 | 0.001015   | R.A |
| * Selenium, Total            | 7/23/21 13:00 | 7/26/21 15:5 | 51 1.015    | Not Detecte | ed mg/L       | 0.000508 | 0.001015   | U   |
| * Thallium, Total            | 7/23/21 13:00 | 7/26/21 15:  | 51 1.015    | Not Detecte | ed mg/L       | 0.000068 | 0.000203   | U   |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             |             |               |          |            |     |
| * Manganese, Dissolved       | 7/23/21 13:21 | 7/26/21 22:2 | 21 5.075    | 1.55        | mg/L          | 0.000340 | 0.001015   | R.A |
| Analytical Method: EPA 245.1 | Anal          | yst: ABB     |             |             |               |          |            |     |
| * Mercury, Total by CVAA     | 7/22/21 15:11 |              | 23 1        | Not Detecte | ed mg/L       | 0.0003   | 0.0005     | U   |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |             |               |          |            |     |
| Alkalinity, Total as CaCO3   | 7/30/21 10:55 | •            | 58 1        | 164         | mg/L          |          | 0.1        |     |
| Analytical Method: SM 2540C  |               | yst: CNJ     |             |             | -             |          |            |     |
| * Solids, Dissolved          | 7/23/21 10:25 | •            | 25 1        | 3130        | mg/L          |          | 147.1      |     |

MDL's and RL's are adjusted for sample dilution, as applicable

# Certificate Of Analysis



**Description:** Gorgas Landfill - MW-19

**Location Code:** 

WMWGORLF

Collected:

Customer ID: Submittal Date:

7/21/21 14:01

7/22/21 10:16

Laboratory ID Number: BB13333

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF  | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|-----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |          |     |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 7/30/21 10:55 | 7/30/21 11:5 | 8        | 1   | 164     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 7/30/21 10:55 | 7/30/21 11:5 | 8        | 1   | 0.04    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |          |     |         |       |       |     |    |
| * Chloride                            | 7/26/21 11:10 | 7/26/21 11:1 | 0        | 1   | 1.74    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |          |     |         |       |       |     |    |
| * Fluoride                            | 7/26/21 14:07 | 7/26/21 14:0 | 7        | 1   | 0.429   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |          |     |         |       |       |     |    |
| * Sulfate                             | 7/23/21 14:49 | 7/23/21 14:4 | .9       | 160 | 1990    | mg/L  | 80.00 | 160 |    |
| Analytical Method: Field Measurements | Ana           | lyst: DKG    |          |     |         |       |       |     |    |
| Conductivity                          | 7/21/21 13:58 | 7/21/21 13:5 | 8        |     | 2916.25 | uS/cm |       |     | FA |
| рН                                    | 7/21/21 13:58 | 7/21/21 13:5 | 8        |     | 6.23    | SU    |       |     | FA |
| Temperature                           | 7/21/21 13:58 | 7/21/21 13:5 | 8        |     | 21.11   | С     |       |     | FA |
| Turbidity                             | 7/21/21 13:58 | 7/21/21 13:5 | 8        |     | 4.91    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORLF **Sample Date:** 7/21/21 14:01

Customer ID: Delivery Date:

Customer ID:

7/22/21 10:16

Description: Gorgas Landfill - MW-19

Laboratory ID Number: BB13333

|         |                        |       |            | MB       |       |         |         |          | Standard           |       | Rec         |       | Pred         |
|---------|------------------------|-------|------------|----------|-------|---------|---------|----------|--------------------|-------|-------------|-------|--------------|
| Sample  | Analysis               | Units | MB         | Limit    | Spike | MS      | MSD     | Standard | Limit              | Rec   | Limit       | Prec  | <u>Li</u> mi |
| BB13333 | Thallium, Total        | mg/L  | -0.000148  | 0.000147 | 0.100 | 0.109   | 0.109   | 0.108    | 0.0850 to 0.115    | 109   | 70.0 to 130 | 0.00  | 20.0         |
| BB13333 | Manganese, Total       | mg/L  | 0.0000239  | 0.000147 | 0.100 | 1.57    | 1.62    | 0.102    | 0.0850 to 0.115    | 50.0  | 70.0 to 130 | 3.13  | 20.0         |
| BB13333 | Cadmium, Total         | mg/L  | 0.00000    | 0.000147 | 0.100 | 0.0976  | 0.0956  | 0.0986   | 0.0850 to 0.115    | 97.6  | 70.0 to 130 | 2.07  | 20.0         |
| BB13333 | Arsenic, Total         | mg/L  | 0.0000231  | 0.000147 | 0.100 | 0.109   | 0.108   | 0.108    | 0.0850 to 0.115    | 109   | 70.0 to 130 | 0.922 | 20.0         |
| BB13333 | Selenium, Total        | mg/L  | -0.0000159 | 0.00100  | 0.100 | 0.103   | 0.103   | 0.104    | 0.0850 to 0.115    | 103   | 70.0 to 130 | 0.00  | 20.0         |
| BB13333 | Molybdenum, Total      | mg/L  | 0.000003   | 0.000147 | 0.100 | 0.0972  | 0.0996  | 0.102    | 0.0850 to 0.115    | 97.0  | 70.0 to 130 | 2.44  | 20.0         |
| BB13333 | Chromium, Total        | mg/L  | -0.000159  | 0.000440 | 0.100 | 0.0978  | 0.0982  | 0.101    | 0.0850 to 0.115    | 97.8  | 70.0 to 130 | 0.408 | 20.0         |
| BB13333 | Iron, Total            | mg/L  | -0.000799  | 0.0176   | 0.2   | 2.72    | 2.69    | 0.197    | 0.170 to 0.230     | 85.0  | 70.0 to 130 | 1.11  | 20.0         |
| BB13333 | Iron, Dissolved        | mg/L  | -0.000913  | 0.0176   | 0.2   | 2.09    | 2.06    | 0.197    | 0.170 to 0.230     | 105   | 70.0 to 130 | 1.45  | 20.0         |
| BB13333 | Magnesium, Total       | mg/L  | -0.0111    | 0.0462   | 5.00  | 345     | 341     | 4.90     | 4.25 to 5.75       | 20.0  | 70.0 to 130 | 1.17  | 20.0         |
| BB13333 | Mercury, Total by CVAA | mg/L  | 3.000E-05  | 0.000500 | 0.004 | 0.00383 | 0.00389 | 0.00389  | 0.00340 to 0.00460 | 95.8  | 70.0 to 130 | 1.55  | 20.0         |
| BB13333 | Calcium, Total         | mg/L  | 0.000974   | 0.152    | 5.00  | 332     | 328     | 5.00     | 4.25 to 5.75       | 0.00  | 70.0 to 130 | 1.21  | 20.0         |
| BB13333 | Manganese, Dissolved   | mg/L  | 0.0000146  | 0.000147 | 0.100 | 1.61    | 1.60    | 0.108    | 0.0850 to 0.115    | 60.0  | 70.0 to 130 | 0.623 | 20.0         |
| BB13333 | Cobalt, Total          | mg/L  | -0.000114  | 0.000147 | 0.100 | 0.128   | 0.127   | 0.102    | 0.0850 to 0.115    | 98.7  | 70.0 to 130 | 0.784 | 20.0         |
| BB13333 | Boron, Total           | mg/L  | 0.000446   | 0.0650   | 1.00  | 1.05    | 1.03    | 0.974    | 0.850 to 1.15      | 102   | 70.0 to 130 | 1.92  | 20.0         |
| BB13333 | Antimony, Total        | mg/L  | 0.0000727  | 0.00100  | 0.100 | 0.0995  | 0.0997  | 0.0964   | 0.0850 to 0.115    | 99.5  | 70.0 to 130 | 0.201 | 20.0         |
| BB13333 | Beryllium, Total       | mg/L  | 0.0000557  | 0.000880 | 0.100 | 0.0853  | 0.0832  | 0.0955   | 0.0850 to 0.115    | 85.3  | 70.0 to 130 | 2.49  | 20.0         |
| BB13333 | Sodium, Total          | mg/L  | 0.000485   | 0.0660   | 5.00  | 34.3    | 34.2    | 4.82     | 4.25 to 5.75       | -20.0 | 70.0 to 130 | 0.292 | 20.0         |
| BB13333 | Barium, Total          | mg/L  | 0.0000368  | 0.000200 | 0.100 | 0.112   | 0.113   | 0.101    | 0.0850 to 0.115    | 102   | 70.0 to 130 | 0.889 | 20.0         |
| BB13333 | Potassium, Total       | mg/L  | 0.00889    | 0.367    | 10.0  | 16.5    | 16.3    | 10.5     | 8.50 to 11.5       | 104   | 70.0 to 130 | 1.22  | 20.0         |
| 3B13333 | Lead, Total            | mg/L  | 0.000003   | 0.000147 | 0.100 | 0.109   | 0.108   | 0.107    | 0.0850 to 0.115    | 109   | 70.0 to 130 | 0.922 | 20.0         |
| 3B13333 | Lithium, Total         | mg/L  | -4.900E-05 | 0.0154   | 0.200 | 0.318   | 0.312   | 0.194    | 0.170 to 0.230     | 128   | 70.0 to 130 | 1.90  | 20.0         |

## **Batch QC Summary**



Customer Account: WMWGORLF

Sample Date:

7/21/21 14:01

**Customer ID:** 

**Delivery Date:** 

7/22/21 10:16

Description: Gorgas Landfill - MW-19

Laboratory ID Number: BB13333

|   |         |                            |       |         | MB    |       |      | Sample    |          | Standard     |      | Rec         |       | Prec          |
|---|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|------|-------------|-------|---------------|
|   | Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit       | Prec  | <u>Li</u> mit |
| Е | 3B13333 | Chloride                   | mg/L  | -0.0645 | 1.00  | 10.0  | 11.5 | 1.83      | 9.87     | 9.00 to 11.0 | 97.6 | 80.0 to 120 | 5.04  | 20.0          |
| Е | 3B13333 | Solids, Dissolved          | mg/L  | 1.00    | 25.0  |       |      | 3060      | 57.0     | 40.0 to 60.0 |      |             | 1.13  | 5.00          |
| Е | 3B13333 | Sulfate                    | mg/L  | -0.598  | 1.00  | 3200  | 5610 | 1990      | 18.7     | 18.0 to 22.0 | 113  | 80.0 to 120 | 0.00  | 20.0          |
| Е | 3B13333 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 163       | 53.4     | 45.0 to 55.0 |      |             | 0.612 | 10.0          |
| Е | 3B13333 | Fluoride                   | mg/L  | 0.0271  | 0.100 | 2.50  | 3.05 | 0.402     | 2.59     | 2.25 to 2.75 | 105  | 80.0 to 120 | 6.50  | 20.0          |
|   |         |                            |       |         |       |       |      |           |          |              |      |             |       |               |

### Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040 (205) 664-6001

### **Definitions**



Project Number: WMWGORLF\_1330

| •            | <del>-</del>                                                                                                                                        |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Abbreviation | Description                                                                                                                                         |
| DF           | Dilution Factor                                                                                                                                     |
| LCS          | Lab Control Sample                                                                                                                                  |
| LFM          | Lab Fortified Matrix                                                                                                                                |
| MB           | Method Blank                                                                                                                                        |
| MDL          | Method Detection Limit; minimum concentration of an analyte that can be determined with 99% confidence that the concentration is greater than zero. |
| MS           | Matrix Spike                                                                                                                                        |
| MSD          | Matrix Spike Duplicate                                                                                                                              |
| Prec         | Precision (% RPD)                                                                                                                                   |
| Q            | Qualifier; comment used to note deviations or additional information associated with analytical results.                                            |
| QC           | Quality Control                                                                                                                                     |
| Rec          | Recovery of Matrix Spike                                                                                                                            |
| RL           | Reporting Limit; lowest concentration at which an analyte can be quantitatively measured.                                                           |
| Vio Spec     | Violation Specification; regulatory limit which has been exceeded by the sample analyzed.                                                           |
| Qualifier    | Description                                                                                                                                         |
| FA           | Field results were reviewed by the Water Field Group. Refer to APC Field Case Narrative.                                                            |
| ı            | Reported value is an estimate because concentration is less than reporting limit                                                                    |

| <br>Qualifier | Description                                                                              |
|---------------|------------------------------------------------------------------------------------------|
| FA            | Field results were reviewed by the Water Field Group. Refer to APC Field Case Narrative. |
| J             | Reported value is an estimate because concentration is less than reporting limit.        |
| RA            | Matrix spike is invalid due to sample concentration.                                     |
| U             | Compound was analyzed, but not detected.                                                 |
|               |                                                                                          |

| Alabama P  Lab  Field  SERVICE | Chain Chain               |                 | Custoc<br>vater          | ly                              |         | eld Co<br>ıb Coı |                             | •             |        | Out           | tside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e Lab     |              |         |          |          |                 |
|--------------------------------|---------------------------|-----------------|--------------------------|---------------------------------|---------|------------------|-----------------------------|---------------|--------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|---------|----------|----------|-----------------|
|                                |                           |                 | Testing La               | abo                             | oratory |                  |                             |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L         | ab           | ETA     |          |          |                 |
| Reque                          | ested Comple              | ete I           | Date Routi               | ne                              |         |                  |                             |               |        | Results       | То                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dustin Br | ook          | s, Gre  | g Dyer   |          |                 |
|                                | Site Repres               | enta            | tive John                | Pat                             | te      |                  |                             |               |        | Requested     | Ву                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Greg Dy   | er           |         |          |          |                 |
|                                | С                         | olle            | ctor Dalla               | s C                             | Gentry  |                  |                             |               |        | Locati        | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gorgas    | La           | ndfill  |          |          |                 |
| Bottles                        | 1 Metals                  |                 | 500 mL                   | 3                               | Hg      | 25               | 0 m                         | nL            | _<br>5 | Anions        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50 mL     | 7            | 7 N/A   | \        | N/A      |                 |
|                                | 2 Dissolved N             | /leta           | 500 mL                   | 4                               | +       | 50               | 00 m                        | ıL            | 6      | +             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 mL     | ┧┟           | 8 N/A   |          | N/A      | $\neg \uparrow$ |
|                                | Comments                  |                 |                          | _                               |         |                  |                             |               | _      | <u>'</u>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | -       |          |          | ==              |
|                                | Comments                  |                 |                          |                                 |         |                  |                             |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         |          |          |                 |
|                                |                           |                 |                          |                                 |         | Bottl            | le l                        |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | T            | Lab     |          |          |                 |
|                                | Sample #                  |                 | Date                     |                                 | Time    | Cou              |                             |               |        | Description   | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |              | ilter   | Lab I    | d        |                 |
|                                | MW-13                     |                 | 07/20/202                | 21                              | 09:13   | 6                |                             | Groui         | nd     | water         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •         |              |         | BB131    | 81       |                 |
| Ī                              | MW-14                     |                 | 07/20/202                | 21                              | 10:16   | 6                |                             | Groui         | nd     | water         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | _       | BB131    | 82       |                 |
| Ī                              | MW-15                     |                 | 07/20/202                | 1                               | 11:25   | 6                |                             | Grour         | nd     | water         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         | BB131    | 83       |                 |
| [                              | MW-12V                    |                 | 07/20/202                | 1                               | 12:32   | 6                |                             | Grou          | nd     | water         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         | BB131    | 84       |                 |
| 1                              | MW-6 07/20/2021 13:57     |                 |                          |                                 |         |                  |                             | Grour         | nd     | water         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         | BB131    | 85       |                 |
| 1                              | MW-6 dup 07/20/2021 13:57 |                 |                          |                                 |         |                  |                             | Samp          | le     | Duplicate     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _         |              |         | BB131    | 86       |                 |
| 1                              | MW-8 07/20/2021 15:25     |                 |                          |                                 |         |                  |                             | 6 Groundwater |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         | BB131    | 87       |                 |
| <u> </u>                       | FB-2                      |                 | 07/20/202                | 1                               | 16:05   | 4                |                             | Field         | Bla    | ank           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | _            |         | BB131    | 88       |                 |
| -                              |                           |                 |                          |                                 |         |                  | _                           |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         |          |          |                 |
| -                              |                           |                 |                          |                                 |         |                  | _                           |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         |          |          |                 |
| -                              |                           |                 |                          |                                 |         |                  |                             |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _         | _            |         |          |          |                 |
|                                |                           | -               |                          | _                               |         |                  | _                           |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         |          |          |                 |
| }                              |                           |                 |                          | _                               |         |                  | _                           |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | _            |         |          |          |                 |
| -                              |                           | -               |                          | _                               |         |                  | _                           |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         |          |          |                 |
| ŀ                              |                           | $\dashv$        |                          |                                 |         |                  | _                           |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | ┝            |         |          |          |                 |
| <u> </u>                       |                           | $\dashv$        |                          | _                               |         |                  | _                           |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | <del> </del> | _       |          |          |                 |
| -                              |                           | $\dashv$        |                          | _                               |         |                  | -                           |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         |          |          |                 |
| }                              |                           | $\dashv$        |                          |                                 |         |                  | _                           |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _         |              |         |          |          |                 |
| ŀ                              |                           | $\dashv$        |                          |                                 |         |                  |                             |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         |          |          |                 |
| }                              |                           | $\dashv$        |                          |                                 |         |                  | _                           |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         |          |          |                 |
| L                              |                           |                 |                          |                                 |         |                  |                             |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         |          |          |                 |
|                                |                           | ished By        |                          |                                 |         |                  |                             | Received 1    |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Date         | e/Tim   | e        |          |                 |
|                                | Alistoty                  |                 |                          |                                 |         |                  |                             |               |        | Laura MM      | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |           |              |         | 07/21/2  | 021 0    | 8:08            |
|                                |                           |                 |                          |                                 |         |                  |                             |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         |          |          |                 |
|                                |                           |                 |                          |                                 |         |                  |                             |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         |          |          |                 |
|                                |                           |                 |                          |                                 |         |                  |                             |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         |          |          |                 |
| Ç.                             | marTroll ID               | 750             | 36-41442-5               | 4                               |         | 7                |                             | д 11          | m      | netals and ra | مظم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | logical 1 | hat          | -tlas 1 | Taye pU  |          | <br>7           |
|                                | Turbidity ID              |                 | 36-41442-5<br>01-20010-2 |                                 |         | $\dashv$         |                             | All           |        | Cooler Ten    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         | iave pri | <u> </u> |                 |
|                                | •                         |                 |                          | -∠                              |         | $\dashv$         |                             | Т             |        | rmometer I    | ^ F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5408-275  |              |         |          |          |                 |
| 36                             | Sample Event 1330         |                 |                          |                                 |         |                  | pH Strip ID 8206-45805-10-9 |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         |          |          |                 |
| Bottles/                       | Pre-Preserved Bot         | e provided by t | GTL                      | p11 otrip 115   e2ee 15ees 10 5 |         |                  |                             |               |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |         |          |          |                 |

Page 103 of 110

| Alabama Pov<br>Lab S<br>Field<br>SERVICES | <b>T</b> Chain c     | of Custoc            | · —      | eld Com         | -     | Out           | side Lab      |               |              |              |
|-------------------------------------------|----------------------|----------------------|----------|-----------------|-------|---------------|---------------|---------------|--------------|--------------|
| SERVICES                                  | 11                   | al Testing La        |          | ao Comp         | rete  |               | Ι             | Lab ETA       |              |              |
| Reques                                    | sted Complete        | e Date Routir        | ne       |                 |       | Results '     | To Dustin B   | rooks, Gre    | g Dyer       |              |
|                                           | Site Represer        |                      |          |                 |       | Requested 1   | · <del></del> |               |              |              |
|                                           | Col                  | lector TJ Da         | augherty |                 |       | Location      | on Gorgas     | Landfill      |              |              |
| Bottles                                   | 1 Metals             | 500 mL               | 3 Hg     | 250 n           | nL ]  | 5 Anions      | 250 mL        | 7 N/A         | N/A          |              |
|                                           | 2 Diss metals        | 500 mL               | 4 TDS    | 500 n           | nL    | 6 Alkalinity  | 250 mL        | 8 N/A         | N/A          |              |
|                                           | Comments             |                      |          |                 |       |               |               |               |              |              |
|                                           | Sample #             | Date                 | Time     | Bottle<br>Count |       | Descriptio    | on            | Lab<br>Filter | Lab Id       |              |
| N                                         | /W-12                | 07/20/202            | 1 11:53  | 6               | Groun | dwater        |               |               | BB13189      |              |
| N                                         | /IW-10               | 07/20/202            | 10110    | 6               | Groun | dwater        |               |               | BB13190      | ļ            |
| N                                         | 1W-7                 | 07/20/202            | 1 14:30  | 6               | Groun | dwater        |               |               | BB13191      |              |
| -                                         |                      |                      |          |                 |       |               |               | -             |              |              |
|                                           |                      |                      |          |                 |       |               |               |               |              |              |
|                                           |                      |                      |          |                 |       |               |               |               |              | <u> </u><br> |
|                                           |                      |                      |          |                 |       |               |               |               |              |              |
|                                           |                      |                      |          |                 |       |               |               |               |              |              |
|                                           |                      |                      |          |                 |       |               |               |               |              |              |
|                                           |                      |                      |          |                 |       |               |               |               |              |              |
| -                                         |                      |                      |          |                 |       |               |               |               |              | ļ            |
|                                           |                      |                      |          |                 |       |               |               |               |              |              |
| -                                         |                      |                      |          |                 |       |               |               |               |              |              |
|                                           |                      |                      |          |                 |       |               |               |               |              |              |
|                                           |                      |                      |          |                 |       |               |               |               |              |              |
|                                           |                      |                      |          |                 |       |               |               |               |              | ĺ            |
|                                           |                      |                      |          |                 |       |               |               |               |              | ]            |
|                                           |                      |                      |          |                 |       |               |               |               |              |              |
|                                           |                      |                      |          |                 |       |               |               |               |              |              |
|                                           |                      | uished By            |          | 1               |       | Received I    | •             |               | Date/Tim     |              |
|                                           | 1                    | Y Mo                 |          |                 |       | LaureMM       | <b>V</b>      |               | 07/21/2021 0 | 8:08         |
|                                           |                      |                      |          |                 |       |               |               |               |              |              |
|                                           |                      |                      |          |                 |       |               |               |               |              |              |
| Sn                                        | narTroll ID 7        | ′586-41443-5-        | ·2       |                 | All   | metals and ra | diological    | bottles l     | nave pH < 2  |              |
| T                                         | urbidity ID          | 3901-20010-2         | -2       |                 |       | Cooler Tem    | p 0.0 degr    | ees C         |              |              |
| Sa                                        | mple Event 1         | 330                  |          |                 | Th    | ermometer I   |               |               |              |              |
| Bottles/F                                 | Pre-Preserved Bottle | s are provided by th | ne GTL   |                 |       | pH Strip I    | D 8206-45     | 805-10-9      |              |              |

Page 104 of 110

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chain of Groundy        | vater                                            | La           |        | -           |          | Outs         |                                                     | ab       | ETA      |            |          | $\neg$   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------|--------------|--------|-------------|----------|--------------|-----------------------------------------------------|----------|----------|------------|----------|----------|
| Reques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                                                  | •            |        |             | T        | Results 7    |                                                     |          |          |            |          |          |
| reque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                       |                                                  |              |        |             | 1        |              |                                                     |          | cs, circ | у Бусі     |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                       |                                                  |              |        |             | 1        | -            | ′ <del>                                      </del> |          | ndfill   |            |          |          |
| D - 441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                                                  |              | 250 m  | al          | <br>[_5  | ·            |                                                     | 7.       | _        |            |          |          |
| Bottles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | <del>                                     </del> |              |        |             | $\vdash$ | <u> </u>     | 1                                                   | ┦┝       | _        |            | <u> </u> |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | 300 IIIL                                         | 1 100        | 10001  |             |          | Alkallility  | 230 IIIL                                            |          | o jiv/A  |            | IN/A     |          |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Comments                |                                                  |              |        |             |          |              |                                                     |          |          |            |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                  |              | Bottle |             |          |              |                                                     | I        | Lab      |            |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample #                | Date                                             | Time         | Count  |             |          | •            | n                                                   | Fi       | ilter    |            |          |          |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                                  | 10.00        | 6      |             |          |              |                                                     | L        |          |            |          |          |
| ⊢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                                  |              | 6      |             |          |              |                                                     | L        |          |            |          |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                       | <del>                                     </del> | 12.10        | 6      | <del></del> |          |              |                                                     | $\vdash$ |          |            |          |          |
| <b>⊢</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                                  | <del> </del> |        |             | _        |              |                                                     |          |          |            |          |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | -                                                |              |        |             |          |              |                                                     |          | -        |            |          |          |
| Requested Complete Date Site Representative Collector TJ Daugherty  Bottles   1   Metals   500 mL   2   Diss Metals   500 mL   4   TDS   500 mL   6   Alkalinity   250 mL   8   N/A   N/A   N/A   N/A   Comments   Comments   Contact   Count                           |                                                  |              |        |             |          |              |                                                     |          |          |            |          |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :B- I                   | 07/21/2021                                       | 15:10        | 4      | Equip       | orrie    | ent Blank    |                                                     | ┝        | -        | DD 1333    | 30       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                  |              |        | <u> </u>    |          |              |                                                     |          | -        |            |          |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                                  |              |        |             |          |              |                                                     |          | -        |            |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                  |              |        |             |          |              |                                                     | $\vdash$ |          |            |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                  |              |        | l           |          |              |                                                     | $\vdash$ |          |            |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                  |              |        |             |          |              |                                                     |          |          |            |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                  |              |        |             |          |              |                                                     |          |          |            |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                  |              |        |             |          |              |                                                     |          |          |            |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                  |              |        |             |          |              |                                                     |          |          |            |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                  |              |        |             |          |              |                                                     |          |          |            |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                  |              |        |             |          |              |                                                     |          |          |            |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                  |              |        |             |          |              | _                                                   |          |          |            |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                  |              |        |             |          |              |                                                     |          |          |            |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                  |              |        |             |          |              |                                                     |          |          |            |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Relinqu                 | ished By                                         |              | 1      |             |          | Received B   | у                                                   |          |          | Date       | /Time    | <u> </u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                       | M                                                |              |        |             |          | Lana<br>MShi | -                                                   |          |          | 07/22/20   | )21 09   | :28      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                  |              |        |             |          |              |                                                     |          |          |            |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                  |              |        |             |          |              |                                                     |          |          |            |          | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                  |              |        |             |          |              |                                                     |          |          |            |          |          |
| Çr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | narTroll ID 75          | 86-41442-5 1                                     | 2            |        | Д 11        | m        | etals and ra | diological l                                        | hot      | tles l   | nave nH /  |          | <br>1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                |                                                  |              | -      | 1111        |          |              |                                                     |          |          | iave pii \ | - 2 [-   | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · —                     |                                                  | •            | 1      | П           |          |              |                                                     |          |          |            |          |          |
| ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | -                                                |              | _      |             |          |              |                                                     |          |          |            |          |          |
| Bottles/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pre-Preserved Bottles a | re provided by the                               | e GTL        | _      |             |          | 1            |                                                     |          |          |            |          |          |

Page 105 of 110

| Alabama Pov<br>Lab S<br>Field<br>SERVICES | Chain              | of Custoc<br>dwater   | · —      | eld Com         | -     | Out                                     | side Lab    |               |              |        |
|-------------------------------------------|--------------------|-----------------------|----------|-----------------|-------|-----------------------------------------|-------------|---------------|--------------|--------|
| SERVICES                                  | , <i>,</i>         | eral Testing La       |          | io comp         | rete  |                                         | Ι           | Lab ETA       |              |        |
| Reques                                    | sted Comple        | te Date Routi         | ne       |                 |       | Results '                               | To Dustin B | rooks, Gre    | g Dyer       |        |
|                                           | Site Represe       |                       |          |                 |       | Requested                               | · ——        |               |              |        |
|                                           | C                  | ollector Dalla        | s Gentry |                 |       | Location                                | on Gorgas   | Landfill      |              |        |
| Bottles                                   | 1 Metals           | 500 mL                | 3 Hg     | 250 n           |       | 5 Anions                                | 250 mL      | 7 N/A         |              |        |
|                                           |                    | leta 500 mL           | 4 TDS    | 500 n           |       | 6 Alkalinity                            | 250 mL      | 8 N/A         | N/A          |        |
|                                           | Comments           |                       |          |                 |       |                                         |             |               |              |        |
|                                           | Sample #           | Date                  | Time     | Bottle<br>Count |       | Descriptio                              | n           | Lab<br>Filter | Lab Id       |        |
| N                                         | иW-11              | 07/21/202             |          | 6               | Groun | dwater                                  | /11         | Titter        | BB13331      |        |
| N                                         | /W-20              | 07/21/202             | 21 12:47 | 6               | Groun | dwater                                  |             |               | BB13332      | ]      |
| N                                         | 1W-19              | 07/21/202             | 14:01    | 6               | Groun | dwater                                  |             |               | BB13333      | ]      |
|                                           |                    |                       |          |                 |       |                                         |             |               |              |        |
|                                           |                    |                       |          |                 |       |                                         |             |               |              | 1      |
|                                           |                    |                       |          |                 |       |                                         |             |               |              | 1      |
|                                           |                    |                       |          |                 |       |                                         |             |               |              | 1      |
|                                           |                    |                       |          |                 |       |                                         |             |               |              |        |
|                                           |                    |                       |          |                 |       |                                         |             |               |              | 1      |
|                                           |                    |                       |          |                 |       |                                         |             |               |              | -      |
| -                                         |                    | +                     |          |                 |       |                                         |             |               |              | 1      |
|                                           |                    |                       |          |                 |       |                                         |             |               |              | 1      |
|                                           |                    |                       |          |                 |       |                                         |             |               |              | 1      |
|                                           |                    |                       |          |                 |       |                                         |             |               |              | ]      |
|                                           |                    |                       |          |                 |       |                                         |             |               |              |        |
|                                           |                    |                       |          |                 |       |                                         |             |               |              |        |
|                                           |                    |                       |          |                 |       |                                         |             |               |              | 1      |
|                                           |                    |                       |          |                 |       |                                         |             |               |              | 1      |
|                                           | Relir              | nquished By           |          | <u> </u>        | I     | Received I                              | Ву          |               | Date/Tin     | ne     |
|                                           |                    | alis Daty             |          |                 |       | Laun<br>Mly                             | •           |               | 07/22/2021 ( | 09:28  |
|                                           |                    |                       |          |                 |       | , · • • • • • • • • • • • • • • • • • • |             |               |              | $\neg$ |
|                                           |                    |                       |          |                 |       |                                         |             |               |              |        |
|                                           |                    |                       |          |                 |       |                                         |             |               |              |        |
| Sn                                        | narTroll ID        | 7586-41442-5          | -1       |                 | All   | metals and ra                           | diological  | bottles l     | nave pH < 2  | V      |
| Т                                         | urbidity ID        | 3901-20010-2          | -2       |                 |       | Cooler Tem                              |             |               |              |        |
| Sa                                        | mple Event         | 1330                  |          |                 | Th    | ermometer I                             |             |               |              |        |
| Bottles/F                                 | Pre-Preserved Bott | les are provided by t | he GTL   |                 |       | pH Strip I                              | D 8206-45   | 805-10-9      |              |        |

Page 106 of 110

| Lab       | Chain of Ground    | of Custod                | y F                 | ield Con | _       | <b>✓</b> Outsid  | le Lab     |            |                    |          |
|-----------|--------------------|--------------------------|---------------------|----------|---------|------------------|------------|------------|--------------------|----------|
| SERVI     | Ground<br>APC Gene | dwater<br>ral Testing La | <b>∠</b> L boratory | ab Comp  | olete   |                  | L          | ab ETA     |                    |          |
| Regu      | ested Comple       |                          | •                   |          |         | Results To       | Dustin Br  | ooks. Gree | a Dver             | <u> </u> |
| 210 40    | Site Represe       |                          |                     |          |         | Requested By     |            |            | <del>3 - 7 -</del> |          |
|           | -                  | ollector Dallas          |                     |          |         | Location         |            |            |                    |          |
| D - 441 - |                    | 1 L                      | 3 N/A               | N/A      | 1       |                  | N/A        | 7 N/A      | N/A                |          |
| Bottle    | 2 N/A              | N/A                      | 4 N/A               | N/A      |         |                  | N/A<br>N/A | 8 N/A      |                    |          |
|           |                    |                          |                     | ļ        |         |                  | IN/A       |            | IN/A               |          |
|           | Comments           | Radium MS/MSD            | collected at M\     | N-14     |         |                  |            |            |                    |          |
|           |                    |                          |                     | Bottle   |         |                  |            | Lab        |                    |          |
|           | Sample #           | Date                     | Time                | Count    |         | Description      |            | Filter     | Lab Id             |          |
|           | MW-13              | 07/20/202                | 1 09:13             | 1        | Groun   | ndwater          |            |            | BB13192            |          |
|           | MW-14              | 07/20/202                | 1 10:16             | 3        | Groun   | ndwater          |            |            | BB13193            |          |
|           | MW-15              | 07/20/202                | 1 11:25             | 1        | Groun   | dwater           |            |            | BB13194            |          |
|           | MW-12V             | 07/20/202                | 12:32               | 1        | Groun   | ndwater          |            |            | BB13195            |          |
|           | MW-6               | 07/20/202                | 1 13:57             | 1        | Groun   | dwater           |            |            | BB13196            |          |
|           | MW-6 dup           | 07/20/202                | 1 13:57             | 1        | Sampl   | le Duplicate     | _          |            | BB13197            |          |
|           | MW-8               | 07/20/202                | 15:25               | 1        | Groun   | dwater           | _          |            | BB13198            |          |
|           | FB-2               | 07/20/202                | 16:05               | 1        | Field E | 3lank            |            |            | BB13199            |          |
|           |                    |                          |                     |          |         |                  |            |            |                    |          |
|           |                    |                          |                     |          |         |                  |            |            |                    |          |
|           |                    |                          |                     |          |         |                  |            |            |                    |          |
|           |                    |                          |                     |          |         |                  |            |            |                    |          |
|           |                    |                          |                     |          |         |                  |            |            |                    |          |
|           |                    |                          |                     |          |         |                  | _          |            |                    |          |
|           |                    |                          |                     |          |         |                  |            |            |                    |          |
|           |                    |                          |                     |          |         |                  |            |            |                    |          |
|           |                    |                          |                     |          |         |                  |            |            |                    |          |
|           |                    |                          |                     |          |         |                  | _          |            |                    |          |
|           |                    |                          |                     |          |         |                  |            |            |                    |          |
|           |                    |                          |                     |          |         |                  |            |            |                    |          |
|           |                    |                          |                     |          |         |                  |            |            |                    |          |
|           | Relin              | quished By               |                     | 1        |         | Received By      |            |            | Date/Tim           | ie       |
|           | ľ                  | Mes Dety                 |                     |          |         | Laura Mdlyf      |            |            | 07/21/2021 08      | 3:08     |
|           |                    |                          |                     |          |         |                  |            |            |                    |          |
|           |                    |                          |                     | ╂        |         |                  |            |            |                    | -        |
|           |                    |                          |                     | <u> </u> |         |                  |            |            |                    |          |
|           | SmarTroll ID       | 7586-41442-5-            | 1                   | 7        | Д 11    | metals and radio | مامهندها ا | oottles k  | nave nH < 2 L      | <br>7    |
| `         | Turbidity ID       |                          |                     | $\dashv$ | 1111    | Cooler Temp      | N/A        | 000001     | 1410 P11 \ 2 C     |          |
| Ç         | Sample Event       |                          | _                   | $\dashv$ | Th      | nermometer ID    | N/A        |            |                    |          |
|           |                    |                          |                     |          | 111     | pH Strip ID      |            | 305-10-9   |                    |          |
| D1        | (D D 1D1           | :1 11 4                  | - CTI               |          |         | 1 - T            |            |            |                    |          |

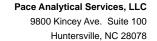
Page 107 of 110

Bottles/Pre-Preserved Bottles are provided by the GTL

7.1

| Lab S   | Chain<br>Groun | of Cu            | asto         | dy  | Fi            | eld Con      | _        |       | Outsid                         | le Lab      |          |        |             |              |          |
|---------|----------------|------------------|--------------|-----|---------------|--------------|----------|-------|--------------------------------|-------------|----------|--------|-------------|--------------|----------|
| FIEIG   | APC Gene       | dwat<br>eral Tes | er<br>ting L | abo | La<br>oratory | ab Com       | plete    |       |                                | L           | ab       | ЕТА    |             |              |          |
| Reques  | ted Comple     | ete Date         | Routi        | ne  |               |              |          |       | Results To                     | Dustin Br   | rook     | s, Gre | g Dyer      |              |          |
| _       | Site Represe   |                  |              |     | te            |              |          | 7     | Requested By                   |             |          |        | <del></del> |              |          |
|         |                | ollector         |              |     |               |              |          |       | Location                       |             | La       | ndfill |             |              |          |
| Bottles | 1 Radium       | 1 L              |              | 3   | N/A           | N/A          |          |       | N/A I                          | N/A         | <br>][·  | 7 N/A  |             | N/A          |          |
| ottics  | 2 N/A          | N/A              |              | 4   | 4             | N/A          |          | 6     |                                | N/A         | <u> </u> | 8 N/A  |             | N/A          |          |
|         | Comments       |                  |              |     |               | Collecting I | Rad MS/M | ISD s | set at another well. I         | _BM 7/21/21 |          |        |             |              |          |
|         |                |                  |              |     |               | Bottle       |          |       |                                |             | Т        | Lab    |             |              |          |
|         | Sample #       |                  | Date         |     | Time          | Count        | 1        |       | Description                    |             | 1        | ilter  | Lab I       | d            |          |
| N       | 1W-12          | 07               | /20/202      | 21  | 11:53         | 1            | Grou     | ndv   | 1                              |             |          |        | BB132       |              |          |
| N       | 1W-10          | 07               | /20/202      | 21  | 13:15         | 1            | Grou     | ndv   | vater                          |             |          | _      | BB132       | 01           |          |
| М       | IW-7           | 07.              | /20/202      | 21  | 14:30         | 3            | Grou     | ndv   | vater                          |             | Г        |        | BB132       | 02           |          |
|         |                |                  |              |     |               |              |          |       |                                |             |          |        |             |              |          |
|         |                |                  |              |     |               |              |          |       |                                |             | Г        |        |             |              |          |
|         |                |                  |              |     |               |              |          |       |                                |             |          |        |             |              |          |
|         |                |                  |              |     |               |              |          |       |                                |             |          |        |             |              |          |
|         |                |                  |              |     |               |              |          |       |                                |             |          |        |             |              |          |
|         |                |                  |              |     |               |              |          |       |                                |             |          |        |             |              |          |
|         |                |                  |              |     |               |              |          |       |                                |             |          |        |             |              |          |
|         |                |                  |              |     |               |              |          |       |                                | _           |          |        |             |              |          |
|         |                |                  |              |     |               |              |          |       |                                |             | L        |        |             |              |          |
|         |                |                  |              |     |               |              |          |       |                                |             | L        |        |             |              |          |
|         |                |                  |              |     |               |              |          |       |                                |             | L        |        |             |              |          |
|         |                |                  |              |     |               |              |          |       |                                |             | L        |        |             |              |          |
|         |                |                  |              |     |               |              |          |       |                                |             | L        |        |             |              |          |
|         |                |                  |              |     |               |              |          |       |                                |             | L        |        |             |              |          |
|         |                |                  |              |     |               |              |          |       |                                |             | Ļ        |        |             |              |          |
|         |                |                  |              |     |               |              | <u> </u> |       |                                |             | ot       |        |             |              |          |
|         |                |                  |              |     |               |              | <u> </u> |       |                                |             | L        |        |             |              |          |
|         |                |                  |              |     |               |              |          |       |                                |             |          |        |             |              |          |
|         | Relin          | nquishe          | ed By        |     |               | 1            |          |       | Received By                    |             |          |        | Date        | e/Time       | e        |
|         |                | 外胎               |              |     |               |              |          |       | LaureMilly                     |             |          |        | 07/21/2     | 021 08       | 3:08     |
|         |                |                  |              |     |               |              |          |       |                                |             |          |        |             |              |          |
|         |                |                  |              |     |               |              |          |       |                                |             |          |        |             |              | $\dashv$ |
|         |                |                  |              |     |               |              |          |       |                                |             |          |        |             |              |          |
| C       | narTroll ID    | 7586-4           | 1440 5       |     |               |              | A 11     | m     | atale and radi                 | ological I  | ho4      | tloc 1 | 201/0 21    | ر<br>ر م آرد | <br>-1   |
|         | urbidity ID    |                  |              |     |               | $\dashv$     | All      |       | etals and radic<br>Cooler Temp |             | וטט      | ues I  | iave pn «   | \ <u> </u>   |          |
|         | mple Event     |                  | .0010-2      | ∠   |               | $\dashv$     | т        |       | -                              | N/A         |          |        |             |              |          |
| Sal     | mpic Event     | L1000            |              |     |               | _            | 1.       | 1101  | pH Strip ID                    |             | 305      | -10-9  |             |              |          |

Page 108 of 110


Bottles/Pre-Preserved Bottles are provided by the GTL

| Alabama | 🔀 Chain of               |                                                  | y v Fi         | ield Com   | iplete                                           | Outs           | ide Lab    |                                                  |              |         |
|---------|--------------------------|--------------------------------------------------|----------------|------------|--------------------------------------------------|----------------|------------|--------------------------------------------------|--------------|---------|
| Fiel    | Groundy<br>APC General   |                                                  |                | ab Comp    | olete                                            |                | Ι          | ab ETA                                           |              |         |
| Regu    | ested Complete           |                                                  | •              |            |                                                  | Results T      |            | rooks, Greg                                      |              |         |
| ræqu    | Site Represent           |                                                  |                |            |                                                  | Requested B    |            |                                                  | <u> </u>     |         |
|         | -                        | ector TJ Dai                                     |                |            |                                                  | <b>⊣</b> ~     | n Gorgas   |                                                  |              |         |
| D 441   |                          |                                                  |                | IN/A       |                                                  | <del>-</del>   |            |                                                  |              |         |
| Bottle  | <del></del>              | <del>                                     </del> | 3 N/A<br>4 N/A | N/A<br>N/A |                                                  | 5 N/A<br>6 N/A | N/A        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1          |              | -       |
|         | 2 N/A                    | N/A                                              | 4   N/A        | IN/A       |                                                  | 6 N/A          | N/A        | 8 N/A                                            | N/A          |         |
|         | Comments                 |                                                  |                |            |                                                  |                |            |                                                  |              |         |
| i       |                          |                                                  |                | Bottle     |                                                  |                |            | T.L.                                             |              | _       |
|         | Sample #                 | Date                                             | Time           | Count      |                                                  | Description    | n          | Lab Filter                                       | Lab Id       |         |
|         | MW-5                     | 07/21/2021                                       |                | 1          | Grour                                            | ndwater        | 11         | Tillel                                           | BB13334      |         |
|         | MW-16                    | 07/21/2021                                       |                | 1          | <u> </u>                                         | ndwater        |            | + +                                              | BB13335      |         |
|         | MW-16 Dup                | 07/21/2021                                       | +              | 1          | -                                                | le Duplicate   |            |                                                  | BB13336      |         |
| ł       | MW-17R                   | 07/21/2021                                       | 12.10          | 1          | <del>                                     </del> | ndwater        |            |                                                  | BB13337      |         |
|         | MW-18                    | 07/21/2021                                       | 14:28          | 1          | <del>                                     </del> | ndwater        |            | <del>                                     </del> | BB13338      |         |
| ł       | FB-1                     | 07/21/2021                                       | 15:00          | 1          | Field E                                          |                |            |                                                  | BB13339      |         |
| }       | EB-1                     | 07/21/2021                                       | 15:10          | 1          | +                                                | ment Blank     |            |                                                  | BB13340      |         |
|         |                          | 0112112021                                       | 13.10          | <u> </u>   |                                                  | - Bank         |            |                                                  | 22,00,0      | i       |
|         |                          |                                                  |                |            |                                                  |                |            |                                                  |              | i       |
|         |                          |                                                  |                |            |                                                  |                |            |                                                  |              |         |
|         |                          |                                                  |                | 1          |                                                  |                |            |                                                  |              |         |
|         |                          |                                                  |                |            |                                                  |                |            |                                                  |              | 1       |
|         |                          |                                                  |                |            |                                                  |                |            |                                                  |              | 1       |
|         |                          |                                                  |                |            |                                                  |                |            |                                                  |              | ĺ       |
|         |                          |                                                  |                |            |                                                  |                |            |                                                  |              |         |
| ,       |                          |                                                  |                |            |                                                  | _              |            |                                                  |              | 1       |
|         |                          |                                                  |                | İ          |                                                  |                |            |                                                  |              |         |
| İ       |                          |                                                  |                |            |                                                  |                |            |                                                  |              |         |
| Ì       |                          |                                                  |                | İ          |                                                  |                |            |                                                  |              |         |
| İ       |                          |                                                  |                |            |                                                  |                |            |                                                  |              |         |
|         |                          |                                                  |                |            |                                                  |                |            |                                                  |              |         |
|         | Relinqu                  | iished By                                        |                |            |                                                  | Received B     |            |                                                  | Date/Tim     | ne      |
|         | N                        | - Defende                                        |                |            |                                                  | Lana My        | -          |                                                  | 07/22/2021 0 | 9:28    |
|         | <u></u>                  |                                                  |                | 1          |                                                  | 71044-         |            |                                                  |              |         |
|         |                          |                                                  |                |            |                                                  |                |            |                                                  |              |         |
|         |                          |                                                  |                |            |                                                  |                |            |                                                  |              |         |
| (       | SmarTroll ID 75          | 86-41443-5-2                                     | )              |            | A11                                              | metals and rac | diological | bottles b                                        |              | ——<br>刁 |
|         | Turbidity ID 46          |                                                  |                | $\dashv$   |                                                  | Cooler Temp    |            | 2 0 0 0 1                                        |              |         |
|         | ample Event 13           |                                                  |                | 7          | Tł                                               | nermometer II  |            |                                                  |              |         |
| J       |                          |                                                  |                | _          |                                                  | pH Strip II    |            | 305-10-9                                         |              |         |
| Bottles | /Pre-Preserved Bottles a | re provided by the                               | GTL            | _          |                                                  | 1 I            |            |                                                  |              |         |

Page 109 of 110

| Lab<br>E: 1 | Chain                 | of Custod<br>dwater               | y r             | ield Com    | _     | Outsi          | ide Lab      |              |               |        |
|-------------|-----------------------|-----------------------------------|-----------------|-------------|-------|----------------|--------------|--------------|---------------|--------|
| SERVIC      | Groun APC Gene        | <b>dwater</b><br>eral Testing Lal | ooratory        | ab Comp     | olete |                | L            | ab ETA       |               |        |
| Regu        |                       | ete Date Routin                   |                 |             |       | Results T      |              | rooks, Gree  |               |        |
| rcqu        |                       | entative John P                   |                 |             |       | Requested B    |              |              | g Dyci        |        |
|             |                       | ollector Dallas                   |                 |             |       | -              | n Gorgas     |              |               |        |
| D1          |                       |                                   |                 |             |       | -              |              |              | 1             |        |
| Bottle      | S 1 Radium 2 N/A      | 1 L<br>N/A                        | 3 N/A<br>4 N/A  | N/A<br>N/A  |       | 5 N/A<br>6 N/A | N/A          | 7 N/A        |               |        |
|             |                       | N/A                               | 4   IV/A        | IN/A        |       | 6 N/A          | N/A          | 8 N/A        | N/A           |        |
|             | Comments              | Radium MS/MSD                     | collected at MV | N-20        |       |                |              |              |               |        |
|             |                       |                                   |                 |             |       |                |              |              |               |        |
|             |                       |                                   |                 | Bottle      |       |                |              | Lab          |               |        |
|             | Sample #              | Date                              | Time            | Count       |       | Description    | ı            | Filter       | Lab Id        |        |
|             | MW-11                 | 07/21/2021                        | 11:34           | 1           | Groun | dwater         |              |              | BB13341       |        |
|             | MW-20                 | 07/21/2021                        | 12:47           | 3           | Groun | idwater        |              |              | BB13342       |        |
|             | MW-19                 | 07/21/2021                        | 14:01           | 1           | Groun | dwater         |              |              | BB13343       |        |
|             |                       |                                   |                 |             |       |                |              |              |               |        |
|             |                       |                                   |                 |             |       |                |              |              |               |        |
|             |                       |                                   |                 |             |       |                |              |              |               |        |
|             |                       |                                   |                 |             |       |                |              |              |               |        |
|             |                       |                                   |                 |             |       |                |              |              |               |        |
|             |                       |                                   |                 |             |       |                |              |              |               |        |
|             |                       |                                   |                 |             |       |                |              |              |               |        |
|             |                       |                                   |                 |             |       |                |              |              |               |        |
|             |                       |                                   | İ               |             |       |                | -            | İ            |               |        |
|             |                       |                                   |                 |             |       |                |              |              |               |        |
|             |                       |                                   |                 |             |       |                |              |              |               |        |
|             |                       |                                   | 1               |             |       |                | <del> </del> |              |               |        |
|             |                       |                                   | 1               |             |       |                |              |              |               |        |
|             |                       |                                   | 1               |             |       |                |              |              |               |        |
|             |                       |                                   | †               |             |       |                |              |              |               |        |
|             |                       |                                   | †               |             |       |                |              | 1            |               |        |
|             |                       |                                   | †               |             |       |                |              |              |               |        |
|             |                       |                                   | 1               |             |       |                |              |              |               |        |
|             |                       | . 1                               | 1               | ļ.          |       |                |              |              |               | I      |
|             |                       | nquished By                       |                 | 1           |       | Received By    | У            |              | Date/Tim      |        |
|             | /                     | Ales Dety                         |                 |             |       | Laure<br>Mlly  |              |              | 07/22/2021 0  | 9:28   |
|             |                       |                                   |                 |             |       |                |              |              |               |        |
|             |                       |                                   |                 | $\parallel$ |       |                |              |              |               |        |
|             |                       |                                   |                 |             |       |                |              |              |               |        |
| (           | Smar/Trail ID         | 7500 44440 5                      |                 |             | A 11  | motals ar 1 :  | lioloni 1 1  | h 0441 = = 1 | nava mil ka E | <br>71 |
|             | SmarTroll ID          | 7586-41442-5-                     |                 | _           | All   | metals and rad |              | DOTTIES I    | 1ave pH < 2   |        |
|             | •                     | 3901-20010-2-2                    | 2               | $\dashv$    | m-1   | Cooler Temp    |              |              |               |        |
| S           | Sample Event          | 1330                              |                 |             | Th    | nermometer ID  |              | 205.40.5     |               |        |
| Dottla      | o/Duo Duocomyo d Dote | tles are provided by the          | CTI             |             |       | pH Strip ID    | 8206-458     | 305-10-9     |               |        |

Page 110 of 110



(704)875-9092



September 07, 2021

Laura Midkiff Alabama Power 744 Highway 87 GSC #8 Calera, AL 35040

RE: Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

#### Dear Laura Midkiff:

Enclosed are the analytical results for sample(s) received by the laboratory on July 26, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

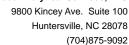
The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Greensburg

Revision 1 - This report replaces the August, 31, 2021 report. This project was revised on September, 7, 2021 to update the COC. (Greensburg, PA)

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Micole D'oles

Nicole D'Oleo nicole.d'oleo@pacelabs.com (704)875-9092 Project Manager

**Enclosures** 

cc: Brooke Caton, Alabama Power Renee Jernigan, Alabama Power







### **CERTIFICATIONS**

Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

#### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

**Arkansas Certification** 

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification

Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133

KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

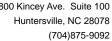
Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235 Montana Certification #: Cert0082

Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249


Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

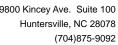
South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L





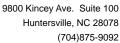

### **SAMPLE SUMMARY**

Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Lab ID      | Sample ID         | Matrix | Date Collected | Date Received  |
|-------------|-------------------|--------|----------------|----------------|
| 92551765001 | BB13192 MW-13     | Water  | 07/20/21 09:13 | 07/26/21 08:40 |
| 92551765002 | BB13193 MW-14     | Water  | 07/20/21 10:16 | 07/26/21 08:40 |
| 92551765003 | BB13193 MW-14 MS  | Water  | 07/20/21 10:16 | 07/26/21 08:40 |
| 92551765004 | BB13193 MW-14 MSD | Water  | 07/20/21 10:16 | 07/26/21 08:40 |
| 92551765005 | BB13194 MW-15     | Water  | 07/20/21 11:25 | 07/26/21 08:40 |
| 92551765006 | BB13195 MW-12V    | Water  | 07/20/21 12:32 | 07/26/21 08:40 |
| 92551765007 | BB13196 MW-6      | Water  | 07/20/21 13:57 | 07/26/21 08:40 |
| 92551765008 | BB13197 MW-6 DUP  | Water  | 07/20/21 13:57 | 07/26/21 08:40 |
| 92551765009 | BB13198 MW-8      | Water  | 07/20/21 15:25 | 07/26/21 08:40 |
| 92551765010 | BB13199 FB-2      | Water  | 07/20/21 16:05 | 07/26/21 08:40 |
| 92551765011 | BB13200 MW-12     | Water  | 07/20/21 11:53 | 07/26/21 08:40 |
| 92551765012 | BB13201 MW-10     | Water  | 07/20/21 13:15 | 07/26/21 08:40 |
| 92551765013 | BB13202 MW-7      | Water  | 07/20/21 14:30 | 07/26/21 08:40 |
| 92551765014 | BB13334 MW-5      | Water  | 07/21/21 10:53 | 07/26/21 08:40 |
| 92551765015 | BB13335 MW-16     | Water  | 07/21/21 12:10 | 07/26/21 08:40 |
| 92551765016 | BB13336 MW-16 DUP | Water  | 07/21/21 12:10 | 07/26/21 08:40 |
| 92551765017 | BB13337 MW-17R    | Water  | 07/21/21 13:30 | 07/26/21 08:40 |
| 92551765018 | BB13338 MW-18     | Water  | 07/21/21 14:28 | 07/26/21 08:40 |
| 92551765019 | BB13339 FB-1      | Water  | 07/21/21 15:00 | 07/26/21 08:40 |
| 92551765020 | BB13340 EB-1      | Water  | 07/21/21 15:10 | 07/26/21 08:40 |
| 92551765021 | BB13341 MW-11     | Water  | 07/21/21 11:34 | 07/26/21 08:40 |
| 92551765022 | BB13342 MW-20     | Water  | 07/21/21 12:47 | 07/26/21 08:40 |
| 92551765023 | BB13342 MW-20 MS  | Water  | 07/21/21 12:47 | 07/26/21 08:40 |
| 92551765024 | BB13342 MW-20 MSD | Water  | 07/21/21 12:47 | 07/26/21 08:40 |
| 92551765025 | BB13343 MW-19     | Water  | 07/21/21 14:01 | 07/26/21 08:40 |
|             |                   |        |                |                |






### **SAMPLE ANALYTE COUNT**

Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Lab ID      | Sample ID         | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------------|--------------------------|----------|----------------------|------------|
| 92551765001 | BB13192 MW-13     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92551765002 | BB13193 MW-14     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92551765003 | BB13193 MW-14 MS  | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
| 2551765004  | BB13193 MW-14 MSD | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
| 2551765005  | BB13194 MW-15     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 2551765006  | BB13195 MW-12V    | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 2551765007  | BB13196 MW-6      | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 2551765008  | BB13197 MW-6 DUP  | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 2551765009  | BB13198 MW-8      | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 2551765010  | BB13199 FB-2      | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 2551765011  | BB13200 MW-12     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 2551765012  | BB13201 MW-10     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 2551765013  | BB13202 MW-7      | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |





### **SAMPLE ANALYTE COUNT**

Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Lab ID      | Sample ID         | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------------|--------------------------|----------|----------------------|------------|
| 92551765014 | BB13334 MW-5      | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92551765015 | BB13335 MW-16     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 2551765016  | BB13336 MW-16 DUP | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92551765017 | BB13337 MW-17R    | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 2551765018  | BB13338 MW-18     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 2551765019  | BB13339 FB-1      | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 2551765020  | BB13340 EB-1      | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 2551765021  | BB13341 MW-11     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 2551765022  | BB13342 MW-20     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 2551765023  | BB13342 MW-20 MS  | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
| 2551765024  | BB13342 MW-20 MSD | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
| 92551765025 | BB13343 MW-19     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg





#### **PROJECT NARRATIVE**

Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

Method: EPA 9315

Description:9315 Total RadiumClient:Alabama PowerDate:September 07, 2021

#### **General Information:**

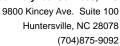
25 samples were analyzed for EPA 9315 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


### **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

### **Additional Comments:**





#### **PROJECT NARRATIVE**

Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

Method: EPA 9320

Description:9320 Radium 228Client:Alabama PowerDate:September 07, 2021

#### **General Information:**

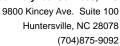
25 samples were analyzed for EPA 9320 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


#### **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

# **Additional Comments:**





#### **PROJECT NARRATIVE**

Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

Method:Total Radium CalculationDescription:Total Radium 228+226Client:Alabama PowerDate:September 07, 2021

#### **General Information:**

21 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### **Additional Comments:**

This data package has been reviewed for quality and completeness and is approved for release.



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13192 MW-13<br>PWS: | <b>Lab ID: 92551</b><br>Site ID: | <b>765001</b> Collected: 07/20/21 09:13 Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|-------------------------------|----------------------------------|------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                    | Method                           | Act ± Unc (MDC) Carr Trac                            | Units     | Analyzed       | CAS No.       | Qual |
|                               | Pace Analytical S                | Services - Greensburg                                |           |                |               |      |
| Radium-226                    | EPA 9315                         | 0.0567U ± 0.162 (0.401)<br>C:91% T:NA                | pCi/L     | 08/26/21 09:02 | 2 13982-63-3  |      |
|                               | Pace Analytical S                | Services - Greensburg                                |           |                |               |      |
| Radium-228                    | EPA 9320                         | 0.517U ± 0.313 (0.570)<br>C:85% T:76%                | pCi/L     | 08/17/21 11:2  | 1 15262-20-1  |      |
|                               | Pace Analytical S                | Services - Greensburg                                |           |                |               |      |
| Total Radium                  | Total Radium Calculation         | 0.574U ± 0.475 (0.971)                               | pCi/L     | 08/27/21 15:3  | 1 7440-14-4   |      |



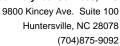
Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13193 MW-14<br>PWS: | <b>Lab ID: 925517</b><br>Site ID: | <b>765002</b> Collected: 07/20/21 10:16 Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|-------------------------------|-----------------------------------|------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                    | Method                            | Act ± Unc (MDC) Carr Trac                            | Units     | Analyzed       | CAS No.       | Qual |
|                               | Pace Analytical Se                | ervices - Greensburg                                 |           |                |               |      |
| Radium-226                    | EPA 9315                          | 0.246U ± 0.221 (0.401)<br>C:96% T:NA                 | pCi/L     | 08/26/21 09:02 | 2 13982-63-3  |      |
|                               | Pace Analytical Se                | ervices - Greensburg                                 |           |                |               |      |
| Radium-228                    | EPA 9320                          | 0.487 ± 0.248 (0.423)<br>C:93% T:90%                 | pCi/L     | 08/17/21 11:21 | 15262-20-1    |      |
|                               | Pace Analytical Se                | ervices - Greensburg                                 |           |                |               |      |
| Total Radium                  | Total Radium<br>Calculation       | 0.733U ± 0.469 (0.824)                               | pCi/L     | 08/27/21 15:3  | 1 7440-14-4   |      |



Project: GORGAS LANDFILL WMWGORLF\_1330


Pace Project No.: 92551765

Sample: BB13193 MW-14 MS Lab ID: 92551765003 Collected: 07/20/21 10:16 Received: 07/26/21 08:40 Matrix: Water

C:NA T:NA

Site ID: Sample Type:

PWS: Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Method Analyzed Qual Pace Analytical Services - Greensburg 102.86 %REC ± NA (NA) EPA 9315 Radium-226 pCi/L 08/26/21 09:02 13982-63-3 C:NA T:NA Pace Analytical Services - Greensburg 66.46 %REC ± NA (NA) EPA 9320 Radium-228 pCi/L 08/17/21 11:21 15262-20-1





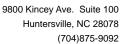
Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

Sample: BB13193 MW-14 MSD Lab ID: 92551765004 Collected: 07/20/21 10:16 Received: 07/26/21 08:40 Matrix: Water

PWS: Site ID: Sample Type:

Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Method Analyzed Qual Pace Analytical Services - Greensburg EPA 9315 94.00 %REC 9.00RPD ± NA Radium-226 pCi/L 08/26/21 09:02 13982-63-3 (NA) C:NA T:NA Pace Analytical Services - Greensburg EPA 9320 72.55 %REC 8.76 RPD ± Radium-228 pCi/L 08/17/21 11:21 15262-20-1


NA (NA) C:NA T:NA



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13194 MW-15<br>PWS: | <b>Lab ID: 92551</b> Site ID: | <b>765005</b> Collected: 07/20/21 11:25 Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|-------------------------------|-------------------------------|------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                    | Method                        | Act ± Unc (MDC) Carr Trac                            | Units     | Analyzed       | CAS No.       | Qual |
|                               | Pace Analytical S             | Services - Greensburg                                |           |                |               |      |
| Radium-226                    | EPA 9315                      | 0.495 ± 0.298 (0.467)<br>C:95% T:NA                  | pCi/L     | 08/26/21 09:03 | 13982-63-3    |      |
|                               | Pace Analytical S             | ervices - Greensburg                                 |           |                |               |      |
| Radium-228                    | EPA 9320                      | 0.382U ± 0.322 (0.645)<br>C:79% T:83%                | pCi/L     | 08/17/21 11:21 | 15262-20-1    |      |
|                               | Pace Analytical S             | ervices - Greensburg                                 |           |                |               |      |
| Total Radium                  | Total Radium Calculation      | 0.877U ± 0.620 (1.11)                                | pCi/L     | 08/27/21 15:31 | 7440-14-4     |      |





Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13195 MW-12V<br>PWS: | Lab ID: 9255<br>Site ID: | <b>1765006</b> Collected: 07/20/21 12:32 Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|--------------------------------|--------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                     | Method                   | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                                | Pace Analytical          | Services - Greensburg                                 |           |                |               |      |
| Radium-226                     | EPA 9315                 | 0.121U ± 0.206 (0.465)<br>C:94% T:NA                  | pCi/L     | 08/26/21 09:03 | 3 13982-63-3  |      |
|                                | Pace Analytical          | Services - Greensburg                                 |           |                |               |      |
| Radium-228                     | EPA 9320                 | 0.642 ± 0.285 (0.458)<br>C:88% T:93%                  | pCi/L     | 08/17/21 11:21 | 15262-20-1    |      |
|                                | Pace Analytical          | Services - Greensburg                                 |           |                |               |      |
| Total Radium                   | Total Radium Calculation | 0.763U ± 0.491 (0.923)                                | pCi/L     | 08/27/21 15:31 | 1 7440-14-4   |      |



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13196 MW-6<br>PWS: | Lab ID: 9255<br>Site ID:    | <b>1765007</b> Collected: 07/20/21 13:57 Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|------------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                   | EPA 9315                    | 0.767 ± 0.334 (0.375)<br>C:97% T:NA                   | pCi/L     | 08/26/21 09:0  | 5 13982-63-3  |      |
|                              | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                   | EPA 9320                    | 0.550 ± 0.289 (0.513)<br>C:83% T:99%                  | pCi/L     | 08/17/21 11:24 | 1 15262-20-1  |      |
|                              | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation | 1.32 ± 0.623 (0.888)                                  | pCi/L     | 08/27/21 15:3  | 1 7440-14-4   |      |



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13197 MW-6 DUP<br>PWS: | <b>Lab ID: 925517</b><br>Site ID: | <b>65008</b> Collected: 07/20/21 13:57 Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|----------------------------------|-----------------------------------|-----------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                       | Method                            | Act ± Unc (MDC) Carr Trac                           | Units     | Analyzed       | CAS No.       | Qual |
|                                  | Pace Analytical Se                | ervices - Greensburg                                |           |                |               |      |
| Radium-226                       | EPA 9315                          | 0.537 ± 0.301 (0.450)<br>C:96% T:NA                 | pCi/L     | 08/26/21 09:01 | 1 13982-63-3  |      |
|                                  | Pace Analytical Se                | ervices - Greensburg                                |           |                |               |      |
| Radium-228                       | EPA 9320                          | 0.270U ± 0.279 (0.578)<br>C:86% T:83%               | pCi/L     | 08/17/21 11:25 | 5 15262-20-1  |      |
|                                  | Pace Analytical Se                | ervices - Greensburg                                |           |                |               |      |
| Total Radium                     | Total Radium Calculation          | 0.807U ± 0.580 (1.03)                               | pCi/L     | 08/27/21 15:3  | 1 7440-14-4   |      |



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13198 MW-8<br>PWS: | <b>Lab ID:</b> 9255176<br>Site ID: | <b>Collected:</b> 07/20/21 15:25 Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|------------------------------|------------------------------------|-----------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                             | Act ± Unc (MDC) Carr Trac                     | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Ser                | rvices - Greensburg                           |           |                |               |      |
| Radium-226                   | EPA 9315                           | 0.120U ± 0.183 (0.400)<br>C:99% T:NA          | pCi/L     | 08/26/21 09:01 | 1 13982-63-3  |      |
|                              | Pace Analytical Ser                | rvices - Greensburg                           |           |                |               |      |
| Radium-228                   | EPA 9320                           | 0.300U ± 0.304 (0.625)<br>C:78% T:83%         | pCi/L     | 08/17/21 11:25 | 5 15262-20-1  |      |
|                              | Pace Analytical Ser                | rvices - Greensburg                           |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation        | 0.420U ± 0.487 (1.03)                         | pCi/L     | 08/27/21 15:3  | 1 7440-14-4   |      |



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13199 FB-2<br>PWS: | <b>Lab ID: 92551</b><br>Site ID: | <b>765010</b> Collected: 07/20/21 16:05 Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|------------------------------|----------------------------------|------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                           | Act ± Unc (MDC) Carr Trac                            | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical S                | Services - Greensburg                                |           |                |               |      |
| Radium-226                   | EPA 9315                         | 0.261U ± 0.273 (0.558)<br>C:96% T:NA                 | pCi/L     | 08/26/21 09:01 | 13982-63-3    |      |
|                              | Pace Analytical S                | Services - Greensburg                                |           |                |               |      |
| Radium-228                   | EPA 9320                         | 0.217U ± 0.281 (0.597)<br>C:78% T:89%                | pCi/L     | 08/17/21 11:25 | 15262-20-1    |      |
|                              | Pace Analytical S                | Services - Greensburg                                |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation      | 0.478U ± 0.554 (1.16)                                | pCi/L     | 08/27/21 15:31 | 7440-14-4     |      |



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13200 MW-12<br>PWS: | Lab ID: 9255<br>Site ID: | <b>1765011</b> Collected: 07/20/21 11:53 Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|-------------------------------|--------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                    | Method                   | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                               | Pace Analytical          | Services - Greensburg                                 |           |                |               |      |
| Radium-226                    | EPA 9315                 | 0.241U ± 0.247 (0.497)<br>C:98% T:NA                  | pCi/L     | 08/26/21 09:0  | 1 13982-63-3  |      |
|                               | Pace Analytical          | Services - Greensburg                                 |           |                |               |      |
| Radium-228                    | EPA 9320                 | 0.912 ± 0.407 (0.663)<br>C:76% T:81%                  | pCi/L     | 08/17/21 11:25 | 5 15262-20-1  |      |
|                               | Pace Analytical          | Services - Greensburg                                 |           |                |               |      |
| Total Radium                  | Total Radium Calculation | 1.15U ± 0.654 (1.16)                                  | pCi/L     | 08/27/21 15:3  | 1 7440-14-4   |      |



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13201 MW-10<br>PWS: | Lab ID: 9255<br>Site ID:    | <b>1765012</b> Collected: 07/20/21 13:15 Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|-------------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                    | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                               | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                    | EPA 9315                    | 0.160U ± 0.233 (0.511)<br>C:91% T:NA                  | pCi/L     | 08/26/21 09:0  | 1 13982-63-3  |      |
|                               | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                    | EPA 9320                    | 0.184U ± 0.278 (0.600)<br>C:81% T:92%                 | pCi/L     | 08/17/21 11:25 | 5 15262-20-1  |      |
|                               | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium                  | Total Radium<br>Calculation | 0.344U ± 0.511 (1.11)                                 | pCi/L     | 08/27/21 15:3  | 1 7440-14-4   |      |



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13202 MW-7<br>PWS: | Lab ID: 92551<br>Site ID:   | 765013 Collected: 07/20/21 14:30 Sample Type: | Received: | 07/26/21 08:40 I | Matrix: Water |      |
|------------------------------|-----------------------------|-----------------------------------------------|-----------|------------------|---------------|------|
| Parameters                   | Method                      | Act ± Unc (MDC) Carr Trac                     | Units     | Analyzed         | CAS No.       | Qual |
|                              | Pace Analytical S           | Services - Greensburg                         |           |                  |               |      |
| Radium-226                   | EPA 9315                    | 0.0281U ± 0.174 (0.451)<br>C:93% T:NA         | pCi/L     | 08/26/21 09:00   | 13982-63-3    |      |
|                              | Pace Analytical S           | Services - Greensburg                         |           |                  |               |      |
| Radium-228                   | EPA 9320                    | 0.328U ± 0.297 (0.598)<br>C:81% T:88%         | pCi/L     | 08/17/21 11:25   | 15262-20-1    |      |
|                              | Pace Analytical S           | Services - Greensburg                         |           |                  |               |      |
| Total Radium                 | Total Radium<br>Calculation | 0.356U ± 0.471 (1.05)                         | pCi/L     | 08/27/21 15:31   | 7440-14-4     |      |



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13334 MW-5<br>PWS: | <b>Lab ID: 92551</b><br>Site ID: | <b>765014</b> Collected: 07/21/21 10:53 Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|------------------------------|----------------------------------|------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                           | Act ± Unc (MDC) Carr Trac                            | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical S                | Services - Greensburg                                |           |                |               |      |
| Radium-226                   | EPA 9315                         | 0.373U ± 0.251 (0.389)<br>C:94% T:NA                 | pCi/L     | 08/26/21 09:07 | 7 13982-63-3  |      |
|                              | Pace Analytical S                | Services - Greensburg                                |           |                |               |      |
| Radium-228                   | EPA 9320                         | 0.417U ± 0.301 (0.578)<br>C:80% T:83%                | pCi/L     | 08/17/21 11:25 | 5 15262-20-1  |      |
|                              | Pace Analytical S                | Services - Greensburg                                |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation      | 0.790U ± 0.552 (0.967)                               | pCi/L     | 08/27/21 15:31 | 7440-14-4     |      |



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13335 MW-16 PWS: | <b>Lab ID:</b> 9255176<br>Site ID: | 65015 Collected: 07/21/21 12:10 Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|----------------------------|------------------------------------|----------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                             | Act ± Unc (MDC) Carr Trac                    | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical Se                 | ervices - Greensburg                         |           |                |               |      |
| Radium-226                 | EPA 9315                           | 0.0383U ± 0.145 (0.370)<br>C:97% T:NA        | pCi/L     | 08/26/21 09:08 | 3 13982-63-3  |      |
|                            | Pace Analytical Se                 | ervices - Greensburg                         |           |                |               |      |
| Radium-228                 | EPA 9320                           | 0.447U ± 0.279 (0.515)<br>C:86% T:87%        | pCi/L     | 08/17/21 11:25 | 5 15262-20-1  |      |
|                            | Pace Analytical Se                 | ervices - Greensburg                         |           |                |               |      |
| Total Radium               | Total Radium Calculation           | 0.485U ± 0.424 (0.885)                       | pCi/L     | 08/27/21 15:31 | 7440-14-4     |      |



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13336 MW-16 DUP PWS: | <b>Lab ID: 925517</b><br>Site ID: | <b>65016</b> Collected: 07/21/21 12:10 Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|--------------------------------|-----------------------------------|-----------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                     | Method                            | Act ± Unc (MDC) Carr Trac                           | Units     | Analyzed       | CAS No.       | Qual |
|                                | Pace Analytical Se                | ervices - Greensburg                                |           |                |               |      |
| Radium-226                     | EPA 9315                          | 0.489 ± 0.265 (0.329)<br>C:97% T:NA                 | pCi/L     | 08/26/21 09:08 | 3 13982-63-3  |      |
|                                | Pace Analytical Se                | ervices - Greensburg                                |           |                |               |      |
| Radium-228                     | EPA 9320                          | 0.196U ± 0.254 (0.539)<br>C:83% T:90%               | pCi/L     | 08/17/21 11:25 | 5 15262-20-1  |      |
|                                | Pace Analytical Se                | ervices - Greensburg                                |           |                |               |      |
| Total Radium                   | Total Radium Calculation          | 0.685U ± 0.519 (0.868)                              | pCi/L     | 08/27/21 15:3  | 1 7440-14-4   |      |



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13337 MW-17R<br>PWS: | Lab ID: 9255<br>Site ID: | 1765017 Collected: 07/21/21 13:30<br>Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|--------------------------------|--------------------------|---------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                     | Method                   | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed       | CAS No.       | Qual |
|                                | Pace Analytical          | Services - Greensburg                             |           |                |               |      |
| Radium-226                     | EPA 9315                 | 0.156U ± 0.184 (0.365)<br>C:97% T:NA              | pCi/L     | 08/26/21 09:08 | 3 13982-63-3  |      |
|                                | Pace Analytical          | Services - Greensburg                             |           |                |               |      |
| Radium-228                     | EPA 9320                 | 0.564U ± 0.344 (0.629)<br>C:77% T:81%             | pCi/L     | 08/17/21 11:26 | 5 15262-20-1  |      |
|                                | Pace Analytical          | Services - Greensburg                             |           |                |               |      |
| Total Radium                   | Total Radium Calculation | 0.720U ± 0.528 (0.994)                            | pCi/L     | 08/27/21 15:31 | 1 7440-14-4   |      |



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13338 MW-18<br>PWS: | <b>Lab ID: 9255176</b> Site ID: | 65018 Collected: 07/21/21 14:28<br>Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|-------------------------------|---------------------------------|-------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                    | Method                          | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed       | CAS No.       | Qual |
|                               | Pace Analytical Se              | rvices - Greensburg                             |           |                |               |      |
| Radium-226                    | EPA 9315                        | 0.203U ± 0.252 (0.535)<br>C:99% T:NA            | pCi/L     | 08/26/21 09:08 | 3 13982-63-3  |      |
|                               | Pace Analytical Se              | rvices - Greensburg                             |           |                |               |      |
| Radium-228                    | EPA 9320                        | 0.186U ± 0.278 (0.600)<br>C:78% T:90%           | pCi/L     | 08/17/21 11:26 | 5 15262-20-1  |      |
|                               | Pace Analytical Se              | rvices - Greensburg                             |           |                |               |      |
| Total Radium                  | Total Radium Calculation        | 0.389U ± 0.530 (1.14)                           | pCi/L     | 08/27/21 15:31 | 1 7440-14-4   |      |



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13339 FB-1<br>PWS: | <b>Lab ID:</b> 925517<br>Site ID: | <b>65019</b> Collected: 07/21/21 15:00 Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|------------------------------|-----------------------------------|-----------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                            | Act ± Unc (MDC) Carr Trac                           | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Se                | ervices - Greensburg                                |           |                |               |      |
| Radium-226                   | EPA 9315                          | 0.0854U ± 0.150 (0.336)<br>C:95% T:NA               | pCi/L     | 08/26/21 09:08 | 3 13982-63-3  |      |
|                              | Pace Analytical Se                | ervices - Greensburg                                |           |                |               |      |
| Radium-228                   | EPA 9320                          | 0.323U ± 0.289 (0.584)<br>C:78% T:91%               | pCi/L     | 08/17/21 11:26 | 5 15262-20-1  |      |
|                              | Pace Analytical Se                | ervices - Greensburg                                |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation       | 0.408U ± 0.439 (0.920)                              | pCi/L     | 08/27/21 15:31 | 7440-14-4     |      |



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13340 EB-1<br>PWS: | <b>Lab ID: 9255176</b><br>Site ID: | Sample Type: 07/21/21 15:10           | Received: | 07/26/21 08:40 | Matrix: Water |      |
|------------------------------|------------------------------------|---------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                             | Act ± Unc (MDC) Carr Trac             | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Se                 | rvices - Greensburg                   |           |                |               |      |
| Radium-226                   | EPA 9315                           | 0.0386U ± 0.145 (0.373)<br>C:95% T:NA | pCi/L     | 08/26/21 09:08 | 3 13982-63-3  |      |
|                              | Pace Analytical Se                 | rvices - Greensburg                   |           |                |               |      |
| Radium-228                   | EPA 9320                           | 0.411U ± 0.342 (0.682)<br>C:78% T:85% | pCi/L     | 08/17/21 11:26 | 5 15262-20-1  |      |
|                              | Pace Analytical Se                 | rvices - Greensburg                   |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation        | 0.450U ± 0.487 (1.06)                 | pCi/L     | 08/27/21 15:31 | 7440-14-4     |      |



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13341 MW-11<br>PWS: | <b>Lab ID: 925517</b><br>Site ID: | <b>Collected:</b> 07/21/21 11:34 Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|-------------------------------|-----------------------------------|-----------------------------------------------|-----------|----------------|---------------|------|
| Parameters                    | Method                            | Act ± Unc (MDC) Carr Trac                     | Units     | Analyzed       | CAS No.       | Qual |
|                               | Pace Analytical Se                | ervices - Greensburg                          |           |                |               |      |
| Radium-226                    | EPA 9315                          | 0.0437U ± 0.133 (0.335)<br>C:94% T:NA         | pCi/L     | 08/26/21 09:11 | 13982-63-3    |      |
|                               | Pace Analytical So                | ervices - Greensburg                          |           |                |               |      |
| Radium-228                    | EPA 9320                          | 0.907 ± 0.428 (0.726)<br>C:69% T:86%          | pCi/L     | 08/18/21 14:14 | 15262-20-1    |      |
|                               | Pace Analytical So                | ervices - Greensburg                          |           |                |               |      |
| Total Radium                  | Total Radium<br>Calculation       | 0.951U ± 0.561 (1.06)                         | pCi/L     | 08/27/21 15:30 | 7440-14-4     |      |



Project: GORGAS LANDFILL WMWGORLF\_1330

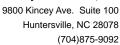
Pace Project No.: 92551765

| <b>Sample: BB13342 MW-20</b> PWS: | <b>Lab ID: 92551</b> Site ID: | <b>765022</b> Collected: 07/21/21 12:47 Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|-----------------------------------|-------------------------------|------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                        | Method                        | Act ± Unc (MDC) Carr Trac                            | Units     | Analyzed       | CAS No.       | Qual |
|                                   | Pace Analytical S             | ervices - Greensburg                                 |           |                |               |      |
| Radium-226                        | EPA 9315                      | 0.277U ± 0.250 (0.471)<br>C:95% T:NA                 | pCi/L     | 08/26/21 09:1  | 1 13982-63-3  |      |
|                                   | Pace Analytical S             | ervices - Greensburg                                 |           |                |               |      |
| Radium-228                        | EPA 9320                      | 1.20 ± 0.507 (0.802)<br>C:67% T:81%                  | pCi/L     | 08/23/21 11:25 | 5 15262-20-1  |      |
|                                   | Pace Analytical S             | ervices - Greensburg                                 |           |                |               |      |
| Total Radium                      | Total Radium<br>Calculation   | 1.48 ± 0.757 (1.27)                                  | pCi/L     | 08/27/21 15:30 | 7440-14-4     |      |



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765


Sample: BB13342 MW-20 MS Lab ID: 92551765023 Collected: 07/21/21 12:47 Received: 07/26/21 08:40 Matrix: Water

C:NA T:NA

PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Method Analyzed Qual Pace Analytical Services - Greensburg 100.50 %REC ± NA (NA) EPA 9315 Radium-226 pCi/L 08/26/21 09:11 13982-63-3 C:NA T:NA Pace Analytical Services - Greensburg 107.23 %REC ± NA (NA) EPA 9320 Radium-228

pCi/L

08/23/21 11:25 15262-20-1





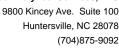
Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

Sample: BB13342 MW-20 MSD Lab ID: 92551765024 Collected: 07/21/21 12:47 Received: 07/26/21 08:40 Matrix: Water

PWS: Site ID: Sample Type:

Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg 100.76 %REC 0.26RPD ± Radium-226 EPA 9315 pCi/L 08/26/21 09:11 13982-63-3 NA (NA) C:NA T:ŃA Pace Analytical Services - Greensburg EPA 9320 98.83 %REC 8.15 RPD ± Radium-228 pCi/L 08/23/21 11:23 15262-20-1


NA (NA) C:NA T:NA



Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

| Sample: BB13343 MW-19<br>PWS: | <b>Lab ID:</b> 9255176<br>Site ID: | 5025 Collected: 07/21/21 14:01<br>Sample Type: | Received: | 07/26/21 08:40 | Matrix: Water |      |
|-------------------------------|------------------------------------|------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                    | Method                             | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed       | CAS No.       | Qual |
|                               | Pace Analytical Ser                | vices - Greensburg                             |           |                |               |      |
| Radium-226                    | EPA 9315                           | 0.223U ± 0.235 (0.462)<br>C:93% T:NA           | pCi/L     | 08/26/21 09:11 | 13982-63-3    |      |
|                               | Pace Analytical Ser                | vices - Greensburg                             |           |                |               |      |
| Radium-228                    | EPA 9320                           | 0.406U ± 0.323 (0.634)<br>C:77% T:85%          | pCi/L     | 08/18/21 14:17 | 7 15262-20-1  |      |
|                               | Pace Analytical Ser                | vices - Greensburg                             |           |                |               |      |
| Total Radium                  | Total Radium<br>Calculation        | 0.629U ± 0.558 (1.10)                          | pCi/L     | 08/27/21 15:30 | 7440-14-4     |      |





Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

QC Batch: 458506 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

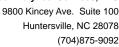
Associated Lab Samples: 92551765001, 92551765002, 92551765003, 92551765004, 92551765005, 92551765006, 92551765007,

92551765008, 92551765009, 92551765010, 92551765011, 92551765012, 92551765013, 92551765014,

92551765015, 92551765016, 92551765017, 92551765018, 92551765019, 92551765020

METHOD BLANK: 2213739 Matrix: Water

Associated Lab Samples: 92551765001, 92551765002, 92551765003, 92551765004, 92551765005, 92551765006, 92551765007,


92551765008, 92551765009, 92551765010, 92551765011, 92551765012, 92551765013, 92551765014,

92551765015, 92551765016, 92551765017, 92551765018, 92551765019, 92551765020

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 -0.0616 ± 0.197 (0.563) C:99% T:NA
 pCi/L
 08/26/21 09:02

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

QC Batch: 459647 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

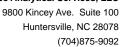
Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92551765001, 92551765002, 92551765003, 92551765004, 92551765005, 92551765006, 92551765007, 92551765008, 92551765009, 92551765010, 92551765011, 92551765012, 92551765013, 92551765014,

92551765015, 92551765016, 92551765017, 92551765018, 92551765019, 92551765020

METHOD BLANK: 2218980 Matrix: Water

Associated Lab Samples: 92551765001, 92551765002, 92551765003, 92551765004, 92551765005, 92551765006, 92551765007,


92551765008, 92551765009, 92551765010, 92551765011, 92551765012, 92551765013, 92551765014,

92551765015, 92551765016, 92551765017, 92551765018, 92551765019, 92551765020

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.837 ± 0.360 (0.572) C:86% T:84%
 pCi/L
 08/17/21 11:21

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project: GORGAS LANDFILL WMWGORLF\_1330

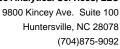
Pace Project No.: 92551765

QC Batch: 459648 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92551765021, 92551765022, 92551765023, 92551765024, 92551765025


METHOD BLANK: 2218981 Matrix: Water

Associated Lab Samples: 92551765021, 92551765022, 92551765023, 92551765024, 92551765025

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.563 ± 0.363 (0.691) C:78% T:96%
 pCi/L
 08/18/21 14:14

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

QC Batch: 458508 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92551765021, 92551765022, 92551765023, 92551765024, 92551765025

METHOD BLANK: 2213744 Matrix: Water

Associated Lab Samples: 92551765021, 92551765022, 92551765023, 92551765024, 92551765025

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.00546 ± 0.186 (0.496) C:92% T:NA pCi/L 08/26/21 09:10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

#### **QUALIFIERS**

Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 09/07/2021 05:00 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

Date: 09/07/2021 05:00 PM

| Lab ID      | Sample ID         | QC Batch Method | QC Batch | Analytical Method | Analytica<br>Batch |
|-------------|-------------------|-----------------|----------|-------------------|--------------------|
| 92551765001 | BB13192 MW-13     | EPA 9315        | 458506   | _                 |                    |
| 92551765002 | BB13193 MW-14     | EPA 9315        | 458506   |                   |                    |
| 92551765003 | BB13193 MW-14 MS  | EPA 9315        | 458506   |                   |                    |
| 2551765004  | BB13193 MW-14 MSD | EPA 9315        | 458506   |                   |                    |
| 2551765005  | BB13194 MW-15     | EPA 9315        | 458506   |                   |                    |
| 2551765006  | BB13195 MW-12V    | EPA 9315        | 458506   |                   |                    |
| 2551765007  | BB13196 MW-6      | EPA 9315        | 458506   |                   |                    |
| 2551765008  | BB13197 MW-6 DUP  | EPA 9315        | 458506   |                   |                    |
| 2551765009  | BB13198 MW-8      | EPA 9315        | 458506   |                   |                    |
| 2551765010  | BB13199 FB-2      | EPA 9315        | 458506   |                   |                    |
| 2551765011  | BB13200 MW-12     | EPA 9315        | 458506   |                   |                    |
| 2551765012  | BB13201 MW-10     | EPA 9315        | 458506   |                   |                    |
| 2551765013  | BB13202 MW-7      | EPA 9315        | 458506   |                   |                    |
| 2551765014  | BB13334 MW-5      | EPA 9315        | 458506   |                   |                    |
| 2551765015  | BB13335 MW-16     | EPA 9315        | 458506   |                   |                    |
| 2551765016  | BB13336 MW-16 DUP | EPA 9315        | 458506   |                   |                    |
| 2551765017  | BB13337 MW-17R    | EPA 9315        | 458506   |                   |                    |
| 2551765018  | BB13338 MW-18     | EPA 9315        | 458506   |                   |                    |
| 2551765019  | BB13339 FB-1      | EPA 9315        | 458506   |                   |                    |
| 2551765020  | BB13340 EB-1      | EPA 9315        | 458506   |                   |                    |
| 2551765021  | BB13341 MW-11     | EPA 9315        | 458508   |                   |                    |
| 2551765022  | BB13342 MW-20     | EPA 9315        | 458508   |                   |                    |
| 2551765023  | BB13342 MW-20 MS  | EPA 9315        | 458508   |                   |                    |
| 2551765024  | BB13342 MW-20 MSD | EPA 9315        | 458508   |                   |                    |
| 2551765025  | BB13343 MW-19     | EPA 9315        | 458508   |                   |                    |
| 2551765001  | BB13192 MW-13     | EPA 9320        | 459647   |                   |                    |
| 2551765002  | BB13193 MW-14     | EPA 9320        | 459647   |                   |                    |
| 2551765003  | BB13193 MW-14 MS  | EPA 9320        | 459647   |                   |                    |
| 2551765004  | BB13193 MW-14 MSD | EPA 9320        | 459647   |                   |                    |
| 2551765005  | BB13194 MW-15     | EPA 9320        | 459647   |                   |                    |
| 2551765006  | BB13195 MW-12V    | EPA 9320        | 459647   |                   |                    |
| 2551765007  | BB13196 MW-6      | EPA 9320        | 459647   |                   |                    |
| 2551765008  | BB13197 MW-6 DUP  | EPA 9320        | 459647   |                   |                    |
| 2551765009  | BB13198 MW-8      | EPA 9320        | 459647   |                   |                    |
| 2551765010  | BB13199 FB-2      | EPA 9320        | 459647   |                   |                    |
| 2551765011  | BB13200 MW-12     | EPA 9320        | 459647   |                   |                    |
| 2551765012  | BB13201 MW-10     | EPA 9320        | 459647   |                   |                    |
| 2551765013  | BB13202 MW-7      | EPA 9320        | 459647   |                   |                    |
| 2551765014  | BB13334 MW-5      | EPA 9320        | 459647   |                   |                    |
| 2551765015  | BB13335 MW-16     | EPA 9320        | 459647   |                   |                    |
| 2551765016  | BB13336 MW-16 DUP | EPA 9320        | 459647   |                   |                    |
| 2551765017  | BB13337 MW-17R    | EPA 9320        | 459647   |                   |                    |
| 2551765018  | BB13338 MW-18     | EPA 9320        | 459647   |                   |                    |
| 2551765019  | BB13339 FB-1      | EPA 9320        | 459647   |                   |                    |
| 2551765020  | BB13340 EB-1      | EPA 9320        | 459647   |                   |                    |
| 2551765021  | BB13341 MW-11     | EPA 9320        | 459648   |                   |                    |
| 92551765022 | BB13342 MW-20     | EPA 9320        | 459648   |                   |                    |



# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: GORGAS LANDFILL WMWGORLF\_1330

Pace Project No.: 92551765

Date: 09/07/2021 05:00 PM

| Lab ID      | Sample ID         | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-------------------|--------------------------|----------|-------------------|---------------------|
| 92551765023 | BB13342 MW-20 MS  | EPA 9320                 | 459648   |                   |                     |
| 92551765024 | BB13342 MW-20 MSD | EPA 9320                 | 459648   |                   |                     |
| 92551765025 | BB13343 MW-19     | EPA 9320                 | 459648   |                   |                     |
| 92551765001 | BB13192 MW-13     | Total Radium Calculation | 462044   |                   |                     |
| 92551765002 | BB13193 MW-14     | Total Radium Calculation | 462044   |                   |                     |
| 92551765005 | BB13194 MW-15     | Total Radium Calculation | 462044   |                   |                     |
| 92551765006 | BB13195 MW-12V    | Total Radium Calculation | 462044   |                   |                     |
| 92551765007 | BB13196 MW-6      | Total Radium Calculation | 462044   |                   |                     |
| 92551765008 | BB13197 MW-6 DUP  | Total Radium Calculation | 462044   |                   |                     |
| 2551765009  | BB13198 MW-8      | Total Radium Calculation | 462044   |                   |                     |
| 2551765010  | BB13199 FB-2      | Total Radium Calculation | 462044   |                   |                     |
| 2551765011  | BB13200 MW-12     | Total Radium Calculation | 462044   |                   |                     |
| 2551765012  | BB13201 MW-10     | Total Radium Calculation | 462044   |                   |                     |
| 2551765013  | BB13202 MW-7      | Total Radium Calculation | 462044   |                   |                     |
| 2551765014  | BB13334 MW-5      | Total Radium Calculation | 462044   |                   |                     |
| 2551765015  | BB13335 MW-16     | Total Radium Calculation | 462044   |                   |                     |
| 2551765016  | BB13336 MW-16 DUP | Total Radium Calculation | 462044   |                   |                     |
| 2551765017  | BB13337 MW-17R    | Total Radium Calculation | 462044   |                   |                     |
| 2551765018  | BB13338 MW-18     | Total Radium Calculation | 462044   |                   |                     |
| 92551765019 | BB13339 FB-1      | Total Radium Calculation | 462044   |                   |                     |
| 92551765020 | BB13340 EB-1      | Total Radium Calculation | 462044   |                   |                     |
| 92551765021 | BB13341 MW-11     | Total Radium Calculation | 462042   |                   |                     |
| 92551765022 | BB13342 MW-20     | Total Radium Calculation | 462042   |                   |                     |
| 92551765025 | BB13343 MW-19     | Total Radium Calculation | 462042   |                   |                     |

| Pittsburgh Lab Sample Cond                                       | dition   | Upo    | n R     | eceipt                      | WO#: 92551765                                              |
|------------------------------------------------------------------|----------|--------|---------|-----------------------------|------------------------------------------------------------|
| Pace Analytical Client Name:                                     | Ala:     | YXXIM  | apo     | wer Co                      |                                                            |
| Courier: Fed Ex UPS USPS Clie                                    | ant [    | Comp   | norcia  | I Daga Othar                | 92551765                                                   |
| Tracking #: 5140 341 6520                                        | 711C L   | COIIII | licicia | L Pace Office               | LIMS Login                                                 |
| Custody Seal on Cooler/Box Present: Syes                         | . П      | - 00   | Sea     | ls intact: Dyes [           | no                                                         |
| Thermometer Used                                                 |          | of Ice |         |                             | 110                                                        |
| Cooler Temperature Observed Temp                                 | туре     | • C    |         | rection Factor:             | °C Final Temp: ~ °C                                        |
| Temp should be above freezing to 6°C                             |          | _      | COI     | rection Factor.             | °C Final Temp: ~_ °C                                       |
|                                                                  |          |        |         | pH paper Lot#               | Date and Initials of person examining contents: AL 7/20/21 |
| Comments:                                                        | Yes      | No     | N/A     | 10038001                    | contents: XXV 7/0V/0/                                      |
| Chain of Custody Present:                                        | W        |        |         | 1.                          |                                                            |
| Chain of Custody Filled Out:                                     | X        |        |         | 2.                          |                                                            |
| Chain of Custody Relinquished:                                   | M        |        |         | 3.                          |                                                            |
| Sampler Name & Signature on COC:                                 | 2        | N      |         | 4. No Informa               | hon                                                        |
| Sample Labels match COC:                                         | Ø        |        |         | 5.                          |                                                            |
| -Includes date/time/ID Matrix: V                                 | VT       |        |         |                             |                                                            |
| Samples Arrived within Hold Time:                                | W        |        |         | 6,                          |                                                            |
| Short Hold Time Analysis (<72hr remaining):                      |          | M      |         | 7.                          |                                                            |
| Rush Turn Around Time Requested:                                 |          | (X)    |         | 8.                          |                                                            |
| Bufficient Volume: "ไม่งใจ                                       | 11 7     | X      |         | 9.1 liter recieve           | ed for 226/228 marked LV                                   |
| Correct Containers Used:                                         | W        |        |         | 10.                         |                                                            |
| -Pace Containers Used:                                           | M        |        |         |                             |                                                            |
| Containers Intact:                                               | V        |        |         | 11.                         |                                                            |
| Orthophosphate field filtered                                    |          |        | Ø       | 12.                         |                                                            |
| lex.Cr Aqueous sample field filtered                             |          |        | V       | 13,                         |                                                            |
| Organic Samples checked for dechlorination:                      |          |        | Ø       | 14.                         |                                                            |
| iltered volume received for Dissolved tests                      |          |        | X       | 15.                         |                                                            |
| il containers have been checked for preservation.                | N        | 1      |         | 16.                         |                                                            |
| xceptions: VOA, coliform, TOC, O&G, Phenolics, on-aqueous matrix |          | 99112  |         |                             |                                                            |
| Il containers meet method preservation                           | M        |        |         | Initial when completed      | Date/time of                                               |
| equirements.                                                     | 17       |        | -       | Lot # of added              | preservation                                               |
|                                                                  |          |        |         | preservative                |                                                            |
| eadspace in VOA Vials ( >6mm):                                   |          |        | \D      | 17.                         |                                                            |
| ip Blank Present:                                                | $\sqcup$ |        | ×       | 18.                         |                                                            |
| ip Blank Custody Seals Present                                   |          |        | 0       |                             |                                                            |
| ad Samples Screened < 0.5 mrem/hr                                | V        |        |         | Initial when completed: (\Q | Date: 7 36 3 Survey Meter SN: 1503                         |
| ient Notification/ Resolution:                                   |          |        |         |                             | 1047                                                       |
| Person Contacted:                                                |          |        | Date/T  | ime:                        | Contacted By:                                              |
| Comments/ Resolution:                                            |          |        |         |                             |                                                            |
| age 2 missing sample "B                                          | 13133    | 102"   | 1       |                             |                                                            |
| ages 369 no samples recu                                         | red      |        |         |                             |                                                            |
| V                                                                |          |        |         |                             |                                                            |
|                                                                  |          |        |         |                             |                                                            |
|                                                                  |          |        |         |                             |                                                            |

A check in this box indicates that additional information has been stored in ereports.

Pittsburgh Lab Sample Condition Upon Receipt

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

\*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

| Pittsburgh Lab Sample Condition Upon Receipt                                                    |            |          |               |                                                                          |          |
|-------------------------------------------------------------------------------------------------|------------|----------|---------------|--------------------------------------------------------------------------|----------|
| Face Analytical Client Name:                                                                    |            | Po       | \c C          | Project # 3043337                                                        | <b>a</b> |
| Courier: Fed Ex UPS USPS Client                                                                 | . 🗆        | Comm     | arcial        | □ Pace Other Label rUm                                                   | •        |
| Tracking #: TORN                                                                                |            |          |               |                                                                          |          |
| Custody Seal on Cooler/Box Present:  yes                                                        | 7          | -/<br>10 | Seals         | intact: yes no                                                           |          |
| Thermometer Used                                                                                | _          |          |               | Blue Node                                                                |          |
| Cooler Temperature Observed Temp °C Correction Factor: °C Final Temp: °C                        |            |          |               |                                                                          |          |
| Temp should be above freezing to 6°C                                                            |            | •        | 00,11         |                                                                          |          |
|                                                                                                 |            |          |               | pH paper Lot# Date and initials of person examining contents: (WI 4-7-2) |          |
| Comments:                                                                                       | Yes        | No       | N/A           | 1000411                                                                  |          |
| Chain of Custody Present:                                                                       | /          |          |               | 1.                                                                       |          |
| Chain of Custody Filled Out:                                                                    | /          |          | <u> </u>      | 2.                                                                       |          |
| Chain of Custody Relinquished:                                                                  | /          |          |               | 3.                                                                       |          |
| Sampler Name & Signature on COC:                                                                | ļ.,        |          |               | 4.                                                                       |          |
| Sample Labels match COC:                                                                        |            |          | <u> </u>      | 5.                                                                       |          |
| -Includes date/time/ID Matrix:                                                                  | <u>~`T</u> | T        | <del>r-</del> |                                                                          |          |
| Samples Arrived within Hold Time:                                                               |            |          |               | 6.                                                                       |          |
| Short Hold Time Analysis (<72hr remaining):                                                     |            | _        |               | 7.                                                                       |          |
| Rush Turn Around Time Requested:                                                                |            |          |               | 8.                                                                       |          |
| Sufficient Volume:                                                                              | /          |          |               | 9.                                                                       |          |
| Correct Containers Used:                                                                        | /          |          |               | 10.                                                                      |          |
| -Pace Containers Used:                                                                          | /          |          |               |                                                                          |          |
| Containers Intact:                                                                              |            |          |               | 11.                                                                      |          |
| Orthophosphate field filtered                                                                   |            |          | 4             | 12.                                                                      |          |
| Hex Cr Aqueous sample field filtered                                                            |            |          | _             | 13.                                                                      |          |
| Organic Samples checked for dechlorination:                                                     |            | <u> </u> | /             | 14.                                                                      |          |
| Filtered volume received for Dissolved tests                                                    | <u> </u>   |          | _             | 15.                                                                      |          |
| All containers have been checked for preservation.                                              | <u> </u>   |          |               | 16.                                                                      |          |
| exceptions: VOA, coliform, TOC, O&G, Phenolics, Non-aqueous matrix                              | Radon      |          |               | PH L 2                                                                   |          |
| All containers meet method preservation requirements.                                           | /          |          |               | Initial when Date/time of completed On preservation                      |          |
|                                                                                                 |            |          |               | Lot # of added                                                           |          |
|                                                                                                 | <b>I</b>   | <u> </u> |               | preservative                                                             |          |
| Headspace in VOA Vials ( >6mm):                                                                 |            |          |               | 17.                                                                      |          |
| Trip Blank Present:                                                                             |            |          |               | 18.                                                                      |          |
| Trip Blank Custody Seals Present  Rad Samples Screened < 0.5 mrem/hr                            | ,          |          |               | Initial when / Survey Meter                                              |          |
| •                                                                                               | /          |          |               | completed: M   Date: 9 - 7 - 21   SN: / 17 - 83                          |          |
| Client Notification/ Resolution:                                                                |            |          |               |                                                                          |          |
| Person Contacted: Date/Time: Contacted By:  Comments/ Resolution: Z Covic Scor For W # 30433379 |            |          |               |                                                                          |          |
| Comments/Resolution: 2 Cooler scor for North 30433371                                           |            |          |               |                                                                          |          |
| Hold on Koud Missing Samoles                                                                    |            |          |               |                                                                          |          |
|                                                                                                 |            |          |               |                                                                          |          |
| 1995 St 95 Well 95 (BB13202) Pige 2                                                             |            |          |               |                                                                          |          |
| A check in this box indicates that additional information has been stored in ereports.          |            |          |               |                                                                          |          |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR

Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

\*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

|                                  |                        |                            |          |    |                        |                              | 12                                      | 1        | 10        | 9 | 8         | 7         | đ         | 5         | 4         | 3            | 2         | 1         | ITEM#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Requested       | Phone:                 | Email To:               | 1001000           | Company:                    | Required C                    | Section A |
|----------------------------------|------------------------|----------------------------|----------|----|------------------------|------------------------------|-----------------------------------------|----------|-----------|---|-----------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|-------------------------|-------------------|-----------------------------|-------------------------------|-----------|
|                                  |                        |                            |          |    |                        | ADDITIONAL COMMENTS          |                                         |          |           |   | 8813199   | BB13198   | BB13197   | BB13196   | BB13195   | BB13194      | BB13193   | BB13192   | SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample lds must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28 42           | 205-664-6197  Fax      | lbmidkif@southernco.com | Calera AL 35040   | Alabama Power Company       | Required Client Information:  |           |
|                                  |                        |                            |          |    | Laura                  |                              |                                         |          |           |   | FB-2      | 8-WM      | MW-6 DUP  | 8-WM      | MW-12V    | MW-15        | MW-14     | MW-13     | MATRIX CODE DINVING Water DIV Water WATER PRODUCT P Soll/Solid OL Oil Other Tissue Tissue  CODE Tissue Tissue CODE Tissue CODE Tissue CODE Tissue CODE Tissue CODE Tissue CODE Tissue CODE Tissue CODE Tissue CODE Tissue CODE Tissue CODE Tissue Tissue CODE Tissue Tissue CODE Tissue Tissue Tissue CODE Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tissue Tisu |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Number  | Project Name:          | Purchase Order #:       | to fine           | Copy To:                    | Required Project Information: | Section B |
|                                  |                        |                            |          |    | Laura Midkiff/ APC GTL | RELIN                        | -                                       |          | -         |   | gwg       | GWG       | GWG       | GWG       | GWG       | GWG          | GWG       | GWG       | MATRIX CODE (see valid codes to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1             |                        | rder#                   | 9                 | Raur                        | roject Ir                     |           |
|                                  |                        |                            |          |    | # APC (                | QUISH                        |                                         |          |           |   | 6         | ଜ         | <u> </u>  | G         | 0         | 6            | െ         | G         | SAMPLE TYPE (G=GRAB C=CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MP) | ١                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | Plant (                | >                       | 100               | Rmoke Cator                 | nforma                        |           |
|                                  |                        | Ì                          |          |    | STL                    | ED BY                        |                                         |          |           |   |           |           |           |           | L         |              | L         |           | START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Gorga                  | PC10                    | 100               | 3                           | tion:                         |           |
| T                                |                        | SAMP                       |          |    |                        | /AFFIL                       |                                         |          |           |   |           |           |           | -         |           |              |           |           | RT COL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MM              | Plant Gorgas Landfill  | APC10700668             | 1000              | Rene                        |                               |           |
| SIGNATURE of SAMPLER:            | PRINT Name of SAMPLER: | SAMPLER NAME AND SIGNATURE |          |    |                        | RELINQUISHED BY LAFFILIATION |                                         |          |           |   | 7/20/2021 | 7/20/2021 | 7/20/2021 | 7/20/2021 | 7/20/2021 | 7/20/2021    | 7/20/2021 | 7/20/2021 | COLLECTED  END  END  ME DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PF              | 1                      |                         |                   | Rooke Caton & Renee Jemioan |                               |           |
| of SAN                           | of SAN                 | ND Sic                     |          |    | 7/22/2021              |                              | r                                       | T        |           |   | 16:05     | 15:25     | 13:57     | 13:57     | 12:32     | 11:25        | 10:16     | 9:13      | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1330            |                        |                         |                   |                             |                               |           |
| PLER                             | PLER                   | E S                        |          |    | 021                    | DATE                         | _                                       | -        |           |   |           | -         |           | -         | -         | -            | -         | _         | SAMPLE TEMP AT COLLECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                        |                         |                   | 2. 02                       | <u> </u>                      |           |
|                                  | "                      | R                          | $\neg$   | +  | 11:45                  | 100 E                        |                                         |          |           |   | -         | =         | E         | =         | -         | E            | ω         | _         | # OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pace Profile #: | Pace Project Manager.  | Pace Quote:             | Address:          | Company Name: Alabama Po    | Invoice Information:          | Section C |
|                                  |                        |                            |          |    | 5                      | TIME                         |                                         |          |           | _ |           | _         | _         | _         | 1         | -            | -         | -         | Unpreserved<br>H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Profile         | Projec                 | Quote                   | SS:               |                             | e Info                        | ő         |
|                                  |                        |                            |          | +. | 6                      |                              | ┞                                       | $\vdash$ | -         | - | ×         | ×         | ×         | ×         | ×         | ×            | ×         | ×         | Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #               | t Man                  | 0.00                    | 74                | me:                         | mati                          |           |
| İ                                |                        |                            |          |    | anders                 |                              | -                                       |          | T         |   |           |           |           |           |           |              |           |           | HNO3 PO PRO PRO PRO PRO PRO PRO PRO PRO PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13805           | ger.                   |                         | 744 Highway 87    | ne: Alahama                 | Ä                             |           |
| 1                                |                        |                            |          |    | les                    | ACCEPTED BY JAFFILIATION     |                                         |          |           |   |           | L         |           |           | L         | 1            | L         |           | NaOH 21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . [ | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3               | ,                      | 0                       | VEWL              |                             |                               |           |
|                                  | ١                      |                            |          |    | 177.7                  | G                            | L                                       | -        |           | _ | -         | ╀         | ┞         | +         | ╀         | ╁            | -         | $\vdash$  | Na2S2O3 (C)<br>Melhanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | Kevin                  | CCR                     | 87                | Q Q                         |                               |           |
| 1                                |                        |                            |          |    | B                      | ED                           | $\vdash$                                | ╁        | -         | - | ├-        | -         | ┝         | t         | ╁         | ╁            | $\vdash$  | $\vdash$  | Olher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | ١                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | n.Herring@pacelabs.con |                         | 7 GSC Bldg #8     | P                           |                               |           |
| 1                                | ١                      |                            |          |    | 5                      | A F A                        | H                                       | _        | _         | _ | _         | _         |           | _         |           |              | _         |           | Analyses Test Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /N  | Similar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | )pni                   |                         | BBd               |                             |                               |           |
| ᅥ                                | ļ                      |                            |          |    | 1                      |                              | 7                                       |          |           |   | ×         | ×         | ×         | ×         | ×         | ×            | ×         | ×         | EPA 9315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | Chycholog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | pac                    |                         | #                 |                             |                               |           |
| DATE                             |                        |                            |          |    |                        | ATIO                         | L                                       | 1        | 1         | ┞ | ×         | ×         | ×         | ×         | _         | ┸            | ×         | ×         | EPA 9320<br>Total Radium Surn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | elabo                  |                         |                   |                             | 1                             |           |
| DATE Signed:                     | - (                    |                            |          |    |                        |                              | H                                       | ╀        | ╀         | ┞ | -         | -         | -         | ╀         | ╁         | +            | ×         | ╁         | Matrix Spike/Matrix Spike D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 8                      |                         |                   |                             |                               |           |
| ë.                               | ١                      |                            |          |    |                        |                              | 卜                                       | t        | 1         | T | T         | T         | T         | $\dagger$ | T         | T            |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                        | П                       |                   |                             |                               |           |
|                                  | 1                      |                            |          |    | 7/2                    |                              |                                         | I        |           |   |           | L         | I         |           |           | L            |           | L         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 常遊戲                    |                         |                   |                             |                               |           |
|                                  |                        |                            |          |    | Marie                  | DATE                         | L                                       | L        | L         | _ | L         | 1         | Ļ         |           | +         | 1            | -         | +         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 102376                 | П                       |                   |                             |                               |           |
|                                  |                        |                            | $\vdash$ | -  | _                      |                              | _                                       | ╁        | ╀         | ╀ | ╀         | ╁         | ╀         | ╀         | ╁         | +            | +         | ╁         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                        |                         | 45.00 Z           |                             |                               |           |
| - 1                              |                        |                            |          |    | 0840                   | TIME                         | -                                       | ╁        | +         | 十 | +         | 十         | 十         | +         | †         | $^{\dagger}$ | T         | $\dagger$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 5 5748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1               | <b>建筑线</b>             | П                       | R                 |                             | _                             |           |
|                                  |                        |                            |          |    | 0                      | E                            |                                         | T        | $\dagger$ | T | T         |           |           |           | T         |              |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | See See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | State                  |                         | egula             |                             | Pa                            |           |
| TEM                              | P in C                 | C                          |          |    | ١                      |                              | ACO: ACCORD                             |          |           |   |           |           | L         |           |           |              | L         | L         | Residual Chlorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 12 THE REAL PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AL              | State / Location       |                         | Regulatory Agency |                             | Page:                         |           |
| Rece                             |                        | on                         |          |    | Z                      | SAMPL                        | 100000000000000000000000000000000000000 | T        |           |   | 500       | 38        | 200       | 200       | 38        | 38           | 38        | 8         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | STATE OF THE SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Jon                    |                         | ency              |                             | -                             |           |
| (Y/N)<br>Custo<br>Seale<br>Coole | ody<br>ed<br>er        |                            |          |    | く                      | SAMPLE CONDITIONS            | Salar de Caretta de Caretta             |          |           |   | 3         |           | 2         |           |           |              |           |           | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and Strangers and St |                 | <b>(新教育)</b>           |                         |                   |                             | Qf                            |           |
| Sam<br>Intact<br>(Y/N            | ples<br>l              |                            |          |    | <                      | SNIC                         | Personal and Personal States            |          |           |   |           |           |           |           |           |              |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S |                 | <b>法和法律法</b>           |                         | <b>新刊的音乐</b>      |                             | 7                             |           |

|                        |                            |                 |                        |                                         | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M | 10 | 9         | 8         | Z         | 6         | 5        |   | <b>3</b>  | 2         |           | ITE       | EM #                                                            |                                                                          |               | Requested Due Date:               | Phone:          | Email To:               |                  | Address:                      | Company:              | Required CI                   |           |
|------------------------|----------------------------|-----------------|------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|-----------|-----------|-----------|-----------|----------|---|-----------|-----------|-----------|-----------|-----------------------------------------------------------------|--------------------------------------------------------------------------|---------------|-----------------------------------|-----------------|-------------------------|------------------|-------------------------------|-----------------------|-------------------------------|-----------|
|                        |                            |                 |                        | ADDITIONAL COMMENTS                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |    |           |           |           |           |          |   | B613202   | BB13201   | BB13200   |           | One Character per box. (A-Z, 0-91, -) Sample ids must be unique | SAMPLE ID                                                                |               | Due Date: 20 days                 | 04-01           | lbmidkif@southernco.com | Calera, AL 35040 | 744 Highway 87 GSC Bldg #8    | Alabama Power Company | Required Client Information:  |           |
|                        |                            |                 |                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |    |           |           |           |           |          |   | MW-7      | MW-10     | MW-12     |           |                                                                 | Drinking Water DW Water WT Waste Water WW Product P Soll/Solid SL Cil OL |               | i jedjama samisjamas              | Project Number  | Purchase                |                  | Copy To:                      | Report To:            | Required                      | Section B |
| •                      |                            |                 | Laura Midkiff/ APC GTL | 8                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L | L  | L         | -         | 1         | 1         | 1        | + | စ္        | Q.        | ହ         | MA        |                                                                 | (see valid code                                                          |               | The second                        | dimber.         | Purchase Order #:       | 1                |                               |                       | Required Project Information: | w         |
|                        |                            |                 | dff/ APC               | Nous                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |    | t         | #         | #         | 1         | ‡        | 1 | GWG       | GWG       | GW G      | +-        | MPLE TYPE                                                       | (G=GRAB C=                                                               | COMP)         |                                   | - Idill         |                         |                  | oke Ca                        | Laura Midkiff         | Informat                      |           |
| П                      | SAL                        |                 | GTL                    | RELINQUISHED BY (AFFILIATION            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - | -  | -         |           | -         | +         | +        | - |           |           |           | DATE TIME |                                                                 | START                                                                    | COJ           |                                   | MMWGC           | APC10700668             |                  | Brooke Caton & Renee Jernigan | ciff                  | ion:                          |           |
| PRINT Name of SAMPLER: | SAMPLER NAME AND SIGNATURE |                 |                        | LIATION                                 | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | ŀ |    | T         |           | 1         | 1         |          |   | 7/20/2021 | 7/20/2021 | 7/20/2021 | DATE      |                                                                 | END                                                                      | COLLECTED     |                                   | WMWGORLF 1330   | 5                       |                  | e Jernigan                    |                       |                               |           |
| of SAM                 | AND SIG                    |                 | 7/22/2021              | P                                       | 1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | T  |           | T         |           |           | 1        | T | 14:30     | 13:15     | 11:53     | TIME      |                                                                 |                                                                          |               |                                   | 30              |                         |                  |                               |                       |                               |           |
| PLER:                  | NA TU                      |                 | 21                     | DATE                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ŧ | 1  | -         | 1         | 1         | 1         |          |   | 1         | 1         |           | _         |                                                                 | AT COLLECT                                                               | ON .          | $ \cdot $                         | 20              | 9 3                     | 0 8              | Q                             | A                     | 3                             | Se        |
|                        | m -                        |                 | 11:45                  | T                                       | of Discounts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ŧ | Ŧ  | Ŧ         | 1         | 4         | 4         | +        | + | F         | +         | +         | _         | of CONTAIN                                                      | ERS                                                                      | Г             | Н                                 | Pace Profile #: | Pace Project Manager.   | Address:         | Company Name: Alabama Po      | Attention:            | invoice information:          | Section C |
|                        |                            |                 |                        | TIME                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + | +  | $\dagger$ | +         | +         | $\perp$   | 1        | 1 |           | 1         | 1         | _         | 2504                                                            |                                                                          | _             | Ш                                 | fie#            | ect Ma                  | 1                | Name                          | _                     | iforma                        | .,        |
|                        |                            |                 | 3                      |                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 | Į  |           | 1         | 1         | _         | 1        | + | ×         | ×         | ľ         | - 1''     | CI<br>NO3                                                       |                                                                          | Preservatives | Ш                                 | 3               | nager                   | /44 Highway 8/   | Ale                           | Laura Midkitt         | tion:                         |           |
|                        |                            |                 | MADEL                  |                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + | +  | +         | +         | +         | +         | +        | + | +         | +         | +         | -         | aOH                                                             |                                                                          | vativ         | П                                 | 읾               |                         | gnwa             | bam                           | Midki                 |                               |           |
|                        |                            |                 | NX                     | ACCEPTED BY AFFILIATION                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 | I  | 1         | 1         |           |           | I        |   |           | $\top$    | 1         | -         | a2S2O3                                                          |                                                                          | es .          |                                   |                 | Kevin                   |                  | Pov                           | , =                   |                               |           |
|                        |                            |                 | BB                     | PIED                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - | -  | -         | +         | +         | +         | +        | + | +         | +         | +         | _         | lethanol<br>Other                                               |                                                                          |               |                                   |                 | n.Herring@pacelabs.con  | 900              | ower Co.                      |                       |                               |           |
|                        |                            |                 | 1                      | BYIA                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |           |           | _         |           | _        | _ |           |           |           | 2000      | Analys                                                          | s Test                                                                   | Y/N           | 27.156                            |                 | ing@                    | Biod             |                               |                       | l                             |           |
| 1                      |                            |                 |                        | F                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I | T  | I         | $\exists$ | $\exists$ | $\exists$ | 1        | 4 |           | < >       |           |           | PA 9315<br>PA 9320                                              |                                                                          | -             |                                   |                 | pace                    | 8                | 5                             |                       | ١                             |           |
| PATE                   |                            |                 |                        | L CN                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + | +  | +         | 1         | $\dashv$  | +         | +        | + | 1         | 7         | 7         | _         | otal Radium                                                     | Sum                                                                      |               | 188                               |                 | abs.c                   |                  |                               |                       |                               |           |
| DATE Signed:           |                            |                 |                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |    | 1         |           |           |           |          |   |           |           | 1         | M         | lalrix Spikel                                                   | Malrix Spike C                                                           | 0             | Įš.                               | H               | or<br>E                 | 7111             | N.                            | L                     | J                             |           |
| *                      |                            |                 | 1                      | 9                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 | 1  | +         | 4         | _         | -         | -        | + | +         | +         | +         | +         |                                                                 |                                                                          | -             | Requested Analysis Filtered (Y/N) |                 |                         | 255-05-20        | 20000000                      |                       |                               |           |
|                        |                            |                 | 112161                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + | +  | +         | +         |           | +         | +        | + | +         | 1         | 1         | 1         |                                                                 |                                                                          |               |                                   |                 |                         | 46200000         | No Control                    |                       |                               |           |
|                        |                            |                 | 100                    |                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 1  |           |           |           |           |          |   |           | $\Box$    |           | 1         |                                                                 |                                                                          | -             | Ě                                 |                 | 1999年                   | Statement        | H. C.                         |                       |                               |           |
|                        |                            |                 | 8                      |                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ | 4  | +         |           |           | _         | $\dashv$ | + | +         | +         | +         | +         |                                                                 |                                                                          | +-            | 3                                 | ١               |                         | No.              | 1000                          |                       | _                             |           |
|                        |                            |                 | 840                    | 2011/05/                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + | +  | 1         | _         |           |           |          | + | $\dashv$  | 7         |           |           |                                                                 |                                                                          |               |                                   |                 | State                   | ŀ                | 8                             |                       | 7                             | ,         |
| EMP in                 | n C                        | ++              | 1                      | 190                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |    |           |           |           |           |          |   |           | _]        | $\Box$    | 4         | Residual Ch                                                     | norine (Y/N)                                                             | 5343          |                                   | ₽               | State / Location        |                  | Requistory Agency             |                       | raye.                         |           |
| Receive                |                            | ++              | +                      | 000000000000000000000000000000000000000 | ş.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T | П  | П         |           |           |           |          | П | k         | 83        | 8         | _         |                                                                 |                                                                          |               |                                   | 1               | don                     | 1                | ep Cy                         |                       | ,                             | J         |
| (eceive<br>:e<br>Y/N)  | Ju VIII                    |                 | Z                      | 000000                                  | PLE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |    |           |           |           |           |          |   |           | S.        | ย         | =         |                                                                 |                                                                          |               |                                   |                 | 医神经                     |                  | が社の対                          |                       |                               |           |
| Custody                | ,                          | $\dashv \dashv$ | 1                      |                                         | SAMPLE CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |           |           |           |           |          |   |           |           |           |           |                                                                 |                                                                          |               |                                   | 200             |                         |                  | 1000 A                        |                       | 9                             | Ž         |
| Cooler                 |                            |                 |                        | Suppliers.                              | NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |    |           |           |           |           |          |   |           |           |           |           |                                                                 |                                                                          |               |                                   | 100 CO CO       | 121/2016/05             | П                | *******                       |                       |                               |           |
| Sample<br>ntact        | s                          |                 | 1                      | <                                       | ß                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |           |           |           |           |          |   |           |           |           |           |                                                                 |                                                                          |               |                                   | - He 200 CO     | 10 m                    |                  | 图 2000                        |                       | ŀ                             |           |

|                                  |                        |                            |   |   |               |                        |                               | .12      | 11 | 10  | 9 | 8 | 7         | ō         | 5         | *         | 3         | N         | 5000      | ITEM#                                                                       |               |                                   | Requeste                    | Phone:                | Email To:         |                   | Address:                      | Company:              | Section A                               |
|----------------------------------|------------------------|----------------------------|---|---|---------------|------------------------|-------------------------------|----------|----|-----|---|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------------------------------------------------------------------------|---------------|-----------------------------------|-----------------------------|-----------------------|-------------------|-------------------|-------------------------------|-----------------------|-----------------------------------------|
|                                  |                        |                            |   |   |               |                        | ADDITIONAL COMMENTS           |          |    |     |   |   | BB13340   | BB13339   | BB13338   | BB13337   | BB13336   | BB13335   | BB13334   | SAMPLE ID One Character per box. (A-Z, 0-9 / , -) Sample lds must be unique |               |                                   | Requested Due Date: 28 days | 205-664-6197 Fax      | Ibmid             |                   | 744 Highway 87 GSC Bldg #8    | Alabama Power Company | Section A  Required Client Information: |
|                                  |                        |                            |   |   |               | Laur                   |                               |          |    |     |   |   | EB-1      | FB-1      | MW-18     | MW-17R    | MW-16 DUP | MW-16     | MW-5      | Visite Water WW Product P Soll/Solid SL OI WP Art Other TS Trause TS        |               |                                   | Project Number.             | Project Name:         | Purchase Order #: |                   |                               |                       | Section B                               |
|                                  |                        |                            |   |   |               | Laura Midkiff/ APC GTL | RELI                          |          | _  |     | _ |   | GWG       | GWG       | gw/g      | GWG       | GWG       | GWG       | GW G      | MATRIX CODE (see valid coo                                                  | des to left)  |                                   | mber:                       | me:                   | Order#            | - 1               |                               | 2                     | Polipor                                 |
|                                  |                        |                            |   | 1 |               | / APC                  | SINDI                         |          |    |     |   |   | ଜ         | ि         | 6         | ଜି        | G         | 6         | G         | SAMPLE TYPE (G=GRAB C                                                       | =COMP)        | 1                                 |                             | Plan                  |                   |                   | Se la                         | 2                     | T C                                     |
|                                  |                        |                            |   |   |               | STL                    | RELINQUISHED BY I AFFILIATION |          |    |     |   |   |           |           |           |           |           |           |           | START                                                                       |               |                                   | -                           | Plant Gorgas Landfill | APC10700668       |                   | Caton &                       | aura Midkiff          | ation.                                  |
| SIG                              | PR                     | SAMPLE                     |   |   |               |                        | AFFILIAT                      |          |    |     |   |   |           |           |           |           |           |           |           | RT                                                                          | соглество     |                                   | WMWGORLF                    | s Landfi              | 700668            |                   | Renee                         |                       |                                         |
| SIGNATURE of SAMPLER:            | PRINT Name of SAMPLER: | SAMPLER NAME AND SIGNATURE |   |   |               |                        | NOL                           |          |    |     |   |   | 7/21/2021 | 7/21/2021 | 7/21/2021 | 7/21/2021 | 7/21/2021 | 7/21/2021 | 7/21/2021 | END                                                                         | CTED          |                                   | RLF                         | _                     |                   | k                 | Brooke Caton & Renee Jernigan |                       |                                         |
| of SAMPI                         | of SAMPI               | ND SIGN                    |   |   |               | 7/22/2021              | DAT                           |          |    |     |   |   | 15:10     | 15:00     | 14:28     | 13:30     | 12:10     | 12:10     | 10:53     | TIME                                                                        |               |                                   | 1330                        |                       |                   |                   |                               |                       |                                         |
| <del>2</del> 2                   | - FP                   | ATUR                       |   |   |               |                        | DATE                          |          |    | -,- | _ |   | _         |           |           | _         |           | _         |           | SAMPLE TEMP AT COLLECTI                                                     | ON            | L                                 | L                           |                       |                   |                   |                               |                       |                                         |
|                                  |                        |                            |   |   |               | 11:45                  | TIME                          |          |    |     |   |   | 1         | 1         | 1         | _         |           | 1         | 1         | # OF CONTAINERS                                                             |               |                                   | ace                         | ace                   | ace (             | Address:          | Company I                     | *                     | Section C                               |
|                                  |                        |                            |   |   |               | -                      | ME                            | -        |    |     | _ |   |           | -         |           |           | $\vdash$  | -         |           | Unpreserved<br>H2SO4                                                        | -             |                                   | Pace Profile #:             | Pace Project Manager. | Pace Quote:       | SS:               | Company Name: Alabama Po      | Attention: Louis      | n n                                     |
|                                  |                        | 羅羅                         | - | - | -             | Z                      |                               | -        |    |     | _ |   | ×         | ×         | ×         | ×         | ×         | ×         | ×         | HNO3                                                                        | P             |                                   | #                           | t Man                 |                   | 4                 |                               |                       |                                         |
|                                  |                        |                            |   | 1 |               | IMI                    |                               |          |    |     |   |   |           |           |           |           |           |           |           | HCI                                                                         | Sen           |                                   | 13805                       | ager.                 |                   | H                 | A LA                          |                       | 1                                       |
|                                  |                        |                            |   |   |               | 0                      | AG                            |          |    |     |   |   |           |           |           |           |           |           |           | NaOH                                                                        | Preservatives |                                   |                             | 7                     |                   | 744 Highway 87    | ne: Alahama                   | 2                     |                                         |
|                                  |                        |                            |   |   |               | B                      | ACCEP1                        | $\vdash$ | -  | -   | - | - | _         | -         |           | -         |           |           |           | Na2S2O3<br>Methanol                                                         | l is          |                                   |                             | Kevin                 | SS                | 87                | ٥                             | 1                     |                                         |
|                                  |                        |                            |   | Ì | P             | Language Language      | ED 8                          |          |    |     |   |   |           | -         | -         | -         |           |           | _         | Other                                                                       |               | 1                                 |                             |                       |                   | SSO               | S S                           |                       |                                         |
|                                  |                        |                            |   |   |               | 1                      | ED BY / AFFILIATION           |          | '  |     |   |   | _         |           |           |           |           |           |           | Analyses Test                                                               | Y/N           | <b>新四岳</b>                        |                             | Herring@pacelabs.con  |                   | GSC Blda #8       | 5                             | ١                     |                                         |
|                                  |                        |                            |   |   | 1             |                        | HL                            |          |    |     |   |   | ×         | ×         | ×         | ××        | ×         | ×         | ×         | EPA 9315                                                                    |               | 2220                              |                             | pac                   |                   | 费                 |                               | ı                     |                                         |
| ATE                              |                        |                            |   | 1 |               |                        | NOLL                          |          | _  | _   |   |   | ×         | ×         | ×         | ×         | ×         |           | ×         | EPA 9320<br>Total Radium Sum                                                | _             | Req                               |                             | elab                  |                   |                   |                               | ١                     |                                         |
| DATE Signed:                     |                        |                            |   |   |               |                        |                               |          |    | -   | ٦ | - |           |           | -         | H         | H         |           | -         | Matrix Spike/Matrix Spike D                                                 |               | ueste                             |                             | 8                     |                   |                   |                               | 1                     |                                         |
| ₽.                               |                        |                            |   |   |               |                        |                               |          |    |     |   |   |           |           |           |           |           |           |           |                                                                             |               | d Ana                             |                             | 的是                    | ٦                 | 10/62             |                               |                       |                                         |
|                                  |                        |                            |   |   | -             | 16/3/6/17              | D                             |          |    |     |   |   |           |           |           |           |           |           |           |                                                                             |               | Requested Analysis Filtered (YIN) |                             |                       |                   | Affects           |                               |                       |                                         |
|                                  |                        |                            |   |   | 1             | 8/3                    | DATE                          | _        |    | _   | 4 |   | _         |           | _         | $\vdash$  | H         |           | -         |                                                                             |               | Filten                            |                             | 100,000               |                   |                   |                               |                       |                                         |
|                                  |                        |                            | Н | - | $\rightarrow$ |                        |                               | -        |    |     |   |   |           |           | -         |           |           | -         | -         |                                                                             |               | ed (Y/                            |                             | States)               |                   | N SECTION         |                               |                       |                                         |
|                                  |                        |                            |   | İ | K             | - 123<br>253           | TIME                          |          |    |     |   |   |           |           |           |           |           |           |           |                                                                             |               | S                                 |                             | No.                   |                   | D                 |                               | _                     |                                         |
|                                  |                        |                            |   |   | _             | <u>ي</u>               |                               |          |    |     |   |   |           |           |           |           |           |           |           |                                                                             |               | \$1985)                           |                             | State                 |                   | eoula             |                               | 70                    | ,                                       |
| TEM                              | Pinc                   | 3                          |   |   |               | 1                      |                               |          |    |     |   |   |           |           | _         |           |           |           | _         | Residual Chlorine (Y/N)                                                     |               |                                   | AL                          | State I Location      |                   | Regulatory Agency |                               | raye.                 |                                         |
| Rece<br>Ice<br>(Y/N)             |                        | on                         |   |   |               | Z,                     | AMPLE                         |          |    |     |   |   | 2007      | 900       | 200       | 83        | හි        | r<br>S    | 8         |                                                                             |               |                                   |                             | on Comme              |                   | ncv               |                               | ٥                     |                                         |
| Custo<br>Seale<br>Coole          | d<br>er                |                            |   |   |               |                        | SAMPLE CONDITIONS             |          |    |     |   |   |           |           |           |           |           |           |           |                                                                             |               |                                   |                             | THE CHARLES           |                   |                   |                               | 2                     |                                         |
| (Y/N)<br>Samp<br>Intact<br>(Y/N) | oles                   |                            |   |   |               |                        | 8                             |          |    |     |   |   |           |           |           |           |           |           |           |                                                                             |               |                                   |                             | 会が可能が                 | 1000              |                   |                               | 1                     |                                         |

|                       |                        |                            |                        |                               | 12        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10       | 9        | 8        | 7        | 6        | o | 4        | 3         | 2         |           | ITEM#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                   | Requested                   | Phone:                | Email To:        |                         | Address:                      | Company:              | Section A<br>Required                   |
|-----------------------|------------------------|----------------------------|------------------------|-------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|---|----------|-----------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------|-----------------------------|-----------------------|------------------|-------------------------|-------------------------------|-----------------------|-----------------------------------------|
|                       |                        |                            |                        | ADDITIONAL COMMENTS           |           | - Annual Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of t |          |          |          |          |          |   |          | BB13343   | BB13342   | BB13341   | SAMPLE ID One Character per box. (A-Z, 0-91, -) Sample ids must be unique                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                   | Requested Due Date: 28 days | 205-664-6197 Fax      | Jeri             | Calera, AL 35040        | 744 Highway 87 GSC Bldg #8    | Alabama Power Company | Section A Required Client Information:  |
|                       |                        |                            |                        |                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |   |          | MW-19     | MW-20     | MW-11     | United States of the Market Water Work Water War Water Water Water Product WA Solifonia St. Olifonia Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Wape Aurona Wape Aurona Wape Aurona Wape Aurona Wape Wape Wape Wape Wape Wape Wape Wap | MATRIX C      |                                   | Projec                      |                       |                  |                         |                               |                       | Section B<br>Required                   |
|                       |                        |                            | Laura Midkiff/ APC GTL | 7                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |   |          |           |           |           | משאפר אָשֹּ                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ODE .         |                                   | Project Number.             | Project Name:         | Purchase Order#: | - 1                     | - 1                           | To:                   | n B<br>red Proj                         |
|                       |                        |                            | idkiff/ A              | DINO                          |           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |          | L        | F        | F |          | gw/G      | GW G      | sw s      | MATRIX CODE (see valid cod<br>SAMPLE TYPE (G=GRAB C                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                   | .,                          | P                     | #                |                         | Brook                         | aura                  | ect Info                                |
|                       |                        |                            | PCGTL                  | JISHED                        | -         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | -        |          |          |          |   |          |           |           |           | D <sub>A</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                   |                             | ant Gor               | APC?             |                         | e Cator                       | Laura Midkiff         | Section B Required Project Information: |
|                       | 7                      | MAS                        |                        | 3Y / AFE                      | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |          |          | -        | $\vdash$ | t | <u> </u> |           |           | -         | START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ω             |                                   | WM                          | gas La                | APC10700668      |                         | & Rer                         |                       | •                                       |
| SIGNATURE of SAMPLER: | PRINT Name of SAMPLER: | SAMPLER NAME AND SIGNATURE |                        | RELINQUISHED BY I AFFILIATION |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |   |          | 7/21/2021 | 7/21/2021 | 7/21/2021 | E DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COLLECTED     |                                   | WMWGORLF 1                  | ndfill                | 68               |                         | Brooke Caton & Renee Jernigan |                       |                                         |
| of SAM                | of SAN                 | AND SIG                    | 7/22/2021              | DATE                          | T         | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |          |          | T        | T |          | 14:01     | 12:47     | 11:34     | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                   | 1330                        |                       |                  |                         |                               |                       |                                         |
| PLER                  | PLER                   | NATU                       | <br>021                | II.                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          | - | _        |           |           |           | SAMPLE TEMP AT COLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DN            | 4                                 | 200                         |                       | me.              | _                       |                               |                       |                                         |
|                       |                        | 35                         | 11:45                  |                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |   |          | _         | ω         | -         | # OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                   | Pace                        | Pace                  | Pace Quote:      | Address: 744 Highway 87 | Comp                          | Attention:            | Section C<br>Invoice Information:       |
| j                     |                        |                            | 5                      | TIME                          | L         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          | L        | _        | L        | - | -        | L         | <u> </u>  | _         | Unpreserved<br>H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                   | Profile                     | Projec                | Quote            | SS:                     | any N                         | on:                   | on C                                    |
|                       |                        |                            |                        | 到底                            | ┞         | ┢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        | $\vdash$ | -        | $\vdash$ | ╁        | H |          | ×         | ×         | ×         | HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P             |                                   | #                           | t Man                 |                  | 74                      | ame:                          | 딥                     | mat                                     |
|                       |                        |                            |                        |                               | H         | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -        | H        | -        | H        | ┪        | T |          |           |           |           | HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eser          |                                   | 13805                       | ager:                 |                  | H                       | Aa                            | ura N                 | 9                                       |
|                       |                        |                            | 0                      |                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |   |          |           |           |           | NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Preservatives |                                   | S                           |                       | ΙI               | hwa                     | Sam                           | Laura Midkiff         |                                         |
|                       |                        |                            | Brapris                | ACCEP                         | L         | <u> </u> _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _        | L        | _        | L        | ┞        | - | -        | _         |           | _         | Na2S2O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ß             |                                   |                             | Kevin                 | SR               | y 87                    | Po                            | 7                     |                                         |
|                       | 100                    |                            | 35                     | 16                            | H         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        | -        | -        | $\vdash$ | ╀        | - | $\vdash$ | ┝         | -         | H         | Olher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                   |                             |                       |                  | SS                      | ěg (                          | ١                     |                                         |
|                       |                        | 經濟                         | 5                      | TED BY JAFFILIATION           | H         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | l        | <u> </u> | _        | L        | _ | ل        |           | -         | Ь         | Analyses Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y/N           | 989                               |                             | .Herring@pacelabs.con |                  | GSC Bldg #8             | èΊ                            | ١                     |                                         |
|                       |                        |                            |                        | 12                            |           | Π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |          |          |          |   |          | ×         | ×         | ×         | EPA 9315                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | Bally                             |                             | Dpac                  |                  | 悲                       |                               | ١                     |                                         |
| DATE Signed:          |                        |                            |                        |                               |           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L        | L        |          | L        | L        | L | _        | ×         | ×         | ×         | EPA 9320<br>Total Radium Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | Req                               |                             | dele                  |                  |                         |                               | ١                     |                                         |
| Sign                  |                        |                            |                        |                               | L         | ┞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ┞        | ┞        | ┞        | -        | ╀        | ╀ | $\vdash$ | -         | ×         |           | Malrix Spike/Malrix Spike D                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | ueste                             |                             | s.cor                 | П                |                         | 1                             |                       |                                         |
| ed:                   |                        |                            |                        |                               | H         | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\vdash$ | -        | H        | H        | t        | H | t        | H         | T         | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | d An                              | П                           | 網網                    | П                | Mark                    |                               | _                     |                                         |
|                       |                        | 100                        | 12                     |                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          | I        |   |          |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | alysks                            |                             | 150 ES                |                  | 100 E                   |                               |                       |                                         |
|                       |                        |                            | 1126131                | DATE                          |           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L        |          | L        | L        | _        | L | 1_       | _         | L         | _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | Filte                             |                             | 细胞                    | ı                |                         |                               |                       |                                         |
|                       |                        |                            |                        |                               | _         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        | -        | _        | ┡        | ╀        | ╁ | ┝        | -         | ┝         | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -             | Requested Analysis Filtered (Y/N) |                             | MAKE.                 |                  | 阻铁头                     |                               |                       |                                         |
|                       |                        |                            | 0840                   | TIME                          | -         | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ┝        | $\vdash$ | ╁        | ┝        | -        | H | ╁        | $\vdash$  | +         | $\vdash$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | N                                 |                             | 學別學                   | П                | 1600                    |                               |                       |                                         |
|                       |                        |                            | 0                      | i.                            |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | $\vdash$ | $\vdash$ | $\vdash$ | T        |   |          | L         |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | NEEDER.                           |                             | Stat                  | П                | Regul                   |                               |                       | <sub>D</sub>                            |
| TEM                   | IP in                  | С                          |                        | 0.00                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |   |          |           |           |           | Residual Chlorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                   | ΑL                          | State / Location      |                  | Regulatory Agency       |                               |                       | Page :                                  |
| Rece                  | eived                  | on                         | <br>++                 | - s                           | -         | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Τ        | Т        | 1        | Γ        | Τ        | T | T        | Q         | 8         | R         | 400000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Sec. 1                            |                             | rtion                 | H                | genc                    |                               |                       |                                         |
| Ice<br>(Y/N           |                        |                            |                        | PIE                           | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |   |          | 25        | 88        | ۲         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 100                               | ۱                           | <b>377</b> 100        | П                | 是是                      |                               |                       | 4                                       |
| Cusi                  | ody                    |                            |                        | SAMPLECONDITIONS              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |          |          |          | I        |   |          |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                   |                             | William I             |                  | 超速器                     |                               |                       | ᅌ                                       |
| Cool<br>(Y/N          | er                     |                            |                        | NOE                           | S. Trans. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |   |          |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                   | ١                           | SHIES                 |                  | 10 miles                |                               |                       |                                         |
|                       | ples                   |                            |                        | S                             | 200       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |   |          |           |           |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                   | ۱                           | W. (42)               |                  | MEN.                    |                               |                       | 4                                       |
| (Y/N                  |                        |                            |                        |                               |           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L        |          | L        | L        | 1        | 丄 |          |           | 1         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30,000        |                                   | L                           | 100                   |                  | W                       | Ļ                             |                       |                                         |

### Quality Control Sample Performance Assessment

Ra-228 VAL 8/13/2021 62095 WT Test: Analyst: Date: Worklist: Matrix:

2218981 0.563 0.363 0.691 3.04 / Fail\*

MB concentration: M/B 2 Sigma CSU: MB MDC:

MB Sample ID

Method Blank Assessment

MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC:

| Analyst Must Manually Enter All Fields Highlighted in Yellow. |    |
|---------------------------------------------------------------|----|
|                                                               | 80 |

92552796002 92552796003 92552796004 7/27/2021 21-003 36.866 0.20 0.20 0.900 0.930 0.930 0.930 0.938 0.445 0.388 0.445 1.482 8.246 1.663 -1.663 -1.663 83.74% 92551765022 92551765023 92551765024 36.866 0.20 0.20 0.20 0.886 8.320 0.896 8.225 7/21/2021 MS/MSD 5.491 1.172 0.637 -5.582 108.03% 54.86% 0.408 0.403 0.978 0.404 9.966 1.975 Sample I.D. Sample MS I.D. Sample MSD I.D. MS/MSD Decay Corrected Spike Concentration (pCl/mL): Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL): MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits: Sample Collection Date: Spike I.D. MS Aliquot (L, g, F) MS Target Conc.(pCi/L, g, F) MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F): Sample Result 2 Sigma CSU (pCl/L, g, F): Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCl/L, g, F): MS Numerical Performance Indicator MSD Percent Recovery MS Status vs Numerical Indicator. MSD Status vs Numerical Indicator. Sample Result Sample Matrix Spike Duplicate Result MSD Numerical Performance Indicator MS Percent Recovery MS Status vs Recovery MS Spike Uncertainty (calculated) MSD Spike Uncertainty (calculated) Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F) MSD Status vs Recovery Sample Matrix Spike Control Assessment

| Laboratory Control Sample Assessment          | LCSD (Y or N)? | z         |
|-----------------------------------------------|----------------|-----------|
|                                               | LCS62095       | LCSD62095 |
| Count Date:                                   | 8/18/2021      |           |
| Spike I.D.:                                   | 21-003         |           |
| Decay Corrected Spike Concentration (pCi/mL): | 36.527         |           |
| Volume Used (mL):                             | 0,10           |           |
| Aliquot Volume (L, g, F):                     | 0.816          |           |
| Target Conc. (pCi/L, g, F):                   | 4.477          |           |
| Uncertainty (Calculated):                     | 0.219          |           |
| Result (pCi/L, g, F):                         | 2.696          |           |
| LCS/LCSD 2 Sigma CSU (pCi/L, g, F):           |                |           |
| Numerical Performance Indicator:              | -4.63          |           |
| Percent Recovery:                             | 60.22%         |           |
| Status vs Numerical Indicator:                | ΑN             |           |
| Status vs Recovery:                           | Pass           |           |
| Upper % Recovery Limits:                      | 135%           |           |
| Lower % Recovery Limits:                      | %09            |           |

| Duplicate Sample Assessment                        |
|----------------------------------------------------|
| Sample I.D.:                                       |
| Duplicate Sample I.D.                              |
| Sample Result (pCI/L, g, F):                       |
| Sample Result 2 Sigma CSU (pCi/L, g, F):           |
| Sample Duplicate Result (pCi/L, g, F):             |
| Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F): |
| Are sample and/or duplicate results below RL?      |
| Duplicate Numerical Performance Indicator:         |
| Duplicate RPD:                                     |
| Duplicate Status vs Numerical Indicator:           |
| Duplicate Status vs RPD:                           |
| % RPD Limit:                                       |

|                                                       | 92552796002 | 92552796003    | 92552796004     | 7.304                       | 1.482                                          | 8.246                                 | 1.663                                                    | -0.829                                     | 16.13%                                                  | Pass                                             | Pass                             | 36%          |
|-------------------------------------------------------|-------------|----------------|-----------------|-----------------------------|------------------------------------------------|---------------------------------------|----------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|--------------------------------------------------|----------------------------------|--------------|
|                                                       | 92551765022 | 92551765023    | 92551765024     | 996'6                       | 1.975                                          | 5.491                                 | 1.172                                                    | 3.820                                      | 65.28%                                                  | Fail***                                          | Failtra                          | **           |
| Matrix Spike/Matrix Spike Duplicate Sample Assessment | Sample I.D. | Sample MS I.D. | Sample MSD I.D. | Sample Matrix Spike Result: | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): | Duplicate Numerical Performance Indicator: | (Based on the Percent Recovenes) MS/ MSD Duplicate RPD: | MS/ MSD Duplicate Status vs Numerical Indicator. | MS/ MSD Duplicate Status vs RPD: | % RPD Limit: |

MB c MOC, Pass ## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

RI and Reanaly re \*\*\*Batch must be re-prepped due-

Ra-228\_62095\_W.xls Ra-228 (R086-8 04Sep2019).xls

Ra-228 NELAC DW2 Printed: 8/19/2021 9:02 AM

### Pace Analytical"

### **Quality Control Sample Performance Assessment**

Ra-228 JC2 8/13/2021 62094 WT Test.
Analyst.
Date:
Worklist.
Matrix:

2218980 0.837 0.360 0.572 4.55 Fail\* See Comment\*

MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC:

MB Sample ID
MB concentration:
M/B 2 Sigma CSU:
MB MB MDC:

**Method Blank Assessment** 

Analyst Must Manually Enter All Fields Highlighted in Yellow.

| - | Sample Matrix Snike Control Assessment                   | MS/MSD 1                   | MS/MSD 2 |
|---|----------------------------------------------------------|----------------------------|----------|
|   | Sample Collection Date:                                  |                            |          |
|   | Sample I.D.<br>Sample MS I.D.                            | 92551765002<br>92551765003 |          |
|   | Sample MSD I.D.                                          | 92551765004                |          |
| _ | Spike I.D.:                                              | 21-003                     |          |
|   | MS/MSD Decay Corrected Spike Concentration (pCI/mL):     | 36.880                     |          |
|   | Spike Volume Used in MS (mL):                            | 0.20                       |          |
|   | Spike Volume Used in MSD (mL):                           | 0.20                       |          |
|   | MS Aliquot (L, g, F):                                    | 0.913                      |          |
|   | MS Target Conc.(pCi/L, g, F):                            | 8.077                      |          |
|   | MSD Aliquot (L, g, F):                                   | 0.853                      |          |
|   | MSD Target Conc. (pCi/L, g, F):                          | 8.644                      |          |
| _ | MS Spike Uncertainty (calculated):                       | 0.396                      |          |
|   | MSD Spike Uncertainty (calculated):                      | 0.424                      |          |
|   | Sample Result:                                           | 0.487                      |          |
|   | Sample Result 2 Sigma CSU (pCi/L, g, F):                 |                            |          |
|   | Sample Matrix Spike Result:                              | 5.855                      |          |
|   | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):           | 1.172                      |          |
|   | Sample Matrix Spike Duplicate Result:                    | 6.758                      |          |
| _ | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): |                            |          |
| _ | MS Numerical Performance Indicator:                      | 4.209                      |          |
| _ | MSD Numerical Performance Indicator:                     | -3.206                     |          |
|   | MS Percent Recovery:                                     | 66.46%                     |          |
|   | MSD Percent Recovery:                                    | 72.55%                     |          |
|   | MS Status vs Numerical Indicator:                        | Failment                   |          |
| _ | MSD Status vs Numerical Indicator:                       | Failtea                    |          |
|   | MS Status vs Recovery:                                   | Pass                       |          |
|   | MSD Status vs Recovery:                                  | Pass                       |          |
|   | MS/MSD Upper % Recovery Limits:                          | 135%                       |          |
| _ | MS/MSD I ower % Recovery Limits:                         | %09                        |          |

| aboratory Control Sample Assessment           | LCSD (Y or N)? | N         |
|-----------------------------------------------|----------------|-----------|
|                                               | LCS62094       | LCSD62094 |
| Count Date:                                   | 8/17/2021      |           |
| Spike I.D.:                                   | 21-003         |           |
| Decay Corrected Spike Concentration (pCi/mL): | 36.540         |           |
| Volume Used (mL):                             | 0.10           |           |
| Aliquot Volume (L, g, F):                     | 0.831          |           |
| Target Conc. (pCl/L, g, F):                   | 4.399          |           |
| Uncertainty (Calculated):                     | 0.216          |           |
| Result (pCi/L, g, F):                         | 3.038          |           |
| LCS/LCSD 2 Sigma CSU (pCi/L, g, F):           | 0.805          |           |
| Numerical Performance Indicator:              | -3.20          |           |
| Percent Recovery:                             | %90.69         |           |
| Status vs Numerical Indicator:                | N/A            |           |
| Status vs Recovery:                           | Pass           |           |
| Upper % Recovery Limits:                      | 135%           |           |
| Lower % Recovery Limits:                      | %09            |           |

| Matrix Spike/Matrix Spike Duplicate Sample Assessment    |             |  |
|----------------------------------------------------------|-------------|--|
| Sample I.D.                                              | 92551765002 |  |
| Sample MS I.D.                                           | 92551765003 |  |
| Sample MSD I.D.                                          | 92551765004 |  |
| Sample Matrix Spike Result:                              | 5.855       |  |
| Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):           | 1.172       |  |
| Sample Matrix Spike Duplicate Result:                    | 6.758       |  |
| Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): | 1.365       |  |
| Duplicate Numerical Performance Indicator:               | -0.984      |  |
| (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: | 8.76%       |  |
| MS/ MSD Duplicate Status vs Numerical Indicator:         | Pass        |  |
| MS/ MSD Duplicate Status vs RPD:                         | Pass        |  |
| % RPD Limit:                                             | 36%         |  |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

\*The method blank result is below the reporting limit for this analysis and is acceptable.

MS presen % REC ucable to any other samples in this analytical batch.

\*\*\*\*<u>If all</u> other QC criteria pass, this <u>batch is acceptable. The matrix spike duplicate result indicates a possible bias for this sample only and may rig</u>

Ra-228\_62094\_W.xls Ra-228\_62094\_W (version 1).xls

6 of 10



### **Quality Control Sample Performance Assessment**

Ra-226 CLA 8/4/2021 61909 DW Analyst: Date: Worklist: Matrix:

MS/MSD 2

MS/MSD 1

Analyst Must Manually Enter All Fields Highlighted in Yellow.

7/20/2021

Sample Collection Date:

Sample Matrix Spike Control Assessment

92551765002 92551765003 92551765004

Sample I.D. Sample MS I.D. Sample MSD I.D.

19-033 24.036

Spike I.D.

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL):

Spike Volume Used in MSD (mL)

0.20 0.20 2.302 23.784 0.203 23.727 0.285 0.246 0.246 0.246 24.711 1.634 1.557 1.557 1.557 0.788 0.788 0.218 24.711 1.557 0.788 0.788 0.788 0.788 0.718 24.711 1.557 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.7

Sample Result

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Result Sample Matrix Spike Duplicate Result

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):
MS Numerical Performance Indicator:

MSD Numerical Performance Indicator.

MS Percent Recovery MSD Percent Recovery MS Status vs Numerical Indicator MSD Status vs Numerical Indicator MS Status vs Recovery

MSD Status vs Recovery. MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits:

MSD Aliquot (L, g, F):
MSD Target Conc. (pCi/L, g, F):
MS Spike Uncertainty (calculated):

MSD Spike Uncertainty (calculated)

MS Target Conc.(pCi/L, g, F):

MS Aliquot (L, g, F)

| Method Blank Assessment             |         |
|-------------------------------------|---------|
| MB Sample ID                        | 2213739 |
| MB concentration:                   | -0.062  |
| M/B Counting Uncertainty:           | 0.197   |
| MB MDC:                             | 0.563   |
| MB Numerical Performance Indicator: | -0.61   |
| MB Status vs Numerical Indicator:   | ΑN      |
| MB Status vs. MDC:                  | Pass    |

| casal area of comple Assessment               | -CSD (Y or N)? | >-        |
|-----------------------------------------------|----------------|-----------|
|                                               | LCS61909       | LCSD61909 |
| Count Date:                                   | 8/26/2021      | 8/26/2021 |
| Spike I.D.:                                   | 19-033         | 19-033    |
| Decay Corrected Spike Concentration (pCi/mL): | 24.035         | 24.035    |
| Volume Used (mL):                             | 0,10           | 0,10      |
| Aliquot Volume (L, g, F):                     | 0.202          | 0.207     |
| Target Conc. (pCi/L, g, F):                   | 11.882         | 11.586    |
| Uncertainty (Calculated):                     | 0.143          | 0.139     |
| Result (pCi/L, g, F):                         | 12.299         | 12.766    |
| LCS/LCSD Counting Uncertainty (pCi/L, g, F):  | 1.198          | 1.195     |
| Numerical Performance Indicator:              | 0.68           | 1.92      |
| Percent Recovery:                             | 103.51%        | 110.18%   |
| Status vs Numerical Indicator:                | A/A            | N/A       |
| Status vs Recovery:                           | Pass           | Pass      |
| Upper % Recovery Limits:                      | 125%           | 125%      |
| Lower % Recovery Limits:                      | 75%            | 75%       |

| Matrix Spike/Matrix Spike Duplicate Sample Assessment             |             |  |
|-------------------------------------------------------------------|-------------|--|
| -                                                                 |             |  |
| Sample I.D.                                                       | 92551765002 |  |
| Sample MS I.D.                                                    | 92551765003 |  |
| Sample MSD I.D.                                                   | 92551765004 |  |
| Sample Matrix Spike Result:                                       | 24.711      |  |
| Matrix Spike Result Counting Uncertainty (pCi/l, g, F):           | 1.634       |  |
| Sample Matrix Spike Duplicate Result:                             | 22.551      |  |
| Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | 1.557       |  |
| <br>Duplicate Numerical Performance Indicator:                    | 1.876       |  |
| (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:          | 800.6       |  |
| <br>MS/ MSD Duplicate Status vs Numerical Indicator:              | N/A         |  |
| <br>MS/ MSD Duplicate Status vs RPD:                              | Pass        |  |
| % RPD Limit:                                                      | 72%         |  |

1.198 12.766 1.195

Sample I.D.:
Duplicate Sample I.D.:
Sample Result (pCl/L, g, F):
Sample Result (pCl/L, g, F):
Sample Duplicate Result (pCl/L, g, F):
Sample Duplicate Result (pCl/L, g, F):

Duplicate Sample Assessmen

NO -0.540 6.24% N/A Pass

Duplicate Numerical Performance Indicator:
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:
Duplicate Status vs Numerical Indicator:

Are sample and/or duplicate results below RL?

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Duplicate Status vs RPD: % RPD Limit:

Comments:



uam 8/20121

TAR\_61909\_W.xls Total Alpha Radium (ENV-FRM-GBUR-0142 R0).xls

Analyst Must Manually Enter All Fields Highlighted in Yellow. **Quality Control Sample Performance Assessment** 

61910 DW Ra-226 CLA 8/4/2021 Test: Worklist: Analyst: Date:

Pace Analytical

MS/MSD 2

92551765022 92551765023 92551765024

Sample I.D. Sample MS I.D. Sample MSD I.D.

7/21/2021

Sample Collection Date:

Sample Matrix Spike Control Assessment

| Method Blank Assessment             |         |
|-------------------------------------|---------|
| MB Sample ID                        | 2213744 |
| MB concentration:                   | 0.005   |
| M/B Counting Uncertainty:           | 0.186   |
| MB MDC:                             | 0.496   |
| MB Numerical Performance Indicator: | 90:0    |
| MB Status vs Numerical Indicator:   | N/A     |
| MB Status vs. MDC:                  | Pass    |

| Laboratory Control Sample Assessment          | CSD (Y or N)? | Z         |
|-----------------------------------------------|---------------|-----------|
|                                               | LCS61910      | LCSD61910 |
| Count Date:                                   | 8/26/2021     |           |
| Spike I.D.:                                   | 19-033        |           |
| Decay Corrected Spike Concentration (pCi/mL): | 24.035        |           |
| Volume Used (mL):                             | 0.10          |           |
| Aliquot Volume (L, g, F):                     | 0.210         |           |
| Target Conc. (pCi/L, g, F):                   | 11.451        |           |
| Uncertainty (Calculated):                     | 0.137         |           |
| Result (pCi/L, g, F):                         | 11.208        |           |
| CS/LCSD Counting Uncertainty (pCi/L, g, F):   | 1.114         |           |
| Numerical Performance Indicator:              | -0.42         |           |
| Percent Recovery:                             | 97.88%        |           |
| Status vs Numerical Indicator:                | A/N           |           |
| Status vs Recovery:                           | Pass          |           |
| Upper % Recovery Limits:                      | 125%          |           |
| Lower % Recovery Limits:                      | 75%           |           |

| MS/MSD Decay Corrected Spike Concentration (DC/ImL): Spike I.D.: Spike Volume Used in MS (mL): Spike Volume Used in MS (mL): 0.20 MS Target Conc. (pC/IL, g. F): MSD Aliquot (I. g. F): MSD Spike Uncertainty (calculated): 0.282 MSD Spike Uncertainty (calculated): 0.282 MSD Spike Uncertainty (calculated): 0.282 MSD Spike Uncertainty (pC/IL, g. F): Sample Result: Sample Result Counting Uncertainty (pC/IL, g. F): 0.246 Sample Matrix Spike Duplicate Result: 0.294 MSD Spike Uncertainty (pC/IL, g. F): 0.246 Sample Matrix Spike Duplicate Result: 0.294 MSD Numerical Performance Indicator: 0.209 MSD Numerical Performance Indicator: 0.209 MSD Numerical Performance Indicator: 0.209 MSD Status vs Numerical Indicator: 0.209 MSD Status vs Numerical Indicator: 0.209 MSD Status vs Numerical Indicator: 0.209 MSD Status vs Recovery: 0.75% MSMSD Lower "Recovery Limits: 75% MSMSD Lower "Recovery Limits: 75%                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Sample Machine Most Lose of Concentration (pCi/mL): Spike Volume Used in MSD (mL): Spike Volume Used in MSD (mL): MS Aliquot (L. g. F): MSD Target Conc. (pCi/L. g. F): MSD Target Conc. (pCi/L. g. F): MSD Target Conc. (pCi/L. g. F): MSD Spike Uncertainty (calculated): Sample Result Sample Result Counting Uncertainty (pCi/L. g. F): Sample Matrix Spike Boult: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L. g. F): Sample Matrix Spike Duplicate Result MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSDMSD Lower % Recovery Limits: MSMSD Lower % Recovery Limits: MSMSD Lower % Recovery Limits: | 19-033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.030<br>0.20<br>0.20<br>0.20                                                                                                          | 23.464<br>0.204<br>23.564<br>0.282                                                                                                                                        | 0.277<br>0.246<br>23.858<br>1.626                                                                                                                | 24.021<br>1.643<br>0.137<br>0.209<br>100.56%<br>100.76%<br>N/A<br>N/A<br>N/A<br>N/A<br>1018<br>102<br>103<br>103<br>103<br>103<br>103<br>103<br>103<br>103<br>103<br>103                                                                                                                                                                                                                                                                                                                                                    |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample Mod Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of | MS/MS/D Decay Corrected Spike Concentration (bC/mir.). Spike Volume Used in MSD (mL): Spike Volume Used in MSD (mL): MS Alianot (1 oF): | MS Target Conc. (p.Clf. g, F):  MSD Target Conc. (p.Clf. g, F):  MSD Target Conc. (p.Clf., g, F):  MS Spike Uncertainty (calculated):  MS Spike Uncertainty (calculated): | Sample Result Counting Uncertainty (politing): Sample Result Sample Matrix Spike Result. Matrix Spike Result Counting Uncertainty (pCl/L, g, F): | Sample Matrix Spike Duplicate Result:  Matrix Spike Duplicate Result Counting Uncertainty (pCiVL, g, F):  MSD Numerical Performance Indicator:  MSD Numerical Performance Indicator:  MSD Percent Recovery:  MSD Percent Recovery:  MSD Status vs Numerical Indicator:  MSD Status vs Numerical Indicator:  MSD Status vs Recovery:  MSD Status vs Recovery:  MSD Status vs Recovery:  MSD Status vs Recovery:  MSD Status vs Recovery:  MSD Status vs Recovery:  MSMSD Upper vs Recovery:  MSMSD Upper vs Recovery Limits: | Matrix Spike/Matrix Spike Duplicate Sample Assessment |

| 92551765022<br>92551765023 | 92551765024     | 23.858                      | 1.626                                                   | 24.021                                | 1.643                                                             | -0.139                                     | 0.26%                                                    | N/A                                              | Pass                             | 250/        |
|----------------------------|-----------------|-----------------------------|---------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------|-------------|
| Sample I.D. Sample MS I.D. | Sample MSD I.D. | Sample Matrix Spike Result: | Matrix Spike Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | Duplicate Numerical Performance Indicator: | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: | MS/ MSD Duplicate Status vs Numerical Indicator: | MS/ MSD Duplicate Status vs RPD: | ::-:: CGG % |

See Below ##

Are sample and/or duplicate results below RL?

Duplicate Numerical Performance Indicator:

Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):

Duplicate Status vs Numerical Indicator:

Duplicate Status vs RPD: % RPD Limit:

Sample LD.:

Duplicate Sample LD.:

Sample Result (pCi/L. g. F):

Sample Duplicate Result (pCi/L. g. F):

**Duplicate Sample Assessmen** 

| ı.        |
|-----------|
| MDC       |
| ē.        |
| ₽         |
| 8         |
| pe        |
| Je e      |
| ts a      |
| sul       |
| 5         |
| ate       |
| 뚪         |
| ᅙ         |
| ō         |
| e d       |
| e samp    |
| es        |
| Æ         |
| the       |
| ē         |
| ē         |
| licable   |
| 츑         |
| та        |
| 5         |
| <u>.s</u> |
| <u>,</u>  |
| Š.        |
| ğ         |
| ate       |
| 읈         |
| 亨         |
| ğ         |
| ig        |
| aluatio   |
| >         |
| #         |
| #         |

Comments:



LAM8/200/21

TAR\_61910\_W.xls Total Alpha Radium (ENV-FRM-GBUR-0142 R0).xls

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

### Field Case Narrative



### **Plant Gorgas Landfill**

### 2021 Compliance Event 2

All samples were collected using methods defined in Alabama Power's Water Field Group Low-Flow Groundwater Sampling Procedure and the associated site-specific Sampling and Analysis Plan (SAP).

Rainy conditions were present when sampling wells MW-12V, MW-6 and MW-10.

Suspected iron bacteria appeared to be present during initial pumping of wells MW-8 and MW-19.

Field quality control procedures were performed as follows:

- Blanks and Sample Duplicates were collected as described in the SAP.
- Calibration verifications for all required field parameters were performed daily, before and after sample collection.

| Parameter                     | Value                         | Units  |
|-------------------------------|-------------------------------|--------|
| Comment                       | Sampled @ 1045                |        |
| Test Type                     | Low-Flow Test                 |        |
| Test Date / Time              | 2021-07-12 10:16:44           |        |
| Operator Name                 | TJ Daugherty                  |        |
| Tubing Type                   | PE                            |        |
| Project                       | Gorgas Pooled Upgradient      |        |
| Initial Depth to Water        | 90.71                         | ft     |
| Flow Cell Volume              | 130                           | ml     |
| Final Draw Down               | 2.6                           | ft     |
| Estimated Total Volume Pumped | 12500                         | ml     |
| Tubing Inner Diameter         | 0.25                          | in     |
| Tubing Length                 | 108                           | ft     |
| Pump Type                     | Geotech Bladder               |        |
| Pump Volume                   | 105                           | ml     |
| Flow Rate                     | 500                           | ml/min |
| Final Flow Rate               | 500                           | ml/min |
| Pump Intake From TOC          | 103                           | ft     |
| Location Name                 | Gorgas Pooled Upgradient MW-1 |        |
| Well Diameter                 | 2                             | in     |
| Casing Type                   | PVC                           |        |
| Screen Length                 | 10                            | ft     |
| Total Depth                   | 108.13                        | ft     |
| Time Offset                   | -05:00:00                     |        |
| Top of Screen                 | 98.13                         | ft     |
| Device Model                  | Aqua TROLL 600                |        |
| Device SN                     | 678330                        |        |

| Data Time             | PH   | Q | ORP    | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb | Q | DTW   |
|-----------------------|------|---|--------|---|---------|---|------|---|-------|---|------|---|-------|
| 7/12/2021 10:21:00 AM | 5.16 |   | 125.24 |   | 2085.65 |   | 1.59 |   | 19.88 |   | 0.4  |   | 93.03 |
| 7/12/2021 10:26:00 AM | 5.14 |   | 131.56 |   | 2216.54 |   | 1.20 |   | 19.84 |   | 0.38 |   | 93.18 |
| 7/12/2021 10:31:00 AM | 5.14 |   | 129.67 |   | 2255.92 |   | 0.89 |   | 19.86 |   | 0.1  |   | 93.31 |
| 7/12/2021 10:36:00 AM | 5.13 |   | 129.53 |   | 2263.63 |   | 0.83 |   | 19.82 |   | 0.5  |   | 93.31 |
| 7/12/2021 10:41:00 AM | 5.13 |   | 128.99 |   | 2271.93 |   | 0.79 |   | 19.83 |   | 0.22 |   | 93.31 |

| Parameter                     | Value                         | Units  |
|-------------------------------|-------------------------------|--------|
| Comment                       | Sampled @ 1148                |        |
| Test Type                     | Low-Flow Test                 |        |
| Test Date / Time              | 2021-07-12 11:25:09           |        |
| Operator Name                 | TJ Daugherty                  |        |
| Tubing Type                   | PE                            |        |
| Project                       | Gorgas Pooled Upgradient      |        |
| Initial Depth to Water        | 84.37                         | ft     |
| Flow Cell Volume              | 130                           | ml     |
| Final Draw Down               | 0.05                          | ft     |
| Estimated Total Volume Pumped | 10000                         | ml     |
| Tubing Inner Diameter         | 0.25                          | in     |
| Tubing Length                 | 95                            | ft     |
| Pump Type                     | Geotech Bladder               |        |
| Pump Volume                   | 105                           | ml     |
| Flow Rate                     | 500                           | ml/min |
| Final Flow Rate               | 500                           | ml/min |
| Pump Intake From TOC          | 89                            | ft     |
| Location Name                 | Gorgas Pooled Upgradient MW-2 |        |
| Well Diameter                 | 2                             | in     |
| Casing Type                   | PVC                           |        |
| Screen Length                 | 10                            | ft     |
| Total Depth                   | 94.25                         | ft     |
| Time Offset                   | -05:00:00                     |        |
| Top of Screen                 | 84.25                         | ft     |
| Device Model                  | Aqua TROLL 600                |        |
| Device SN                     | 678330                        |        |

| Data Time             | PH   | Q | ORP   | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb | Q | DTW   |
|-----------------------|------|---|-------|---|---------|---|------|---|-------|---|------|---|-------|
| 7/12/2021 11:30:00 AM | 6.11 |   | 80.17 |   | 1694.47 |   | 0.29 |   | 19.43 |   | 12.2 |   | 84.42 |
| 7/12/2021 11:35:00 AM | 6.15 |   | 75.96 |   | 1672.37 |   | 0.16 |   | 19.42 |   | 2.61 |   | 84.42 |
| 7/12/2021 11:40:00 AM | 6.16 |   | 71.05 |   | 1678.19 |   | 0.13 |   | 19.36 |   | 2.48 |   | 84.42 |
| 7/12/2021 11:45:00 AM | 6.16 |   | 67.46 |   | 1676.05 |   | 0.12 |   | 19.38 |   | 1.43 |   | 84.42 |

| Parameter                     | Value                         | Units  |
|-------------------------------|-------------------------------|--------|
| Comment                       | Sampled @ 1253                |        |
| Test Type                     | Low-Flow Test                 |        |
| Test Date / Time              | 2021-07-12 12:24:51           |        |
| Operator Name                 | TJ Daugherty                  |        |
| Tubing Type                   | PE                            |        |
| Project                       | Gorgas Pooled Upgradient      |        |
| Initial Depth to Water        | 104.36                        | ft     |
| Flow Cell Volume              | 130                           | ml     |
| Final Draw Down               | 5.84                          | ft     |
| Estimated Total Volume Pumped | 2500                          | ml     |
| Tubing Inner Diameter         | 0.25                          | in     |
| Tubing Length                 | 119                           | ft     |
| Pump Type                     | Geotech Bladder               |        |
| Pump Volume                   | 105                           | ml     |
| Flow Rate                     | 100                           | ml/min |
| Final Flow Rate               | 100                           | ml/min |
| Pump Intake From TOC          | 114                           | ft     |
| Location Name                 | Gorgas Pooled Upgradient MW-3 |        |
| Well Diameter                 | 2                             | in     |
| Casing Type                   | PVC                           |        |
| Screen Length                 | 10                            | ft     |
| Total Depth                   | 118.92                        | ft     |
| Time Offset                   | -05:00:00                     |        |
| Top of Screen                 | 108.92                        | ft     |
| Device Model                  | Aqua TROLL 600                |        |
| Device SN                     | 678330                        |        |

| D / TI'               | DII  | _ | ODD    | ^ | C 1     | _ | DO   | _ | T.    | _ | Tr. I | _ | DOWN   |
|-----------------------|------|---|--------|---|---------|---|------|---|-------|---|-------|---|--------|
| Data Time             | PН   | Ų | OKP    | Q | Cond    | Ų | DO   | Ų | lemp  | Ų | lurb  | Ų | DIW    |
| 7/12/2021 12:29:00 PM | 6.44 |   | 83.07  |   | 4025.30 |   | 8.31 |   | 25.29 |   | 1.02  |   | 109.81 |
| 7/12/2021 12:34:00 PM | 5.93 |   | 95.79  |   | 3615.17 |   | 7.19 |   | 25.38 |   | 1.53  |   | 109.91 |
| 7/12/2021 12:39:00 PM | 5.86 |   | 99.55  |   | 3340.75 |   | 6.78 |   | 25.50 |   | 2.25  |   | 109.99 |
| 7/12/2021 12:44:00 PM | 5.86 |   | 101.49 |   | 3302.36 |   | 6.84 |   | 25.57 |   | 1.49  |   | 110.11 |
| 7/12/2021 12:49:00 PM | 5.86 |   | 103.13 |   | 3288.64 |   | 6.87 |   | 25.58 |   | 1.31  |   | 110.2  |

| Parameter                     | Value                         | Units  |
|-------------------------------|-------------------------------|--------|
| Comment                       | Sampled @ 1435                |        |
| Test Type                     | Low-Flow Test                 |        |
| Test Date / Time              | 2021-07-12 14:06:13           |        |
| Operator Name                 | TJ Daugherty                  |        |
| Tubing Type                   | PE                            |        |
| Project                       | Gorgas Pooled Upgradient      |        |
| Initial Depth to Water        | 116.33                        | ft     |
| Flow Cell Volume              | 130                           | ml     |
| Final Draw Down               | 0.03                          | ft     |
| Estimated Total Volume Pumped | 10000                         | ml     |
| Tubing Inner Diameter         | 0.25                          | in     |
| Tubing Length                 | 129                           | ft     |
| Pump Type                     | Geotech Bladder               |        |
| Pump Volume                   | 105                           | ml     |
| Flow Rate                     | 400                           | ml/min |
| Final Flow Rate               | 400                           | ml/min |
| Pump Intake From TOC          | 124                           | ft     |
| Location Name                 | Gorgas Pooled Upgradient MW-4 |        |
| Well Diameter                 | 2                             | in     |
| Casing Type                   | PVC                           |        |
| Screen Length                 | 10                            | ft     |
| Total Depth                   | 128.75                        | ft     |
| Time Offset                   | -05:00:00                     |        |
| Top of Screen                 | 118.75                        | ft     |
| Device Model                  | Aqua TROLL 600                |        |
| Device SN                     | 678330                        |        |

| Data Time            | PH   | Q | ORP    | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb | Q | DTW    |
|----------------------|------|---|--------|---|---------|---|------|---|-------|---|------|---|--------|
| 7/12/2021 2:11:00 PM | 5.97 |   | 122.05 |   | 3017.04 |   | 1.87 |   | 21.48 |   | 3.16 |   | 116.36 |
| 7/12/2021 2:16:00 PM | 5.96 |   | 119.22 |   | 2996.30 |   | 1.97 |   | 20.91 |   | 2.43 |   | 116.36 |
| 7/12/2021 2:21:00 PM | 5.99 |   | 118.37 |   | 2987.14 |   | 2.20 |   | 20.79 |   | 1.87 |   | 116.36 |
| 7/12/2021 2:26:00 PM | 6.04 |   | 116.26 |   | 2984.85 |   | 2.28 |   | 21.19 |   | 0.85 |   | 116.36 |
| 7/12/2021 2:31:00 PM | 6.06 |   | 114.08 |   | 2977.13 |   | 2.28 |   | 21.22 |   | 0.66 |   | 116.36 |

| Parameter                     | Value                | Units  |
|-------------------------------|----------------------|--------|
| Comment                       | Sampled @ 1053       |        |
| Test Type                     | Low-Flow Test        |        |
| Test Date / Time              | 2021-07-21 10:29:02  |        |
| Operator Name                 | TJ Daugherty         |        |
| Tubing Type                   | PE                   |        |
| Project                       | Gorgas Landfill      |        |
| Initial Depth to Water        | 125.87               | ft     |
| Flow Cell Volume              | 130                  | ml     |
| Final Draw Down               | 0.29                 | ft     |
| Estimated Total Volume Pumped | 3200                 | ml     |
| Tubing Inner Diameter         | 0.17                 | in     |
| Tubing Length                 | 137                  | ft     |
| Pump Type                     | QED Bladder          |        |
| Pump Volume                   | 130                  | ml     |
| Flow Rate                     | 160                  | ml/min |
| Final Flow Rate               | 160                  | ml/min |
| Pump Intake From TOC          | 132.5                | ft     |
| Location Name                 | Gorgas Landfill MW-5 |        |
| Well Diameter                 | 2                    | in     |
| Casing Type                   | PVC                  |        |
| Screen Length                 | 10                   | ft     |
| Total Depth                   | 137.2                | ft     |
| Time Offset                   | -05:00:00            |        |
| Top of Screen                 | 127.2                | ft     |
| Device Model                  | Aqua TROLL 600       |        |
| Device SN                     | 678330               |        |

| Data Time             | PH   | Q | ORP    | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb | Q | DTW    |
|-----------------------|------|---|--------|---|---------|---|------|---|-------|---|------|---|--------|
| 7/21/2021 10:34:00 AM | 6.46 |   | 130.21 |   | 3101.85 |   | 1.35 |   | 22.61 |   | 7.55 |   | 125.94 |
| 7/21/2021 10:39:00 AM | 6.42 |   | 118.86 |   | 3083.70 |   | 0.85 |   | 22.82 |   | 5.43 |   | 126.04 |
| 7/21/2021 10:44:00 AM | 6.40 |   | 111.02 |   | 3099.52 |   | 0.74 |   | 22.37 |   | 5.26 |   | 126.13 |
| 7/21/2021 10:49:00 AM | 6.40 |   | 105.22 |   | 3105.06 |   | 0.70 |   | 22.24 |   | 2.99 |   | 126.16 |

| Parameter                     | Value                | Units  |
|-------------------------------|----------------------|--------|
| Comment                       | Sampled @ 1357       |        |
| Test Type                     | Low-Flow Test        |        |
| Test Date / Time              | 2021-07-20 13:34:01  |        |
| Operator Name                 | Dallas Gentry        |        |
| Tubing Type                   | PE                   |        |
| Project                       | Gorgas Landfill      |        |
| Initial Depth to Water        | 99.13                | ft     |
| Flow Cell Volume              | 130                  | ml     |
| Final Draw Down               | 0.41                 | ft     |
| Estimated Total Volume Pumped | 10000                | ml     |
| Tubing Inner Diameter         | 0.25                 | in     |
| Tubing Length                 | 130                  | ft     |
| Pump Type                     | Geotech Bladder      |        |
| Pump Volume                   | 105                  | ml     |
| Flow Rate                     | 500                  | ml/min |
| Final Flow Rate               | 500                  | ml/min |
| Pump Intake From TOC          | 125                  | ft     |
| Location Name                 | Gorgas Landfill MW-6 |        |
| Well Diameter                 | 2                    | in     |
| Casing Type                   | PVC                  |        |
| Screen Length                 | 10                   | ft     |
| Total Depth                   | 128.81               | ft     |
| Time Offset                   | -05:00:00            |        |
| Top of Screen                 | 118.81               | ft     |
| Device Model                  | Aqua TROLL 600       |        |
| Device SN                     | 678400               |        |

| Data Time            | PH   | Q | ORP   | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb | Q | DTW   |
|----------------------|------|---|-------|---|---------|---|------|---|-------|---|------|---|-------|
| 7/20/2021 1:39:00 PM | 6.06 |   | 11.54 |   | 3085.93 |   | 0.16 |   | 20.81 |   | 2.76 |   | 99.54 |
| 7/20/2021 1:44:00 PM | 6.05 |   | 10.38 |   | 3079.5  |   | 0.13 |   | 21.02 |   | 1.69 |   | 99.54 |
| 7/20/2021 1:49:00 PM | 6.05 |   | 12.77 |   | 3042.22 |   | 0.12 |   | 21.02 |   | 1.56 |   | 99.54 |
| 7/20/2021 1:54:00 PM | 5.99 |   | 19.00 |   | 3020.13 |   | 0.11 |   | 21.06 |   | 1.09 |   | 99.54 |

| Parameter                     | Value                | Units  |
|-------------------------------|----------------------|--------|
| Comment                       | Sampled @ 1430       |        |
| Test Type                     | Low-Flow Test        |        |
| Test Date / Time              | 2021-07-20 14:07:08  |        |
| Operator Name                 | TJ Daugherty         |        |
| Tubing Type                   | PE                   |        |
| Project                       | Gorgas Landfill      |        |
| Initial Depth to Water        | 56.64                | ft     |
| Flow Cell Volume              | 130                  | ml     |
| Final Draw Down               | 0.26                 | ft     |
| Estimated Total Volume Pumped | 10000                | ml     |
| Tubing Inner Diameter         | 0.25                 | in     |
| Tubing Length                 | 73.5                 | ft     |
| Pump Type                     | Geotech Bladder      |        |
| Pump Volume                   | 105                  | ml     |
| Flow Rate                     | 500                  | ml/min |
| Final Flow Rate               | 500                  | ml/min |
| Pump Intake From TOC          | 68.5                 | ft     |
| Location Name                 | Gorgas Landfill MW-7 |        |
| Well Diameter                 | 2                    | in     |
| Casing Type                   | PVC                  |        |
| Screen Length                 | 10                   | ft     |
| Total Depth                   | 73.63                | ft     |
| Time Offset                   | -05:00:00            |        |
| Top of Screen                 | 63.63                | ft     |
| Device Model                  | Aqua TROLL 600       |        |
| Device SN                     | 678330               |        |

| Data Time            | PH   | Q | ORP   | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb | Q | DTW  |
|----------------------|------|---|-------|---|---------|---|------|---|-------|---|------|---|------|
| 7/20/2021 2:12:00 PM | 6.59 |   | 15.47 |   | 2333.02 |   | 1.11 |   | 20.67 |   | 0.94 |   | 56.9 |
| 7/20/2021 2:17:00 PM | 6.59 |   | 12.20 |   | 2274.92 |   | 0.99 |   | 20.63 |   | 1.71 |   | 56.9 |
| 7/20/2021 2:22:00 PM | 6.59 |   | 10.09 |   | 2233.43 |   | 0.97 |   | 20.53 |   | 1.33 |   | 56.9 |
| 7/20/2021 2:27:00 PM | 6.58 |   | 8.92  |   | 2199.04 |   | 0.98 |   | 20.48 |   | 1.57 |   | 56.9 |

| Parameter                     | Value                | Units  |
|-------------------------------|----------------------|--------|
| Comment                       | Sampled @ 1525       |        |
| Test Type                     | Low-Flow Test        |        |
| Test Date / Time              | 2021-07-20 14:42:02  |        |
| Operator Name                 | Dallas Gentry        |        |
| Tubing Type                   | PE                   |        |
| Project                       | Gorgas Landfill      |        |
| Initial Depth to Water        | 62.84                | ft     |
| Flow Cell Volume              | 130                  | ml     |
| Final Draw Down               | 2.35                 | ft     |
| Estimated Total Volume Pumped | 4000                 | ml     |
| Tubing Inner Diameter         | 0.25                 | in     |
| Tubing Length                 | 72                   | ft     |
| Pump Type                     | Geotech Bladder      |        |
| Pump Volume                   | 105                  | ml     |
| Flow Rate                     | 100                  | ml/min |
| Final Flow Rate               | 100                  | ml/min |
| Pump Intake From TOC          | 67                   | ft     |
| Location Name                 | Gorgas Landfill MW-8 |        |
| Well Diameter                 | 2                    | in     |
| Casing Type                   | PVC                  |        |
| Screen Length                 | 10                   | ft     |
| Total Depth                   | 72.24                | ft     |
| Time Offset                   | -05:00:00            |        |
| Top of Screen                 | 62.24                | ft     |
| Device Model                  | Aqua TROLL 600       |        |
| Device SN                     | 678400               |        |

| Data Time            | PH   | Q | ORP   | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb  | Q | DTW   |
|----------------------|------|---|-------|---|---------|---|------|---|-------|---|-------|---|-------|
| 7/20/2021 2:47:00 PM | 6.87 |   | 30.79 |   | 2512.83 |   | 6.25 |   | 24.29 |   | 0.48  |   | 63.64 |
| 7/20/2021 2:52:00 PM | 6.62 |   | 17.11 |   | 2534.76 |   | 1.83 |   | 23.45 |   | 1.04  |   | 64.03 |
| 7/20/2021 2:57:00 PM | 6.60 |   | 14.89 |   | 2532.07 |   | 0.94 |   | 23.30 |   | 6.95  |   | 64.29 |
| 7/20/2021 3:02:00 PM | 6.60 |   | 15.23 |   | 2521.81 |   | 0.71 |   | 23.27 |   | 10.36 |   | 64.5  |
| 7/20/2021 3:07:00 PM | 6.61 |   | 14.45 |   | 2511.83 |   | 0.58 |   | 23.14 |   | 11.7  |   | 64.75 |
| 7/20/2021 3:12:00 PM | 6.62 |   | 13.29 |   | 2506.52 |   | 0.51 |   | 22.99 |   | 11.23 |   | 64.95 |
| 7/20/2021 3:17:00 PM | 6.63 |   | 12.50 |   | 2502.96 |   | 0.47 |   | 22.70 |   | 7.26  |   | 65.09 |
| 7/20/2021 3:22:00 PM | 6.64 |   | 11.72 |   | 2503.35 |   | 0.44 |   | 22.63 |   | 6.59  |   | 65.19 |

| Parameter                     | Value                 | Units  |
|-------------------------------|-----------------------|--------|
| Comment                       | Sampled @ 1315        |        |
| Test Type                     | Low-Flow Test         |        |
| Test Date / Time              | 2021-07-20 12:46:34   |        |
| Operator Name                 | TJ Daugherty          |        |
| Tubing Type                   | PE                    |        |
| Project                       | Gorgas Landfill       |        |
| Initial Depth to Water        | 84.46                 | ft     |
| Flow Cell Volume              | 130                   | ml     |
| Final Draw Down               | 3.18                  | ft     |
| Estimated Total Volume Pumped | 5000                  | ml     |
| Tubing Inner Diameter         | 0.25                  | in     |
| Tubing Length                 | 104                   | ft     |
| Pump Type                     | Geotech Bladder       |        |
| Pump Volume                   | 105                   | ml     |
| Flow Rate                     | 200                   | ml/min |
| Final Flow Rate               | 200                   | ml/min |
| Pump Intake From TOC          | 98.8                  | ft     |
| Location Name                 | Gorgas Landfill MW-10 |        |
| Well Diameter                 | 2                     | in     |
| Casing Type                   | PVC                   |        |
| Screen Length                 | 20                    | ft     |
| Total Depth                   | 108.75                | ft     |
| Time Offset                   | -05:00:00             |        |
| Top of Screen                 | 88.75                 | ft     |
| Device Model                  | Aqua TROLL 600        |        |
| Device SN                     | 678330                |        |

| Data Time             | PH   | Q | ORP   | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb | Q | DTW   |
|-----------------------|------|---|-------|---|---------|---|------|---|-------|---|------|---|-------|
| 7/20/2021 12:51:00 PM | 6.51 |   | -1.64 |   | 1219.39 |   | 0.93 |   | 20.88 |   | 9.75 |   | 86.29 |
| 7/20/2021 12:56:00 PM | 6.50 |   | -4.88 |   | 1218.35 |   | 0.64 |   | 20.79 |   | 11.7 |   | 86.84 |
| 7/20/2021 1:01:00 PM  | 6.49 |   | -6.00 |   | 1225.99 |   | 0.56 |   | 20.80 |   | 9.44 |   | 87.36 |
| 7/20/2021 1:06:00 PM  | 6.48 |   | -5.73 |   | 1241.94 |   | 0.60 |   | 20.60 |   | 9.65 |   | 87.51 |
| 7/20/2021 1:11:00 PM  | 6.46 |   | -4.57 |   | 1257.92 |   | 0.64 |   | 20.67 |   | 5.42 |   | 87.64 |

| Parameter                     | Value                 | Units  |
|-------------------------------|-----------------------|--------|
| Comment                       | Sampled @ 1134        |        |
| Test Type                     | Low-Flow Test         |        |
| Test Date / Time              | 2021-07-21 10:46:21   |        |
| Operator Name                 | Dallas Gentry         |        |
| Tubing Type                   | PE                    |        |
| Project                       | Gorgas Landfill       |        |
| Initial Depth to Water        | 101.48                | ft     |
| Flow Cell Volume              | 130                   | ml     |
| Final Draw Down               | 7.77                  | ft     |
| Estimated Total Volume Pumped | 9000                  | ml     |
| Tubing Inner Diameter         | 0.25                  | in     |
| Tubing Length                 | 135.5                 | ft     |
| Pump Type                     | Geotech Bladder       |        |
| Pump Volume                   | 105                   | ml     |
| Flow Rate                     | 400                   | ml/min |
| Final Flow Rate               | 100                   | ml/min |
| Pump Intake From TOC          | 130.5                 | ft     |
| Location Name                 | Gorgas Landfill MW-11 |        |
| Well Diameter                 | 2                     | in     |
| Casing Type                   | PVC                   |        |
| Screen Length                 | 10                    | ft     |
| Total Depth                   | 135.74                | ft     |
| Time Offset                   | -05:00:00             |        |
| Top of Screen                 | 125.74                | ft     |
| Device Model                  | Aqua TROLL 600        |        |
| Device SN                     | 678400                |        |

| Data Time             | PH   | Q | ORP    | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb | Q | DTW    |
|-----------------------|------|---|--------|---|---------|---|------|---|-------|---|------|---|--------|
| 7/21/2021 10:51:00 AM | 6.70 |   | -67.32 |   | 2638.74 |   | 0.30 |   | 21.32 |   | 0.79 |   | 104.97 |
| 7/21/2021 10:56:00 AM | 6.71 |   | -67.18 |   | 2597.02 |   | 0.20 |   | 21.36 |   | 0.57 |   | 108.02 |
| 7/21/2021 11:01:00 AM | 6.73 |   | -69.90 |   | 2588.14 |   | 0.31 |   | 22.73 |   | 0.52 |   | 108.28 |
| 7/21/2021 11:06:00 AM | 6.74 |   | -71.12 |   | 2583.23 |   | 0.41 |   | 23.02 |   | 0.56 |   | 108.47 |
| 7/21/2021 11:11:00 AM | 6.75 |   | -70.63 |   | 2574.79 |   | 0.44 |   | 23.22 |   | 0.64 |   | 108.66 |
| 7/21/2021 11:16:00 AM | 6.75 |   | -70.34 |   | 2572.29 |   | 0.43 |   | 23.37 |   | 0.81 |   | 108.82 |
| 7/21/2021 11:21:00 AM | 6.75 |   | -70.98 |   | 2568.03 |   | 0.41 |   | 23.11 |   | 0.83 |   | 108.98 |
| 7/21/2021 11:26:00 AM | 6.74 |   | -72.78 |   | 2560.61 |   | 0.40 |   | 22.68 |   | 0.64 |   | 109.13 |
| 7/21/2021 11:31:00 AM | 6.74 |   | -76.30 |   | 2560.30 |   | 0.39 |   | 22.57 |   | 0.68 |   | 109.25 |

| Parameter                     | Value                 | Units  |
|-------------------------------|-----------------------|--------|
| Comment                       | Sampled @ 1153        |        |
| Test Type                     | Low-Flow Test         |        |
| Test Date / Time              | 2021-07-20 11:30:16   |        |
| Operator Name                 | TJ Daugherty          |        |
| Tubing Type                   | PE                    |        |
| Project                       | Gorgas Landfill       |        |
| Initial Depth to Water        | 154.82                | ft     |
| Flow Cell Volume              | 130                   | ml     |
| Final Draw Down               | 0.09                  | ft     |
| Estimated Total Volume Pumped | 4500                  | ml     |
| Tubing Inner Diameter         | 0.17                  | in     |
| Tubing Length                 | 169.5                 | ft     |
| Pump Type                     | QED Bladder           |        |
| Pump Volume                   | 130                   | ml     |
| Flow Rate                     | 225                   | ml/min |
| Final Flow Rate               | 225                   | ml/min |
| Pump Intake From TOC          | 164.5                 | ft     |
| Location Name                 | Gorgas Landfill MW-12 |        |
| Well Diameter                 | 2                     | in     |
| Casing Type                   | PVC                   |        |
| Screen Length                 | 10                    | ft     |
| Total Depth                   | 169.47                | ft     |
| Time Offset                   | -05:00:00             |        |
| Top of Screen                 | 159.47                | ft     |
| Device Model                  | Aqua TROLL 600        |        |
| Device SN                     | 678330                |        |

| Data Time             | PH   | Q | ORP   | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb | Q | DTW    |
|-----------------------|------|---|-------|---|---------|---|------|---|-------|---|------|---|--------|
| 7/20/2021 11:35:00 AM | 5.48 |   | 24.26 |   | 3190.77 |   | 1.10 |   | 22.92 |   | 7.98 |   | 154.91 |
| 7/20/2021 11:40:00 AM | 5.49 |   | 24.86 |   | 3171.25 |   | 0.97 |   | 22.96 |   | 7.41 |   | 154.91 |
| 7/20/2021 11:45:00 AM | 5.50 |   | 25.37 |   | 3173.09 |   | 0.93 |   | 22.78 |   | 4.88 |   | 154.91 |
| 7/20/2021 11:50:00 AM | 5.53 |   | 25.95 |   | 3168.03 |   | 0.90 |   | 22.65 |   | 4.23 |   | 154.91 |

| Parameter                     | Value                  | Units  |
|-------------------------------|------------------------|--------|
| Comment                       | Sampled @ 1232         |        |
| Test Type                     | Low-Flow Test          |        |
| Test Date / Time              | 2021-07-20 12:04:07    |        |
| Operator Name                 | Dallas Gentry          |        |
| Tubing Type                   | PE                     |        |
| Project                       | Gorgas Landfill        |        |
| Initial Depth to Water        | 155.32                 | ft     |
| Flow Cell Volume              | 130                    | ml     |
| Final Draw Down               | 1.86                   | ft     |
| Estimated Total Volume Pumped | 5250                   | ml     |
| Tubing Inner Diameter         | 0.17                   | in     |
| Tubing Length                 | 207                    | ft     |
| Pump Type                     | QED Bladder            |        |
| Pump Volume                   | 130                    | ml     |
| Flow Rate                     | 210                    | ml/min |
| Final Flow Rate               | 210                    | ml/min |
| Pump Intake From TOC          | 202                    | ft     |
| Location Name                 | Gorgas Landfill MW-12V |        |
| Well Diameter                 | 2                      | in     |
| Casing Type                   | PVC                    |        |
| Screen Length                 | 10                     | ft     |
| Total Depth                   | 207                    | ft     |
| Time Offset                   | -05:00:00              |        |
| Top of Screen                 | 197                    | ft     |
| Device Model                  | Aqua TROLL 600         |        |
| Device SN                     | 678400                 |        |

| Data Time             | PH   | Q | ORP     | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb | Q | DTW    |
|-----------------------|------|---|---------|---|---------|---|------|---|-------|---|------|---|--------|
| 7/20/2021 12:09:00 PM | 6.84 |   | -141.80 |   | 2537.18 |   | 0.80 |   | 22.45 |   | 6.36 |   | 156.26 |
| 7/20/2021 12:14:00 PM | 6.81 |   | -117.64 |   | 2533.59 |   | 0.38 |   | 22.29 |   | 1.66 |   | 156.64 |
| 7/20/2021 12:19:00 PM | 6.82 |   | -110.68 |   | 2532.41 |   | 0.33 |   | 22.13 |   | 1.56 |   | 156.9  |
| 7/20/2021 12:24:00 PM | 6.83 |   | -102.81 |   | 2519.32 |   | 0.71 |   | 23.00 |   | 1.72 |   | 157.08 |
| 7/20/2021 12:29:00 PM | 6.84 |   | -99.89  |   | 2516.11 |   | 0.47 |   | 22.91 |   | 1.48 |   | 157.18 |

| Parameter                     | Value                 | Units  |
|-------------------------------|-----------------------|--------|
| Comment                       | Sampled @ 0913        |        |
| Test Type                     | Low-Flow Test         |        |
| Test Date / Time              | 2021-07-20 08:50:09   |        |
| Operator Name                 | Dallas Gentry         |        |
| Tubing Type                   | PE                    |        |
| Project                       | Gorgas Landfill       |        |
| Initial Depth to Water        | 93.67                 | ft     |
| Flow Cell Volume              | 130                   | ml     |
| Final Draw Down               | 0.5                   | ft     |
| Estimated Total Volume Pumped | 4400                  | ml     |
| Tubing Inner Diameter         | 0.25                  | in     |
| Tubing Length                 | 109                   | ft     |
| Pump Type                     | Geotech Bladder       |        |
| Pump Volume                   | 105                   | ml     |
| Flow Rate                     | 220                   | ml/min |
| Final Flow Rate               | 220                   | ml/min |
| Pump Intake From TOC          | 104                   | ft     |
| Location Name                 | Gorgas Landfill MW-13 |        |
| Well Diameter                 | 2                     | in     |
| Casing Type                   | PVC                   |        |
| Screen Length                 | 10                    | ft     |
| Total Depth                   | 109.25                | ft     |
| Time Offset                   | -05:00:00             |        |
| Top of Screen                 | 99.25                 | ft     |
| Device Model                  | Aqua TROLL 600        |        |
| Device SN                     | 678400                |        |
|                               |                       |        |

| Data Time            | PH   | Q | ORP   | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb | Q | DTW   |
|----------------------|------|---|-------|---|---------|---|------|---|-------|---|------|---|-------|
| 7/20/2021 8:55:00 AM | 6.52 |   | 72.95 |   | 2633.28 |   | 0.70 |   | 20.74 |   | 1.27 |   | 94.17 |
| 7/20/2021 9:00:00 AM | 6.57 |   | 67.77 |   | 2636.18 |   | 0.40 |   | 20.59 |   | 1.42 |   | 94.17 |
| 7/20/2021 9:05:00 AM | 6.59 |   | 60.62 |   | 2633.40 |   | 0.33 |   | 20.51 |   | 0.54 |   | 94.17 |
| 7/20/2021 9:10:00 AM | 6.59 |   | 60.17 |   | 2629.85 |   | 0.30 |   | 20.50 |   | 0.57 |   | 94.17 |

| Parameter                     | Value                 | Units  |
|-------------------------------|-----------------------|--------|
| Comment                       | Sampled @ 1016        |        |
| Test Type                     | Low-Flow Test         |        |
| Test Date / Time              | 2021-07-20 09:52:58   |        |
| Operator Name                 | Dallas Gentry         |        |
| Tubing Type                   | PE                    |        |
| Project                       | Gorgas Landfill       |        |
| Initial Depth to Water        | 88.91                 | ft     |
| Flow Cell Volume              | 130                   | ml     |
| Final Draw Down               | 0.13                  | ft     |
| Estimated Total Volume Pumped | 7600                  | ml     |
| Tubing Inner Diameter         | 0.25                  | in     |
| Tubing Length                 | 103.5                 | ft     |
| Pump Type                     | Geotech Bladder       |        |
| Pump Volume                   | 105                   | ml     |
| Flow Rate                     | 380                   | ml/min |
| Final Flow Rate               | 380                   | ml/min |
| Pump Intake From TOC          | 98.5                  | ft     |
| Location Name                 | Gorgas Landfill MW-14 |        |
| Well Diameter                 | 2                     | in     |
| Casing Type                   | PVC                   |        |
| Screen Length                 | 10                    | ft     |
| Total Depth                   | 103.65                | ft     |
| Time Offset                   | -05:00:00             |        |
| Top of Screen                 | 93.65                 | ft     |
| Device Model                  | Aqua TROLL 600        |        |
| Device SN                     | 678400                |        |

| Data Time             | PH   | Q | ORP   | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb | Q | DTW   |
|-----------------------|------|---|-------|---|---------|---|------|---|-------|---|------|---|-------|
| 7/20/2021 9:57:00 AM  | 6.37 |   | 50.75 |   | 2994.03 |   | 0.29 |   | 20.30 |   | 58.3 |   | 89.04 |
| 7/20/2021 10:02:00 AM | 6.37 |   | 37.52 |   | 2978.03 |   | 0.19 |   | 20.29 |   | 8.15 |   | 89.04 |
| 7/20/2021 10:07:00 AM | 6.38 |   | 33.32 |   | 2972.60 |   | 0.16 |   | 20.12 |   | 3.23 |   | 89.04 |
| 7/20/2021 10:12:00 AM | 6.38 |   | 31.75 |   | 2964.18 |   | 0.16 |   | 20.10 |   | 2.44 |   | 89.04 |

| Parameter                     | Value                 | Units  |
|-------------------------------|-----------------------|--------|
| Comment                       | Sampled @ 1125        |        |
| Test Type                     | Low-Flow Test         |        |
| Test Date / Time              | 2021-07-20 11:01:56   |        |
| Operator Name                 | Dallas Gentry         |        |
| Tubing Type                   | PE                    |        |
| Project                       | Gorgas Landfill       |        |
| Initial Depth to Water        | 66.35                 | ft     |
| Flow Cell Volume              | 130                   | ml     |
| Final Draw Down               | 0.99                  | ft     |
| Estimated Total Volume Pumped | 6600                  | ml     |
| Tubing Inner Diameter         | 0.25                  | in     |
| Tubing Length                 | 87                    | ft     |
| Pump Type                     | Geotech Bladder       |        |
| Pump Volume                   | 105                   | ml     |
| Flow Rate                     | 330                   | ml/min |
| Final Flow Rate               | 330                   | ml/min |
| Pump Intake From TOC          | 82                    | ft     |
| Location Name                 | Gorgas Landfill MW-15 |        |
| Well Diameter                 | 2                     | in     |
| Casing Type                   | PVC                   |        |
| Screen Length                 | 10                    | ft     |
| Total Depth                   | 86.96                 | ft     |
| Time Offset                   | -05:00:00             |        |
| Top of Screen                 | 76.96                 | ft     |
| Device Model                  | Aqua TROLL 600        |        |
| Device SN                     | 678400                |        |

| Data Time             | PH   | Q | ORP   | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb | Q | DTW   |
|-----------------------|------|---|-------|---|---------|---|------|---|-------|---|------|---|-------|
| 7/20/2021 11:06:00 AM | 6.04 |   | 25.67 |   | 2616.49 |   | 0.26 |   | 20.33 |   | 1.82 |   | 67.23 |
| 7/20/2021 11:11:00 AM | 6.02 |   | 25.14 |   | 2602.47 |   | 0.19 |   | 20.25 |   | 2.82 |   | 67.34 |
| 7/20/2021 11:16:00 AM | 6.02 |   | 26.05 |   | 2579.34 |   | 0.25 |   | 20.30 |   | 2.2  |   | 67.34 |
| 7/20/2021 11:21:00 AM | 6.03 |   | 24.59 |   | 2577.77 |   | 0.26 |   | 20.18 |   | 1.91 |   | 67.34 |

| Parameter                     | Value                 | Units  |
|-------------------------------|-----------------------|--------|
| Comment                       | Sampled @ 1210        |        |
| Test Type                     | Low-Flow Test         |        |
| Test Date / Time              | 2021-07-21 11:47:27   |        |
| Operator Name                 | TJ Daugherty          |        |
| Tubing Type                   | PE                    |        |
| Project                       | Gorgas Landfill       |        |
| Initial Depth to Water        | 90.05                 | ft     |
| Flow Cell Volume              | 130                   | ml     |
| Final Draw Down               | 0.03                  | ft     |
| Estimated Total Volume Pumped | 8800                  | ml     |
| Tubing Inner Diameter         | 0.25                  | in     |
| Tubing Length                 | 110.5                 | ft     |
| Pump Type                     | Geotech Bladder       |        |
| Pump Volume                   | 105                   | ml     |
| Flow Rate                     | 440                   | ml/min |
| Final Flow Rate               | 440                   | ml/min |
| Pump Intake From TOC          | 105.5                 | ft     |
| Location Name                 | Gorgas Landfill MW-16 |        |
| Well Diameter                 | 2                     | in     |
| Casing Type                   | PVC                   |        |
| Screen Length                 | 10                    | ft     |
| Total Depth                   | 110.56                | ft     |
| Time Offset                   | -05:00:00             |        |
| Top of Screen                 | 100.56                | ft     |
| Device Model                  | Aqua TROLL 600        |        |
| Device SN                     | 678330                |        |

| Data Time             | PH   | Q | ORP   | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb | Q | DTW   |
|-----------------------|------|---|-------|---|---------|---|------|---|-------|---|------|---|-------|
| 7/21/2021 11:52:00 AM | 6.19 |   | 79.19 |   | 2295.37 |   | 0.94 |   | 20.68 |   | 0.27 |   | 90.08 |
| 7/21/2021 11:57:00 AM | 6.20 |   | 77.24 |   | 2282.41 |   | 0.83 |   | 20.56 |   | 0.24 |   | 90.08 |
| 7/21/2021 12:02:00 PM | 6.22 |   | 73.80 |   | 2274.14 |   | 0.82 |   | 20.83 |   | 0.1  |   | 90.08 |
| 7/21/2021 12:07:00 PM | 6.24 |   | 69.94 |   | 2259.08 |   | 0.78 |   | 20.85 |   | 0.1  |   | 90.08 |

| Parameter                     | Value                  | Units  |
|-------------------------------|------------------------|--------|
| Comment                       | Sampled @ 1330         |        |
| Test Type                     | Low-Flow Test          |        |
| Test Date / Time              | 2021-07-21 13:01:44    |        |
| Operator Name                 | TJ Daugherty           |        |
| Tubing Type                   | PE                     |        |
| Project                       | Gorgas Landfill        |        |
| Initial Depth to Water        | 125.98                 | ft     |
| Flow Cell Volume              | 130                    | ml     |
| Final Draw Down               | 0.63                   | ft     |
| Estimated Total Volume Pumped | 6000                   | ml     |
| Tubing Inner Diameter         | 0.17                   | in     |
| Tubing Length                 | 139                    | ft     |
| Pump Type                     | QED Bladder            |        |
| Pump Volume                   | 130                    | ml     |
| Flow Rate                     | 240                    | ml/min |
| Final Flow Rate               | 240                    | ml/min |
| Pump Intake From TOC          | 133.67                 | ft     |
| Location Name                 | Gorgas Landfill MW-17R |        |
| Well Diameter                 | 2                      | in     |
| Casing Type                   | PVC                    |        |
| Screen Length                 | 10                     | ft     |
| Total Depth                   | 138.05                 | ft     |
| Time Offset                   | -05:00:00              |        |
| Top of Screen                 | 128.05                 | ft     |
| Device Model                  | Aqua TROLL 600         |        |
| Device SN                     | 678330                 |        |

| Data Time            | PH   | Q | ORP   | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb | Q | DTW    |
|----------------------|------|---|-------|---|---------|---|------|---|-------|---|------|---|--------|
| 7/21/2021 1:06:00 PM | 5.36 |   | 93.43 |   | 3154.10 |   | 0.83 |   | 22.42 |   | 0.92 |   | 126.54 |
| 7/21/2021 1:11:00 PM | 5.43 |   | 85.91 |   | 3138.19 |   | 0.49 |   | 22.46 |   | 0.59 |   | 126.61 |
| 7/21/2021 1:16:00 PM | 5.60 |   | 75.55 |   | 3106.67 |   | 0.41 |   | 22.46 |   | 0.42 |   | 126.61 |
| 7/21/2021 1:21:00 PM | 5.73 |   | 67.78 |   | 3087.79 |   | 0.38 |   | 22.46 |   | 0.41 |   | 126.61 |
| 7/21/2021 1:26:00 PM | 5.79 |   | 63.86 |   | 3081.80 |   | 0.36 |   | 22.47 |   | 0.27 |   | 126.61 |

| Parameter                     | Value                 | Units  |
|-------------------------------|-----------------------|--------|
| Comment                       | Sampled @ 1428        |        |
| Test Type                     | Low-Flow Test         |        |
| Test Date / Time              | 2021-07-21 14:04:45   |        |
| Operator Name                 | TJ Daugherty          |        |
| Tubing Type                   | PE                    |        |
| Project                       | Gorgas Landfill       |        |
| Initial Depth to Water        | 111.49                | ft     |
| Flow Cell Volume              | 130                   | ml     |
| Final Draw Down               | 0.12                  | ft     |
| Estimated Total Volume Pumped | 3200                  | ml     |
| Tubing Inner Diameter         | 0.17                  | in     |
| Tubing Length                 | 120                   | ft     |
| Pump Type                     | QED Bladder           |        |
| Pump Volume                   | 130                   | ml     |
| Flow Rate                     | 160                   | ml/min |
| Final Flow Rate               | 160                   | ml/min |
| Pump Intake From TOC          | 117.74                | ft     |
| Location Name                 | Gorgas Landfill MW-18 |        |
| Well Diameter                 | 2                     | in     |
| Casing Type                   | PVC                   |        |
| Screen Length                 | 10                    | ft     |
| Total Depth                   | 118.48                | ft     |
| Time Offset                   | -05:00:00             |        |
| Top of Screen                 | 108.48                | ft     |
| Device Model                  | Aqua TROLL 600        |        |
| Device SN                     | 678330                |        |

| Data Time            | PH   | Q | ORP   | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb | Q | DTW    |
|----------------------|------|---|-------|---|---------|---|------|---|-------|---|------|---|--------|
| 7/21/2021 2:09:00 PM | 6.34 |   | 51.54 |   | 2373.3  |   | 4.28 |   | 23.43 |   | 0.31 |   | 111.56 |
| 7/21/2021 2:14:00 PM | 6.31 |   | 52.02 |   | 2368.29 |   | 4.01 |   | 23.22 |   | 0.51 |   | 111.59 |
| 7/21/2021 2:19:00 PM | 6.31 |   | 53.80 |   | 2360.97 |   | 3.96 |   | 22.73 |   | 0.28 |   | 111.61 |
| 7/21/2021 2:24:00 PM | 6.33 |   | 55.25 |   | 2357.17 |   | 3.95 |   | 22.33 |   | 0.23 |   | 111.61 |

| Parameter                     | Value                 | Units  |
|-------------------------------|-----------------------|--------|
| Comment                       | Sampled @ 1401        |        |
| Test Type                     | Low-Flow Test         |        |
| Test Date / Time              | 2021-07-21 13:33:18   |        |
| Operator Name                 | Dallas Gentry         |        |
| Tubing Type                   | PE                    |        |
| Project                       | Gorgas Landfill       |        |
| Initial Depth to Water        | 79.03                 | ft     |
| Flow Cell Volume              | 130                   | ml     |
| Final Draw Down               | 0.07                  | ft     |
| Estimated Total Volume Pumped | 8500                  | ml     |
| Tubing Inner Diameter         | 0.25                  | in     |
| Tubing Length                 | 98                    | ft     |
| Pump Type                     | Geotech Bladder       |        |
| Pump Volume                   | 105                   | ml     |
| Flow Rate                     | 340                   | ml/min |
| Final Flow Rate               | 340                   | ml/min |
| Pump Intake From TOC          | 93                    | ft     |
| Location Name                 | Gorgas Landfill MW-19 |        |
| Well Diameter                 | 2                     | in     |
| Casing Type                   | PVC                   |        |
| Screen Length                 | 10                    | ft     |
| Total Depth                   | 97.85                 | ft     |
| Time Offset                   | -05:00:00             |        |
| Top of Screen                 | 87.85                 | ft     |
| Device Model                  | Aqua TROLL 600        |        |
| Device SN                     | 678400                |        |

| Data Time            | PH   | Q | ORP   | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb  | Q | DTW  |
|----------------------|------|---|-------|---|---------|---|------|---|-------|---|-------|---|------|
| 7/21/2021 1:38:00 PM | 6.22 |   | 65.34 |   | 2931.00 |   | 0.41 |   | 21.23 |   | 16.4  |   | 79.1 |
| 7/21/2021 1:43:00 PM | 6.18 |   | 66.93 |   | 2922.66 |   | 0.19 |   | 20.82 |   | 33.8  |   | 79.1 |
| 7/21/2021 1:48:00 PM | 6.19 |   | 64.61 |   | 2920.80 |   | 0.16 |   | 20.80 |   | 12.55 |   | 79.1 |
| 7/21/2021 1:53:00 PM | 6.21 |   | 63.42 |   | 2921.17 |   | 0.15 |   | 20.96 |   | 10.87 |   | 79.1 |
| 7/21/2021 1:58:00 PM | 6.23 |   | 61.95 |   | 2916.25 |   | 0.14 |   | 21.11 |   | 4.91  |   | 79.1 |

| Parameter                     | Value                 | Units  |
|-------------------------------|-----------------------|--------|
| Comment                       | Sampled @ 1247        |        |
| Test Type                     | Low-Flow Test         |        |
| Test Date / Time              | 2021-07-21 12:23:40   |        |
| Operator Name                 | Dallas Gentry         |        |
| Tubing Type                   | PE                    |        |
| Project                       | Gorgas Landfill       |        |
| Initial Depth to Water        | 19.78                 | ft     |
| Flow Cell Volume              | 130                   | ml     |
| Final Draw Down               | 1.32                  | ft     |
| Estimated Total Volume Pumped | 6000                  | ml     |
| Tubing Inner Diameter         | 0.25                  | in     |
| Tubing Length                 | 74                    | ft     |
| Pump Type                     | Geotech Bladder       |        |
| Pump Volume                   | 105                   | ml     |
| Flow Rate                     | 300                   | ml/min |
| Final Flow Rate               | 300                   | ml/min |
| Pump Intake From TOC          | 69                    | ft     |
| Location Name                 | Gorgas Landfill MW-20 |        |
| Well Diameter                 | 2                     | in     |
| Casing Type                   | PVC                   |        |
| Screen Length                 | 10                    | ft     |
| Total Depth                   | 74.1                  | ft     |
| Time Offset                   | -05:00:00             |        |
| Top of Screen                 | 64.1                  | ft     |
| Device Model                  | Aqua TROLL 600        |        |
| Device SN                     | 678400                |        |

| Data Time             | PH   | Q | ORP    | Q | Cond    | Q | DO   | Q | Temp  | Q | Turb | Q | DTW   |
|-----------------------|------|---|--------|---|---------|---|------|---|-------|---|------|---|-------|
| 7/21/2021 12:28:00 PM | 6.55 |   | -56.28 |   | 2645.96 |   | 0.16 |   | 20.36 |   | 1.59 |   | 21.05 |
| 7/21/2021 12:33:00 PM | 6.56 |   | -53.54 |   | 2625.65 |   | 0.11 |   | 20.39 |   | 0.77 |   | 21.1  |
| 7/21/2021 12:38:00 PM | 6.58 |   | -52.76 |   | 2612.28 |   | 0.10 |   | 20.46 |   | 0.4  |   | 21.1  |
| 7/21/2021 12:43:00 PM | 6.60 |   | -52.71 |   | 2648.64 |   | 0.09 |   | 20.65 |   | 0.81 |   | 21.1  |

### Appendix D

### **Appendix D. - Horizontal Groundwater Flow Velocity Calculations**

### **Plant Gorgas Gypsum Landfill**

| 2021 Semi-Annual Monitoring Events |                     |                     |          |                             |                           |                       |                                            |                                            |
|------------------------------------|---------------------|---------------------|----------|-----------------------------|---------------------------|-----------------------|--------------------------------------------|--------------------------------------------|
| Source                             | MW-2                | MW-20               | Distance | Hydraulic<br>Gradient       | Hydraulic<br>Conductivity | Effective<br>Porosity | Calculated<br>Groundwater<br>Flow Velocity | Calculated<br>Groundwater<br>Flow Velocity |
|                                    | h <sub>1</sub> (ft) | h <sub>2</sub> (ft) | Δl (ft)  | $\Delta h/\Delta l$ (ft/ft) | K                         | n                     | (ft/d)                                     | (ft/yr)                                    |
| 2/22/2021                          | 418.50              | 313.60              | 3507.0   | 0.030                       | 8.01                      | 0.15                  | 1.60                                       | 583.01                                     |
| 7/12/2021                          | 417.75              | 312.81              | 3507.0   | 0.030                       | 8.01                      | 0.15                  | 1.60                                       | 583.23                                     |
|                                    |                     |                     |          |                             |                           |                       |                                            |                                            |
| Source                             | MW-3                | MW-6                | Distance | Hydraulic<br>Gradient       | Hydraulic<br>Conductivity | Effective<br>Porosity | Calculated<br>Groundwater<br>Flow Velocity | Calculated<br>Groundwater<br>Flow Velocity |
|                                    | h <sub>1</sub> (ft) | h <sub>2</sub> (ft) | Δl (ft)  | $\Delta h/\Delta l$ (ft/ft) | K                         | n                     | (ft/d)                                     | (ft/yr)                                    |
| 2/22/2021                          | 419.94              | 311.83              | 2970.0   | 0.036                       | 8.01                      | 0.15                  | 1.94                                       | 709.49                                     |
| 7/12/2021                          | 421.54              | 314.66              | 2970.0   | 0.036                       | 8.01                      | 0.15                  | 1.92                                       | 701.41                                     |
|                                    |                     |                     |          |                             |                           |                       |                                            |                                            |
| Source                             | MW-14               | MW-19               | Distance | Hydraulic<br>Gradient       | Hydraulic<br>Conductivity | Effective<br>Porosity | Calculated<br>Groundwater<br>Flow Velocity | Calculated<br>Groundwater<br>Flow Velocity |
|                                    | h <sub>1</sub> (ft) | h <sub>2</sub> (ft) | Δl (ft)  | Δh/Δl (ft/ft)               | K                         | n                     | (ft/d)                                     | (ft/yr)                                    |
| 2/22/2021                          | 340.86              | 298.70              | 1890.0   | 0.022                       | 8.01                      | 0.15                  | 1.19                                       | 434.78                                     |
| 7/12/2021                          | 340.84              | 298.00              | 1890.0   | 0.023                       | 8.01                      | 0.15                  | 1.21                                       | 441.80                                     |

Notes: ft=feet

ft/d = feet/day

ft/ft = feet per foot

ft/yr = feet per year

### Appendix E

### 1st Semi-Annual Monitoring Event

### GROUNDWATER STATS CONSULTING

SWFPR= 1 - (1 - alpha)PEPL = X +k × L  $As Hg = (x \cdot (n) - x \cdot (n-2)) / (x \cdot (n))$ Zn Vn Cq.

May 26, 2021

Southern Company Services Attn: Mr. Greg Dyer 3535 Colonnade Parkway Birmingham, AL 35243

Re: Plant Gorgas Gypsum Landfill

1st Semi-Annual Analysis – February 2021

Dear Mr. Dyer,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the statistical analysis of groundwater data for the February 2021 1<sup>st</sup> semi-annual sample event for Alabama Power Company's Plant Gorgas Gypsum Landfill. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began at site for the CCR program in 2016. The monitoring well network, as provided by Southern Company Services, consists of the following:

- Upgradient wells: MW-1, MW-2, MW-3, MW-4, MW-13, MW-14, and MW-15
- o **Downgradient wells:** MW-16, MW-17R, MW-18, MW-19, and MW-20

Note that downgradient well MW-17R was first sampled in February 2021 and currently only has one sample. This well was included on time series and box plots only. Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was prepared according to the Statistical Analysis Plan approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to Groundwater Stats Consulting. The analysis was reviewed by Andrew Collins, Project Manager of Groundwater Stats Consulting.

The CCR program consists of the following constituents:

**Appendix III** (Detection Monitoring) - boron, calcium, chloride, fluoride, pH, sulfate, and TDS

**Appendix IV** (Assessment Monitoring) - antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A summary of Appendix IV downgradient well/constituent pairs with 100% non-detects follows this letter.

Time series plots for Appendix III and IV parameters at all wells are provided for the purpose of screening data at these wells (Figure A). A substitution of the most recent reporting limit is used for non-detect data. Additionally, a separate section of box plots is included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells.

In earlier analyses, data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on analysis of the spatial variability of groundwater quality data among wells upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves are provided in this report to demonstrate that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance. The EPA suggests that the selected statistical method should provide at least 55% power at 3 standard deviations or at least 80% power at 4 standard deviations. Power curves are based on the following statistical methods and site/data characteristics:

- Semi-Annual Sampling
- Intrawell Prediction Limits with 1-of-2 resample plan
- Interwell Prediction Limits with 1-of-2 resample plan
- # Background Samples (Intrawell): 8
- # Background Samples (Interwell): 140
- # Constituents: 7
- # Downgradient wells: 4

### **Summary of Statistical Methods – Appendix III Parameters**

Based on the earlier evaluation described above, the following statistical methods were selected:

- Intrawell prediction limits, combined with a 1-of-2 resample plan for calcium, chloride, fluoride, sulfate, and TDS
- Interwell prediction limits, combined with a 1-of-2 resample plan for boron and pH

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the annual false positive rate associated with parametric limits is fixed at 10% as recommended by the EPA Unified Guidance (2009), the false positive rate associated with nonparametric limits is not fixed and depends upon the available background sample size, number of future comparisons, and verification resample plan. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits as appropriate.

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.</li>
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the intrawell case, data for all wells and constituents may be re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. In the interwell case, prediction limits are updated with upgradient well data

following each sampling event after careful screening for any new outliers. While not required for this report, in some cases, deselecting the earlier portion of data may be necessary prior to construction of limits so that resulting statistical limits are conservative (lower) from a regulatory perspective and capable of rapidly detecting changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

### **Background Update Summary – Conducted in September 2019**

Intrawell prediction limits, which compare the most recent compliance sample from a given well to historical data from the same well, are updated by testing for the appropriateness of consolidating new sampling observations with the screened background data. This process is described below and requires a minimum of four new data points. Historical data were evaluated for updating with newer data through May 2019 through the use of time series graphs to identify potential outliers when necessary, as well as the Mann Whitney test for equality of medians. As discussed in the Statistical Analysis Plan (August 2020), intrawell prediction limits are used to evaluate calcium, chloride, fluoride, sulfate, and TDS at all wells due to natural spatial variation for these parameters.

Interwell prediction limits are used to compare the most recent sample from each downgradient well to statistical limits constructed from pooled upgradient well data for boron and pH. As mentioned above, these limits are updated following each sampling event after careful screening for new outliers. Data from upgradient wells are also periodically re-screened for newly developing trends, which may require adjustment of the background period to eliminate the trend. No adjustments were required in upgradient wells for constituents evaluated using prediction limits.

Prior to performing prediction limits, proposed background data through May 2019 were reviewed to identify any newly suspected outliers at all wells for calcium, chloride, fluoride, sulfate, and TDS and at upgradient wells for boron and pH. Both Tukey's test and visual screening are used to identify potential outliers. When identified as outliers, values were flagged with "o" and excluded to reduce variation, better represent background conditions, and provide limits that are conservative from a regulatory perspective. Potential outliers that are identified by Tukey's test but are not greatly different from the rest of the data are not flagged. Also, outliers that are not identified as significant by Tukey's test may be identified visually. As mentioned above, flagged data are displayed in a lighter font and as a disconnected symbol on the time series reports, as well as in a lighter font on the accompanying data pages. A summary of Tukey's test results for Appendix III parameters was included with the September 2019 screening.

For constituents requiring intrawell prediction limits, the Mann Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through October 2017 to compliance data through May 2019. When no statistically significant difference between the two groups data is found at a 99% confidence level, background data may be updated with compliance data. Statistically significant differences were found between the two groups for calcium in well MW-1; chloride in well MW-20; fluoride in wells MW-2 and MW-4; and TDS in well MW-1.

Typically, when the test concludes that the medians of the two groups are significantly different, particularly in the downgradient wells, the background data are not updated to include the newer data but will be reconsidered in the future. Because the differences for calcium, fluoride and TDS occurred in upgradient wells, and more recent data are fairly similar to background and represent groundwater quality upgradient of the facility, these background data sets were updated. Chloride at downgradient well MW-20 exhibits a statistically significant increasing trend in concentrations since May 2018; therefore, this record was not updated. Further research would be needed to determine the cause of the trend, which is beyond the scope of this analysis. If it is determined that increased concentrations are not resulting from practices at the facility, this record will be reevaluated for updating background. A summary of these results was included with the Mann Whitney test section in the September 2019 screening, and a list of well/constituent pairs using a truncated portion of their records follows this report under the Date Ranges table.

The Sen's Slope/Mann Kendall trend test was used to evaluate the entire record of data from upgradient wells for parameters utilizing interwell prediction limits. When statistically significant increasing trends are identified in upgradient wells, the earlier portion of data is deselected prior to construction of interwell statistical limits if the trending data would result in statistical limits that are not conservative from a regulatory perspective. No statistically significant trends were noted in upgradient wells, and a summary of the results was included with the September 2019 screening.

#### **Evaluation of Appendix III Parameters – February 2021**

Intrawell prediction limits were constructed for calcium, chloride, fluoride, sulfate, and TDS using screened background data through May 2019 at each well. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. A summary of flagged outliers follows this report (Figure C).

Intrawell limits constructed from carefully screened background data from within each well serve to provide statistical limits that are representative of the background data

population, and that will rapidly identify a change in more recent compliance data from within a given well. The most recent sample from the same well is compared to its respective background. This statistical method removes the element of variation from across wells and eliminates the chance of mistaking natural spatial variation for a release from the facility. Intrawell prediction limits combined with a 1-of-2 verification strategy were constructed for calcium, chloride, fluoride, sulfate, and TDS (Figure D). Background data will be re-evaluated when a minimum of 4 compliance samples are available. This was last performed in September 2019, and the report was submitted at that time. Due to changing reporting limits of <-2 mg/L to <2mg/ for chloride since the background update, statistical limits for chloride in wells MW-4, MW-14, MW-15, and MW-18 are slightly different from those established during the background update. The change did not result in any additional statistical exceedances.

Interwell prediction limits combined with a 1-of-2 verification strategy were constructed for boron and pH (Figure E). Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. The most recent sample from each downgradient well is compared to the background limit to determine whether there are statistically significant increases (SSIs). Note that during this analysis, the reporting limit for boron increased from <0.1 mg/L to <0.1015 mg/L, but this increase did not result in any change to statistical limits.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified, and further research is required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If a resample falls within the statistical limit, the initial exceedance is considered to be a false positive result; therefore, no further action is necessary. A summary of the prediction limits results may be found in the Prediction Limit Summary tables following this letter. Exceedances for both interwell and intrawell prediction limits were identified for the following well/constituent pairs:

#### Interwell

Boron: MW-20pH: MW-20

#### Intrawell:

Calcium: MW-15 (upgradient)

• Chloride: MW-20

• TDS: MW-15 (upgradient)

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable (Figure F). Upgradient wells are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells to identify whether similar patterns exist upgradient of the site. The existence of similar trends in both upgradient and downgradient wells is an indication of natural variability in groundwater that is unrelated to practices at the site. A summary of the trend test results follows this letter. No statistically significant decreasing trends were identified. The following statistically significant increasing trends were identified for the following well/constituent pairs:

Boron: MW-2 (upgradient)

• Chloride: MW-20

## **Evaluation of Appendix IV Parameters – February 2021**

Data from all wells for Appendix IV parameters were reassessed for outliers during previous analyses. A previously flagged outlier of 0.00473 mg/L for cadmium at upgradient well MW-3 was unflagged as it appears to represent natural groundwater concentrations. Additionally, the second highest value of 0.00885 mg/L for cadmium at this well was flagged because the value did not appear to represent the population. A summary of flagged outliers follows this report (Figure C).

In accordance with Alabama Department of Environmental Management, the Groundwater Protections Standards (GWPS) utilized during the 2019 2<sup>nd</sup> semi-annual report were used in the confidence interval analysis for this 2021 1st semi-annual report. The GWPS will be updated during the 2021 2<sup>nd</sup> semi-annual statistical analysis. The methodology used to create these GWPS is described below.

First, background limits were calculated using tolerance limits constructed from pooled upgradient well data. The tolerance limits contain a known fraction (coverage) of the background population with a known level of confidence. When data followed a normal or transformed-normal distribution, parametric tolerance limits were used to calculate background limits for Appendix IV parameters using pooled upgradient well data through October 2019 with a target of 95% confidence and 95% coverage (Figure G).

Nonparametric tolerance limits, which use the highest value in background as the statistical limit, were constructed when data did not follow a normal or transformed-normal distribution or when there were greater than 50% non-detects. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number

of background samples. These background limits were then compared to the Maximum Contaminant Levels (MCLs) for each parameter, and the higher of the two was used as the GWPS (Figure H) in the confidence interval comparisons described below. Exceptions are noted in Figure H for beryllium and cadmium. For these two parameters, the MCL's were used as the GWPS rather than the higher background UTLs to maintain the more conservative standard. Note that none of the parametric tolerance limits resulted in higher limits than the established MCLs or CCR-Rule Specified Limits. In future UTL calculations, nonparametric tolerance limits will be used exclusively, as requested by ADEM, to eliminate variation among upgradient well data.

Confidence intervals were then constructed on downgradient wells using a maximum of the most recent 8 samples through February 2021 for each of the Appendix IV parameters. These intervals were constructed as either parametric or nonparametric confidence intervals depending on the data distribution and percentage of non-detects. As mentioned above, well/constituent pairs with 100% non-detects in the 8 most recent samples did not require statistics and were, therefore, deselected prior to construction of confidence intervals and a list of deselected well/constituent pairs follows this report. The decision logic, with respect to the use of parametric and nonparametric confidence intervals, is similar to that used to construct tolerance limits as discussed above. Each confidence interval was compared with the corresponding GWPS. Only when the entire confidence interval is above the GWPS is the well/constituent pair considered to exceed its respective standard.

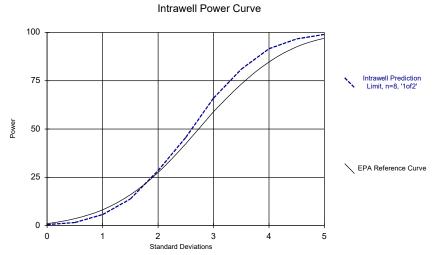
Note the following reporting limits changed from the previous analysis to this analysis:

Antimony: <0.003 mg/L to <0.001015 mg/L Beryllium: <0.003 mg/L to <0.001015 mg/L Cadmium: <0.001 mg/L to <0.000203 mg/L • Chromium: <0.01 mg/L to <0.001015 mg/L Cobalt: <0.005 mg/L to <0.000203 mg/L Lead: <0.005 mg/L to <0.000203 mg/L Molybdenum: <0.01 mg/L to <0.000203 mg/L</li> Selenium: <0.01 mg/L to <0.001015 mg/L Thallium: <0.001 mg/L to <0.000203 mg/L

While this resulted in slight changes to the upper and lower confidence limits in some cases, the confidence interval findings were consistent with those from the Fall 2020 analysis. Both a tabular summary and graphical presentation of the confidence interval results follow this letter (Figure I). No exceedances were noted for any of the well/constituent pairs.

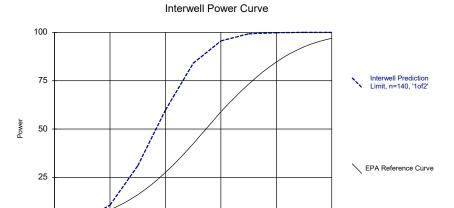
Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Gorgas Gypsum Landfill. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,


Abdul Diane

**Groundwater Analyst** 

Andrew T. Collins Project Manager


Alollina

Sanitas™ v.9.6.28 . UG



Kappa = 2.616, based on 4 compliance wells and 7 constituents, evaluated semi-annually (this report reflects annual total).

Analysis Run 5/21/2021 4:23 PM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



Sanitas™ v.9.6.28 . UG

Kappa = 1.732, based on 4 compliance wells and 7 constituents, evaluated semi-annually (this report reflects annual total).

Standard Deviations

2

Analysis Run 5/21/2021 4:24 PM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

3

Sanitas™ v.9.6.28 . U

#### Page 1

# **Date Ranges**

Date: 5/20/2021 7:07 PM

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Chloride, Total (mg/L) MW-20 background:4/26/2016-10/17/2017

# 100% Non-Detects: Appendix IV Downgradient

Analysis Run 5/20/2021 8:54 PM View: Appendix IV - Confidence Intervals Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Antimony (mg/L) MW-16, MW-18, MW-19, MW-20

Arsenic (mg/L) MW-18

Beryllium (mg/L) MW-16, MW-18, MW-19, MW-20

Cadmium (mg/L) MW-16, MW-18, MW-19, MW-20

Chromium (mg/L) MW-16, MW-18, MW-19

Lead (mg/L) MW-16, MW-18, MW-19

Mercury (mg/L) MW-16, MW-18, MW-19, MW-20

Selenium (mg/L) MW-16, MW-19, MW-20

Thallium (mg/L) MW-16, MW-18, MW-19, MW-20

# Appendix III - Intrawell Prediction Limits - Significant Results

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 5/20/2021, 9:58 PM

| Constituent                         | Well  | Upper Lim. | Lower Lim. | <u>Date</u> | Observ. | Sig. | Bg N | Bg Mean | Std. Dev. | %NDs | ND Adj. | Transform | <u>Alpha</u> | Method             |
|-------------------------------------|-------|------------|------------|-------------|---------|------|------|---------|-----------|------|---------|-----------|--------------|--------------------|
| Calcium, total (mg/L)               | MW-15 | 298.3      | n/a        | 2/23/2021   | 302     | Yes  | 12   | 268.8   | 13.21     | 0    | None    | No        | 0.00188      | Param Intra 1 of 2 |
| Chloride, Total (mg/L)              | MW-20 | 7.306      | n/a        | 2/23/2021   | 129     | Yes  | 8    | 4.393   | 1.114     | 0    | None    | No        | 0.00188      | Param Intra 1 of 2 |
| Total Dissolved Solids (TDS) (mg/L) | MW-15 | 2720       | n/a        | 2/23/2021   | 2890    | Yes  | 12   | 2583    | 61.4      | 0    | None    | No        | 0.00188      | Param Intra 1 of 2 |

## Appendix III - Intrawell Prediction Limits - All Results

Client: Southern Company Data: Gorgas Gypsum Landfill Printed 5/20/2021, 9:57 PM Constituent <u>Well</u> Bg Mean Std. Dev. %NDs ND Adj. Lower Lim. Date Observ. Bg N Transform Alpha 0.005373 MW-1 243 2/22/2021 0 NP Intra (normality) 1 of 2 Calcium, total (mg/L) n/a 151 No 18 n/a n/a n/a n/a Calcium, total (mg/L) MW-13 347.6 n/a 2/23/2021 238 No 12 306.8 18.25 0 None No 0.00188 Param Intra 1 of 2 MW-14 2/23/2021 312 327 6 Calcium, total (mg/L) 362.5 12 15.66 n No 0.00188 Param Intra 1 of 2 n/a No None 298.3 Calcium, total (mg/L) MW-15 2/23/2021 302 Yes 12 268.8 13.21 0 None No 0.00188 Param Intra 1 of 2 Calcium, total (mg/L) MW-16 340.5 2/23/2021 317 12 304.3 16.22 0 0.00188 Param Intra 1 of 2 No n/a No None Calcium, total (mg/L) MW-18 2/23/2021 284 12 337.7 0.00188 Param Intra 1 of 2 371.4 n/a No 15.11 0 None No Calcium, total (mg/L) MW-19 418.7 n/a 2/24/2021 332 No 12 366.3 23.49 0 None No 0.00188 Param Intra 1 of 2 Calcium, total (mg/L) MW-2 2/22/2021 178 No 18 173.9 22.02 0 None No 0.00188 Param Intra 1 of 2 Calcium, total (mg/L) MW-20 403.6 n/a 2/23/2021 343 Nο 12 358.8 20.08 0 None Nο 0.00188 Param Intra 1 of 2 Calcium, total (mg/L) MW-3 416.4 n/a 2/22/2021 312 No 18 301.6 56.48 None 0.00188 Param Intra 1 of 2 Calcium, total (mg/L) MW-4 388.7 n/a 2/22/2021 271 Nο 18 311.2 38.16 0 None Nο 0.00188 Param Intra 1 of 2 MW-1 Chloride, Total (mg/L) 3.267 2/22/2021 2.16 No 18 1.528 0.1377 0 0.00188 Param Intra 1 of 2 Chloride, Total (mg/L) MW-13 2/23/2021 1.6 12 0.3926 0 0.00188 Param Intra 1 of 2 2.874 n/a No 1.998 None No Chloride, Total (mg/L) MW-14 2.661 n/a 2/23/2021 1.53 No 12 1.723 0.4201 8.333 None 0.00188 Param Intra 1 of 2 Chloride Total (mg/L) MW-15 2 148 n/a 2/23/2021 1.41 Nο 12 1 336 0.3638 8 333 None Nο 0.00188 Param Intra 1 of 2 Chloride, Total (mg/L) 2/23/2021 3.08 No 12 0.5109 0 0.00188 Param Intra 1 of 2 n/a None No Chloride, Total (mg/L) MW-18 3 371 n/a 2/23/2021 1.34 No 12 1 733 0.7337 8.333 None No 0.00188 Param Intra 1 of 2 Chloride, Total (mg/L) MW-19 2/24/2021 2.02 12 2.331 0.4378 0 0.00188 Param Intra 1 of 2 3.308 No No n/a None Chloride, Total (mg/L) MW-2 4.812 n/a 2/22/2021 1.72 No 18 3 299 0.7443 0 None No 0.00188 Param Intra 1 of 2 Chloride, Total (mg/L) MW-20 7.306 n/a 2/23/2021 4 393 1.114 0 None Nο 0.00188 Param Intra 1 of 2 Yes Chloride, Total (mg/L) MW-3 2.362 n/a 2/22/2021 2.22 Nο 18 1.567 0.3909 11.11 None Nο 0.00188 Param Intra 1 of 2 MW-4 Chloride, Total (mg/L) 2.518 2/22/2021 1.52 18 1.843 0.3319 0.00188 Param Intra 1 of 2 n/a No 5.556 None No MW-1 0.03556 Fluoride, total (mg/L) 2/22/2021 0.082J 0.1261 0.00188 Param Intra 1 of 2 0.1975 n/a No 19 0 No Fluoride, total (mg/L) MW-13 0.2389 n/a 2/23/2021 0.224 No 13 0.2101 0.01313 0 None No 0.00188 Param Intra 1 of 2 Fluoride, total (mg/L) MW-14 0.2784 n/a 2/23/2021 0.22 No 13 0.2539 0.01115 0 None No 0.00188 Param Intra 1 of 2 Fluoride, total (mg/L) MW-15 0.3813 2/23/2021 0.275 0.3551 0.01195 0 Nο 0.00188 Param Intra 1 of 2 n/a Nο 13 None Fluoride, total (mg/L) MW-16 0.1873 2/23/2021 0.161 13 0.00090220.00015030 x^4 0.00188 Param Intra 1 of 2 n/a No Fluoride, total (mg/L) MW-18 2/23/2021 0.29 0.00188 Param Intra 1 of 2 0.3402 13 0.3086 0.01439 0 n/a No None No 2/24/2021 0.343 MW-19 0.009692 NP Intra (normality) 1 of 2 Fluoride, total (mg/L) 0.35 No 13 n/a Fluoride, total (mg/L) 2/22/2021 0.209 Param Intra 1 of 2 MW-2 0.2572 n/a No 19 0.1404 0.05808 0 None No 0.00188 Fluoride, total (mg/L) 0.1412 2/23/2021 0.117 No 0.1262 0.006809 0 0.00188 Param Intra 1 of 2 Fluoride, total (mg/L) MW-3 0.6475 n/a 2/22/2021 0 246 Nο 19 -1 063 0.3126 n None In(x) 0.00188 Param Intra 1 of 2 Fluoride, total (mg/L) MW-4 0.4323 n/a 2/22/2021 0.357 No 19 0.1114 0.03754 0 None x^2 0.00188 Param Intra 1 of 2 Sulfate as SO4 (mg/L) MW-1 NP Intra (normality) 1 of 2 2100 n/a 2/22/2021 1400 Nο 18 n/a n/a 0 n/a n/a 0.005373 Sulfate as SO4 (mg/L) MW-13 2443 2/23/2021 No 12 1916 236.3 0 No 0.00188 Param Intra 1 of 2 n/a None Sulfate as SO4 (mg/L) MW-14 2439 n/a 2/23/2021 1850 No 12 1936 225.5 0 None Nο 0.00188 Param Intra 1 of 2 Sulfate as SO4 (mg/L) MW-15 2084 n/a 2/23/2021 1740 No 12 1633 201.9 None Nο 0.00188 Param Intra 1 of 2 Sulfate as SO4 (mg/L) MW-16 1700 2/23/2021 1330 No 12 n/a 0 n/a 0.01077 NP Intra (normality) 1 of 2 n/a n/a n/a 2066 Sulfate as SO4 (mg/L) MW-18 2/23/2021 1560 12 1884 81.52 0 No 0.00188 Param Intra 1 of 2 n/a No None Sulfate as SO4 (mg/L) MW-19 2/24/2021 1970 2144 189.1 0.00188 Param Intra 1 of 2 2566 n/a No 12 0 None No Sulfate as SO4 (mg/L) MW-2 1260 2/22/2021 864 1003 126.2 None 0.00188 Param Intra 1 of 2 n/a No 18 No Sulfate as SO4 (mg/L) MW-20 1926 2/23/2021 1420 No 12 39 74 1.855 0 0.00188 Param Intra 1 of 2 n/a None sqrt(x) Sulfate as SO4 (mg/L) MW-3 3202 2/22/2021 3040 18 2431 379.6 0 0.00188 Param Intra 1 of 2 No No n/a None 3041 Sulfate as SO4 (mg/L) MW-4 2/22/2021 2040 18 2566 233.5 0.00188 Param Intra 1 of 2 n/a No n None No Total Dissolved Solids ITDS1 (mg/L) MW-1 2/22/2021 2230 2183 178 0.00188 Param Intra 1 of 2 2544 18 n No n/a No None MW-13 Total Dissolved Solids [TDS] (mg/L) 2/23/2021 2370 0.00188 Param Intra 1 of 2 3717 No 12 3093 279.3 0 Total Dissolved Solids ITDSI (mg/L) MW-14 2/23/2021 3020 12 3175 126.5 0 0.00188 3457 n/a No None No Param Intra 1 of 2 Total Dissolved Solids [TDS] (mg/L) MW-15 2720 n/a 2/23/2021 2890 Yes 12 2583 61.4 None 0.00188 Param Intra 1 of 2 Total Dissolved Solids (TDS) (mg/L) MW-16 2524 2/23/2021 2480 12 2343 81.05 0 Nο 0.00188 Param Intra 1 of 2 n/a Nο None Total Dissolved Solids [TDS] (mg/L) MW-18 3519 2/23/2021 2570 No 12 3090 192.3 No 0.00188 Param Intra 1 of 2 Total Dissolved Solids [TDS] (mg/L) 0.00188 MW-19 4487 n/a 2/24/2021 3070 Nο 12 3432 472.6 0 None Nο Param Intra 1 of 2 Total Dissolved Solids [TDS] (mg/L) MW-2 2052 n/a 2/22/2021 1620 No 18 1640 202.8 None No 0.00188 Param Intra 1 of 2 Total Dissolved Solids [TDS] (mg/L) MW-20 2785 n/a 2/23/2021 2460 No 12 2599 83.39 0 None Nο 0.00188 Param Intra 1 of 2 Total Dissolved Solids [TDS] (mg/L) 4938 2/22/2021 4670 No 18 3661 628.6 0 0.00188 Param Intra 1 of 2 Total Dissolved Solids [TDS] (mg/L) 4601 2/22/2021 3190 18 2719774 0 0.00188 MW-4 n/a Nο 1 6e7 None x^2 Param Intra 1 of 2

# Appendix III - Interwell Prediction Limits - Significant Results

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 5/20/2021, 9:55 PM

| Constituent         | Well  | Upper Lim. | Lower Lim. | <u>Date</u> | Observ. | Sig. | Bg N | Bg Mean | Std. Dev. | %NDs  | ND Adj. | Transform | <u>Alpha</u> | Method                      |
|---------------------|-------|------------|------------|-------------|---------|------|------|---------|-----------|-------|---------|-----------|--------------|-----------------------------|
| Boron, total (mg/L) | MW-20 | 0.0673     | n/a        | 2/23/2021   | 0.11    | Yes  | 140  | n/a     | n/a       | 14.29 | n/a     | n/a       | 0.00009972   | NP Inter (normality) 1 of 2 |
| pH (pH)             | MW-20 | 6.55       | 3.77       | 2/23/2021   | 6.75    | Yes  | 145  | n/a     | n/a       | 0     | n/a     | n/a       | 0.0001879    | NP Inter (normality) 1 of 2 |

# Appendix III - Interwell Prediction Limits - All Results

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 5/20/2021, 9:55 PM Upper Lim. Lower Lim. Date Bg Mean Std. Dev. %NDs ND Adj. Constituent Well Observ. Sig. <u>Bg N</u> <u>Transform</u> <u>Alpha</u> Method Boron, total (mg/L) MW-16 0.0673 2/23/2021 0.0487J 140 14.29 n/a 0.00009972 NP Inter (normality) 1 of 2 n/a n/a No n/a n/a Boron, total (mg/L) MW-18 0.0673 2/23/2021 0.0343J 140 14.29 n/a 0.00009972 NP Inter (normality) 1 of 2 14.29 n/a Boron, total (mg/L) MW-19 0.0673 n/a 2/24/2021 0.0393J No 140 n/a n/a n/a 0.00009972 NP Inter (normality) 1 of 2 Boron, total (mg/L) MW-20 0.0673 2/23/2021 0.11 Yes 140 14.29 n/a 0.00009972 NP Inter (normality) 1 of 2 n/a n/a n/a n/a MW-16 6.55 3.77 2/23/2021 6.47 No 145 n/a 0 0.0001879 NP Inter (normality) 1 of 2 MW-18 6.55 3.77 145 0.0001879 NP Inter (normality) 1 of 2 pH (pH) 2/23/2021 6.47 No n/a n/a 0 n/a n/a pH (pH) MW-19 6.55 3.77 2/24/2021 6.26 145 n/a 0.0001879 NP Inter (normality) 1 of 2 No n/a n/a 0 n/a pH (pH) MW-20 2/23/2021 6.75 Yes 145 n/a 0.0001879 NP Inter (normality) 1 of 2

# Appendix III - Trend Test - Significant Results

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 5/20/2021, 8:11 PM

| Constituent            | Well      | Slope    | Calc. | Critical | Sig. | <u>N</u> | %NDs  | Normality | <u>Xform</u> | <u>Alpha</u> | Method |
|------------------------|-----------|----------|-------|----------|------|----------|-------|-----------|--------------|--------------|--------|
| Boron, total (mg/L)    | MW-2 (bg) | 0.004693 | 109   | 98       | Yes  | 23       | 21.74 | n/a       | n/a          | 0.01         | NP     |
| Chloride, Total (mg/L) | MW-20     | 23.25    | 102   | 58       | Yes  | 16       | 0     | n/a       | n/a          | 0.01         | NP     |

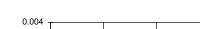
# Appendix III - Trend Test - All Results

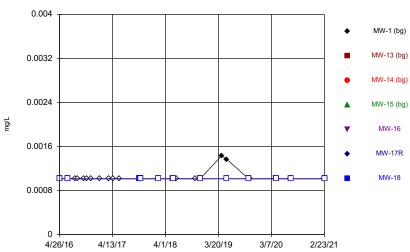
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Constituent Well Slope Calc. Critical Sig. <u>N</u> <u>%NDs</u> <u>Normality</u> <u>Xform</u> <u>Alpha</u> Method 0.002566 98 23 NP Boron, total (mg/L) MW-1 (bg) 76 No 26.09 n/a n/a 0.01 0.0005421 Boron, total (mg/L) MW-13 (bg) 8 58 No 16 6.25 n/a n/a 0.01 NP Boron, total (mg/L) MW-14 (bg) 0.0007263 25 58 16 6.25 0.01 NP No n/a n/a Boron, total (mg/L) MW-15 (bg) 0.001882 38 58 No 16 6.25 n/a 0.01 ΝP Boron, total (mg/L) MW-2 (bg) 0.004693 98 23 21.74 NP 109 Yes n/a 0.01 n/a Boron, total (mg/L) MW-20 0.001118 24 58 No 16 0 n/a n/a 0.01 NP 0.002522 NP Boron, total (mg/L) MW-3 (bg) 98 No 23 21.74 n/a 59 n/a 0.01 Boron, total (mg/L) MW-4 (bg) 0.0002715 98 No 23 4.348 0.01 ΝP Chloride, Total (mg/L) -0.01333 -98 23 0 NP MW-1 (bg) -10 Nο n/a n/a 0.01 Chloride, Total (mg/L) MW-13 (bg) -0.03281 -58 No 16 0 0.01 ΝP Chloride, Total (mg/L) MW-14 (bg) -0.01136 -58 16 6.25 NP -2 No n/a n/a 0.01 Chloride, Total (mg/L) MW-15 (bg) 0.05119 22 58 No 16 6.25 0.01 ΝP 0.01347 Chloride, Total (mg/L) 23 0 NP MW-2 (bg) 98 No n/a 0.01 n/a Chloride, Total (mg/L) MW-20 23.25 58 Yes 16 0 n/a 0.01 ΝP Chloride, Total (mg/L) 0.04257 MW-3 (bg) 44 98 No 23 8.696 n/a n/a 0.01 NP Chloride, Total (mg/L) MW-4 (bg) -0.06663 -59 No 23 4.348 0.01 NP -0.01537 23 0 NP pH (pH) MW-1 (bg) -79 -98 No n/a n/a 0.01 0.02062 0 NP pH (pH) MW-13 (bg) 37 63 No 17 n/a n/a 0.01 pH (pH) MW-14 (bg) 0 0 63 No 17 0 n/a n/a 0.01 NP pH (pH) MW-15 (bg) -0.002352 -16 -63 No 17 0 n/a n/a 0.01 NP pH (pH) MW-2 (bg) 0.03796 83 98 No 23 0 n/a n/a 0.01 NP pH (pH) MW-20 -0.006728 -22 -63 No 17 0 n/a 0.01 NP n/a pH (pH) MW-3 (bg) -0.06383 -38 -105 No 24 0 n/a n/a 0.01 NP MW-4 (bg) 0.0165 24 0 NP pH (pH) 81 105 No n/a 0.01 n/a

# Upper Tolerance Limits - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 7/22/2020, 1:53 PM Upper Lim. Std. Dev. %NDs Constituent Lower Lim. Bg N Bg Mean ND Adj. <u>Transform</u> <u>Alpha</u> Method 0.003 94.96 0.002234 NP Inter(NDs) Antimony (mg/L) 119 n/a n/a n/a n/a n/a Arsenic (mg/L) 0.005 119 n/a 0.002234 NP Inter(NDs) Barium (mg/L) 0.01505 n/a 119 0.01147 0.001886 0 None No 0.05 Inter Beryllium (mg/L) 0.0121 0.002475 NP Inter(NDs) 117 88.03 n/a n/a n/a n/a n/a Cadmium (mg/L) 0.00598 n/a 117 66.67 0.002475 NP Inter(NDs) 0.0105 96.64 0.002234 NP Inter(NDs) Chromium (mg/L) n/a 119 n/a n/a n/a n/a 1.07 16.81 0.002234 NP Inter(normal... Cobalt (mg/L) n/a 119 n/a n/a n/a n/a Combined Radium 226 + 228 (pCi/L) 114 0.4828 None 0.05 Fluoride (mg/L) 0.63 126 n/a n/a 0 n/a n/a 0.00156 NP Inter(normal... 0.00692 97.48 0.002234 NP Inter(NDs) Lead (mg/L) n/a 119 n/a n/a n/a n/a Lithium (mg/L) 0.419 119 0.8403 0.002234 NP Inter(normal... 0.0005 0.002234 NP Inter(NDs) Mercury (mg/L) n/a 119 n/a n/a 100 n/a n/a 0.01 100 0.002234 NP Inter(NDs) Molybdenum (mg/L) 119 n/a n/a n/a n/a n/a Selenium (mg/L) 0.0158 118 n/a 74.58 0.002352 NP Inter(NDs) Thallium (mg/L) 0.001 n/a 119 n/a n/a 97.48 n/a 0.002234 NP Inter(NDs)

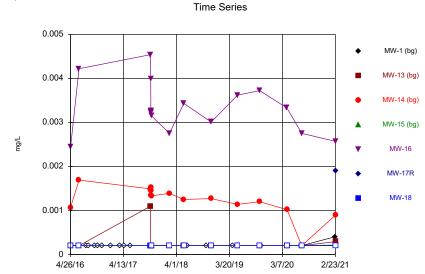
| GORGAS GYPSUM LANDFILL GWPS |       |            |       |  |  |  |  |  |  |
|-----------------------------|-------|------------|-------|--|--|--|--|--|--|
| Analyte                     | Units | Background | GWPS  |  |  |  |  |  |  |
| Antimony                    | mg/L  | 0.003      | 0.006 |  |  |  |  |  |  |
| Arsenic                     | mg/L  | 0.005      | 0.01  |  |  |  |  |  |  |
| Barium                      | mg/L  | 0.01505    | 2     |  |  |  |  |  |  |
| Beryllium                   | mg/L  | 0.0121     | 0.004 |  |  |  |  |  |  |
| Cadmium                     | mg/L  | 0.00598    | 0.005 |  |  |  |  |  |  |
| Chromium                    | mg/L  | 0.0105     | 0.1   |  |  |  |  |  |  |
| Cobalt                      | mg/L  | 1.07       | 1.07  |  |  |  |  |  |  |
| Combined Radium-226 + 228   | pCi/L | 1.111      | 5     |  |  |  |  |  |  |
| Fluoride                    | mg/L  | 0.63       | 4     |  |  |  |  |  |  |
| Lead                        | mg/L  | 0.00692    | 0.015 |  |  |  |  |  |  |
| Lithium                     | mg/L  | 0.419      | 0.419 |  |  |  |  |  |  |
| Mercury                     | mg/L  | 0.0005     | 0.002 |  |  |  |  |  |  |
| Molybdenum                  | mg/L  | 0.01       | 0.1   |  |  |  |  |  |  |
| Selenium                    | mg/L  | 0.0158     | 0.05  |  |  |  |  |  |  |
| Thallium                    | mg/L  | 0.001      | 0.002 |  |  |  |  |  |  |


#### Notes:


- 1. mg/L Milligrams per liter
- 2. pCi/L Picocuries per liter
- 3. The background limits were used as the groundwater protection standard (GWPS) when appropriate under 40 CFR §257.95(h), ADEM Rule 335-13-15-.06(h), and the ADEM Variance.
- 4. GWPS established during second semi-annual sampling event in 2019.

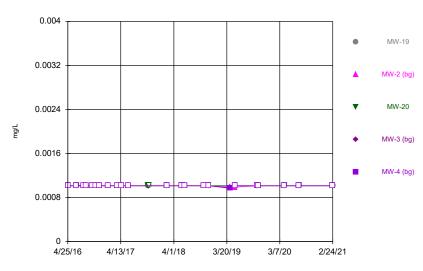
# Appendix IV - Confidence Intervals - All Results (No Significant) Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 5/20/2021, 10:17 PM

|                                   |       | Plant Gorga | s Client: So | outhern Compa | any [ | Data: Go | orgas Gypsum | Landfill Prir | nted 5/20/ | 2021, 10: | 17 PM     |              |                |
|-----------------------------------|-------|-------------|--------------|---------------|-------|----------|--------------|---------------|------------|-----------|-----------|--------------|----------------|
| Constituent                       | Well  | Upper Lim.  | Lower Lim.   | Compliance    | Sig.  | <u>N</u> | <u>Mean</u>  | Std. Dev.     | %NDs       | ND Adj.   | Transform | <u>Alpha</u> | Method         |
| Arsenic (mg/L)                    | MW-16 | 0.00361     | 0.002685     | 0.01          | No    | 8        | 0.003148     | 0.0004363     | 0          | None      | No        | 0.01         | Param.         |
| Arsenic (mg/L)                    | MW-19 | 0.005       | 0.000212     | 0.01          | No    | 8        | 0.004401     | 0.001693      | 87.5       | None      | No        | 0.004        | NP (NDs)       |
| Arsenic (mg/L)                    | MW-20 | 0.005       | 0.000849     | 0.01          | No    | 8        | 0.004017     | 0.001823      | 75         | None      | No        | 0.004        | NP (NDs)       |
| Barium (mg/L)                     | MW-16 | 0.01395     | 0.01198      | 2             | No    | 8        | 0.01296      | 0.0009273     | 0          | None      | No        | 0.01         | Param.         |
| Barium (mg/L)                     | MW-18 | 0.0161      | 0.00875      | 2             | No    | 8        | 0.01082      | 0.002255      | 0          | None      | No        | 0.004        | NP (normality) |
| Barium (mg/L)                     | MW-19 | 0.01097     | 0.009209     | 2             | No    | 8        | 0.01009      | 0.0008299     | 0          | None      | No        | 0.01         | Param.         |
| Barium (mg/L)                     | MW-20 | 0.01805     | 0.01462      | 2             | No    | 8        | 0.01634      | 0.001619      | 0          | None      | No        | 0.01         | Param.         |
| Chromium (mg/L)                   | MW-20 | 0.00312     | 0.001015     | 0.1           | No    | 8        | 0.001278     | 0.0007442     | 87.5       | None      | No        | 0.004        | NP (NDs)       |
| Cobalt (mg/L)                     | MW-16 | 0.01101     | 0.008859     | 1.07          | No    | 8        | 0.009933     | 0.001013      | 0          | None      | No        | 0.01         | Param.         |
| Cobalt (mg/L)                     | MW-18 | 0.00286     | 0.000203     | 1.07          | No    | 8        | 0.0005351    | 0.0009394     | 87.5       | None      | No        | 0.004        | NP (NDs)       |
| Cobalt (mg/L)                     | MW-19 | 0.07353     | 0.03042      | 1.07          | No    | 8        | 0.05198      | 0.02034       | 0          | None      | No        | 0.01         | Param.         |
| Cobalt (mg/L)                     | MW-20 | 0.000234    | 0.000203     | 1.07          | No    | 8        | 0.0002069    | 0.00001096    | 87.5       | None      | No        | 0.004        | NP (NDs)       |
| Combined Radium 226 + 228 (pCi/L) | MW-16 | 1.127       | 0.3271       | 5             | No    | 8        | 0.7279       | 0.5831        | 0          | None      | ln(x)     | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | MW-18 | 0.8277      | -0.00491     | 5             | No    | 8        | 0.4114       | 0.3927        | 0          | None      | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | MW-19 | 0.8425      | 0.2477       | 5             | No    | 8        | 0.5451       | 0.2806        | 0          | None      | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | MW-20 | 1.279       | 0.5079       | 5             | No    | 8        | 0.8936       | 0.364         | 0          | None      | No        | 0.01         | Param.         |
| Fluoride, total (mg/L)            | MW-16 | 0.1745      | 0.1495       | 4             | No    | 8        | 0.162        | 0.01183       | 0          | None      | No        | 0.01         | Param.         |
| Fluoride, total (mg/L)            | MW-18 | 0.3069      | 0.2778       | 4             | No    | 8        | 0.2924       | 0.01371       | 0          | None      | No        | 0.01         | Param.         |
| Fluoride, total (mg/L)            | MW-19 | 0.345       | 0.277        | 4             | No    | 8        | 0.3076       | 0.03075       | 0          | None      | No        | 0.004        | NP (normality) |
| Fluoride, total (mg/L)            | MW-20 | 0.1251      | 0.1066       | 4             | No    | 8        | 0.1159       | 0.008709      | 0          | None      | No        | 0.01         | Param.         |
| Lead (mg/L)                       | MW-20 | 0.00686     | 0.000203     | 0.015         | No    | 8        | 0.001035     | 0.002354      | 87.5       | None      | No        | 0.004        | NP (NDs)       |
| Lithium (mg/L)                    | MW-16 | 0.01995     | 0.0171       | 0.419         | No    | 8        | 0.01853      | 0.001347      | 12.5       | None      | No        | 0.01         | Param.         |
| Lithium (mg/L)                    | MW-18 | 0.06628     | 0.05715      | 0.419         | No    | 8        | 0.06171      | 0.004308      | 0          | None      | No        | 0.01         | Param.         |
| Lithium (mg/L)                    | MW-19 | 0.07173     | 0.05417      | 0.419         | No    | 8        | 0.06295      | 0.00828       | 0          | None      | No        | 0.01         | Param.         |
| Lithium (mg/L)                    | MW-20 | 0.2667      | 0.2433       | 0.419         | No    | 8        | 0.255        | 0.01099       | 0          | None      | No        | 0.01         | Param.         |
| Molybdenum (mg/L)                 | MW-16 | 0.01        | 0.000486     | 0.1           | No    | 8        | 0.008811     | 0.003364      | 87.5       | None      | No        | 0.004        | NP (NDs)       |
| Molybdenum (mg/L)                 | MW-18 | 0.01        | 0.00012      | 0.1           | No    | 8        | 0.008765     | 0.003493      | 87.5       | None      | No        | 0.004        | NP (NDs)       |
| Molybdenum (mg/L)                 | MW-19 | 0.01        | 0.000197     | 0.1           | No    | 8        | 0.008775     | 0.003466      | 87.5       | None      | No        | 0.004        | NP (NDs)       |
| Molybdenum (mg/L)                 | MW-20 | 0.01        | 0.00108      | 0.1           | No    | 8        | 0.008885     | 0.003154      | 87.5       | None      | No        | 0.004        | NP (NDs)       |
| Selenium (mg/L)                   | MW-18 | 0.01        | 0.00243      | 0.05          | No    | 8        | 0.004721     | 0.003285      | 25         | None      | No        | 0.004        | NP (normality) |


# FIGURE A.

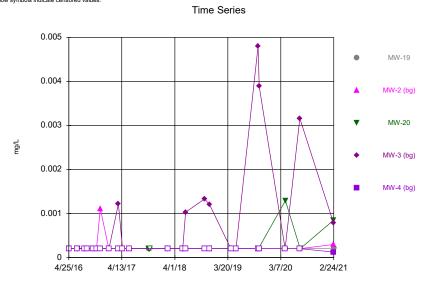





Constituent: Antimony Analysis Run 5/20/2021 7:26 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

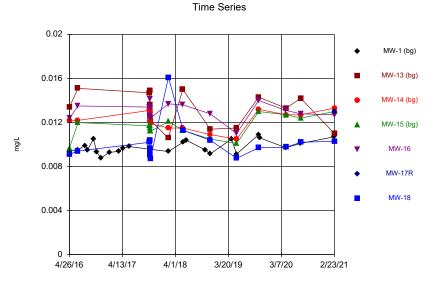
#### Sanitas™ v.9.6.28 . UG Hollow symbols indicate censored values



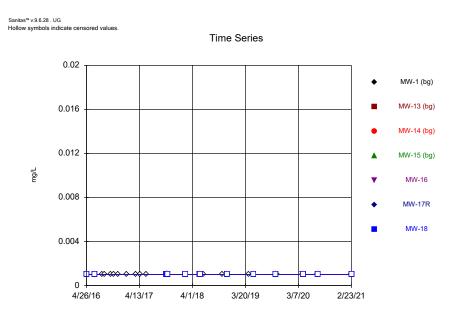

Constituent: Arsenic Analysis Run 5/20/2021 7:26 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



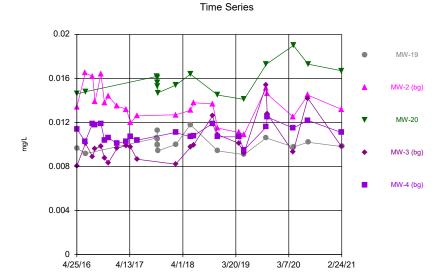



Constituent: Antimony Analysis Run 5/20/2021 7:26 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

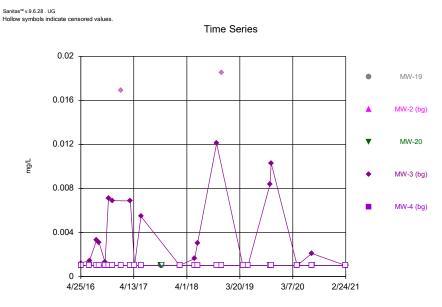
#### Sanitas™ v.9.6.28 . UG Hollow symbols indicate censored values.




Constituent: Arsenic Analysis Run 5/20/2021 7:26 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas\*\* v.9.6.28 . UG

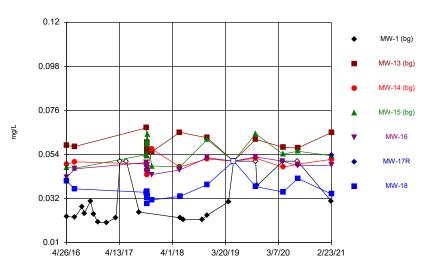



Constituent: Barium Analysis Run 5/20/2021 7:26 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



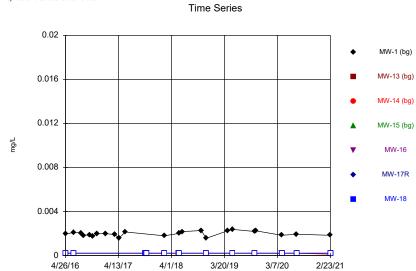
Constituent: Beryllium Analysis Run 5/20/2021 7:26 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: Barium Analysis Run 5/20/2021 7:26 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

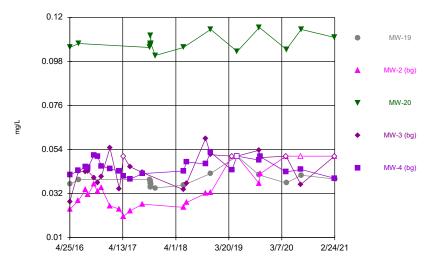


Constituent: Beryllium Analysis Run 5/20/2021 7:26 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG Hollow symbols indicate censored values

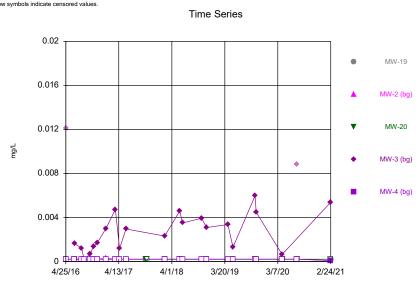





Constituent: Boron, total Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

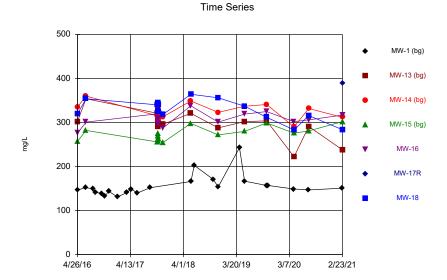
#### Sanitas™ v.9.6.28 . UG Hollow symbols indicate censored values



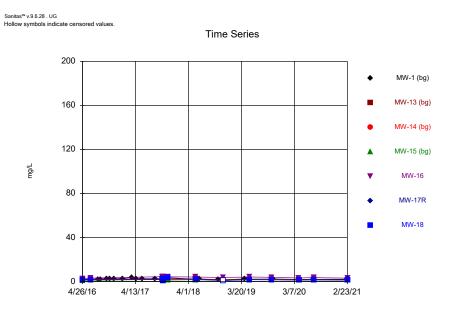

Constituent: Cadmium Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### Time Series

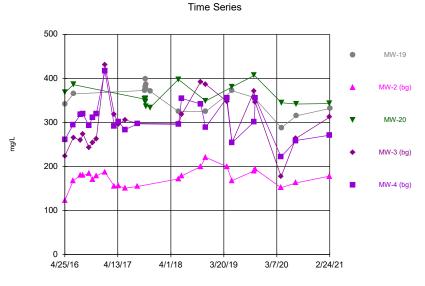



Constituent: Boron, total Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

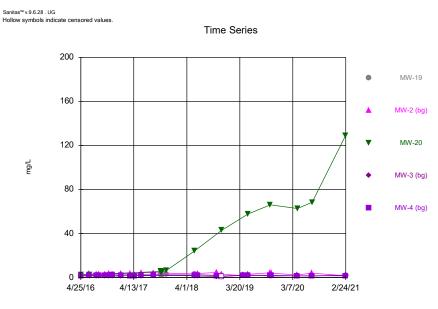
#### Sanitas™ v.9.6.28 . UG




Constituent: Cadmium Analysis Run 5/20/2021 7:27 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

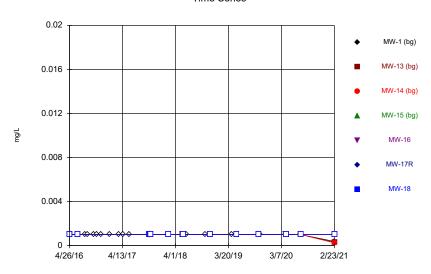

Sanitas™ v.9.6.28. UG Sanitas™ v.9.6.28. UG




Constituent: Calcium, total Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

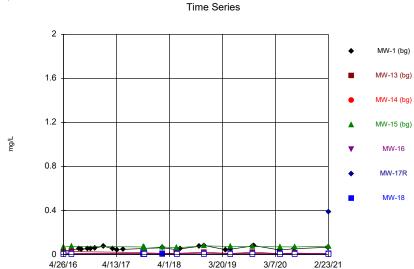


Constituent: Chloride, Total Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



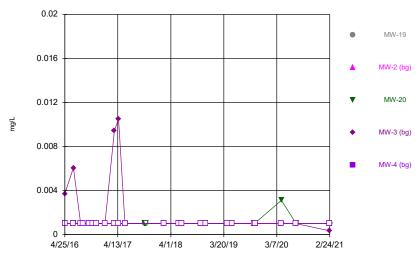

Constituent: Calcium, total Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: Chloride, Total Analysis Run 5/20/2021 7:27 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

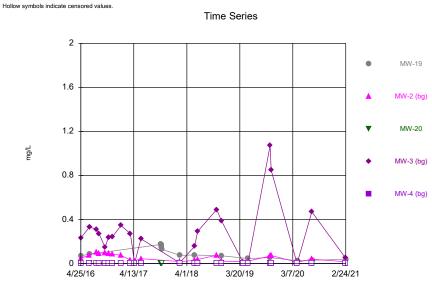





Constituent: Chromium Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

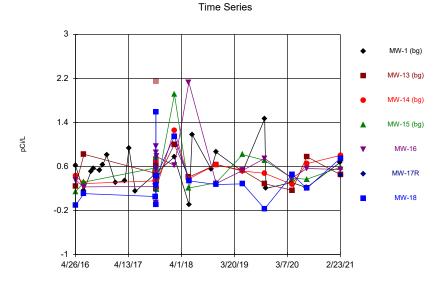
#### Sanitas™ v.9.6.28 . UG Hollow symbols indicate censored values




Constituent: Cobalt Analysis Run 5/20/2021 7:27 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### Time Series

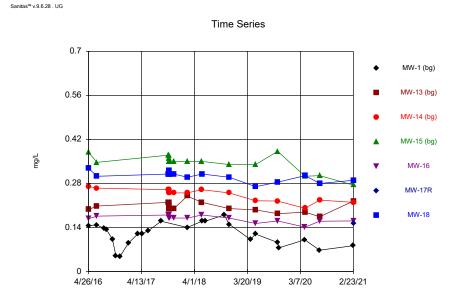



Constituent: Chromium Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

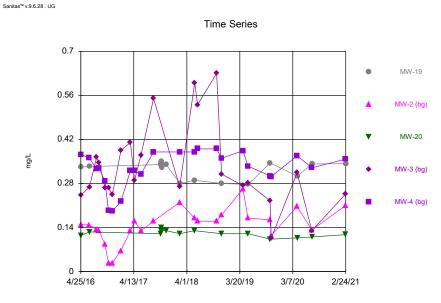
#### Sanitas™ v.9.6.28 . UG



Constituent: Cobalt Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

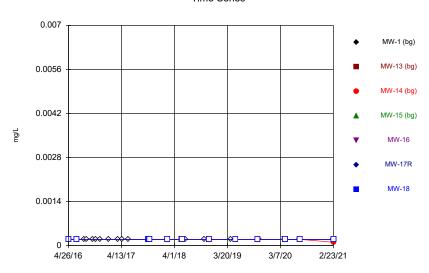

Sanitas™ v.9.6.28 . UG Sanitas™ v.9.6.28 . UG



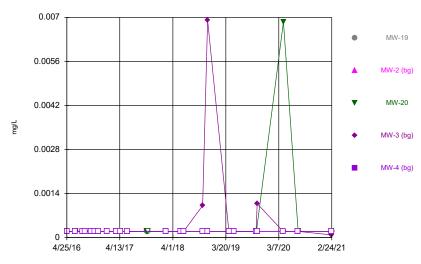

Constituent: Combined Radium 226 + 228 Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

### MW-19 2.2 MW-2 (bg) MW-20 pCi/L MW-3 (bg) MW-4 (bg) -0.2 4/25/16 4/13/17 4/1/18 3/20/19 3/7/20 2/24/21 Constituent: Combined Radium 226 + 228 Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Time Series

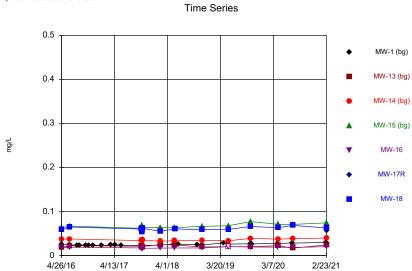



Constituent: Fluoride, total Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



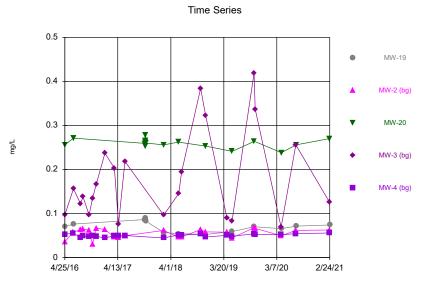

Constituent: Fluoride, total Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



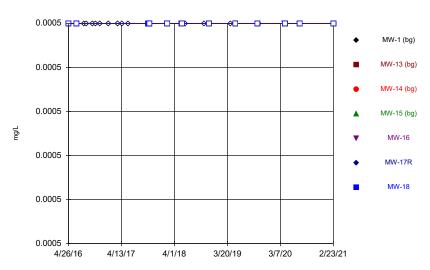



Constituent: Lead Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



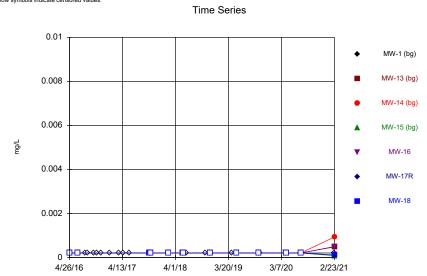

Constituent: Lead Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### Sanitas™ v.9.6.28 . UG Hollow symbols indicate censored values.



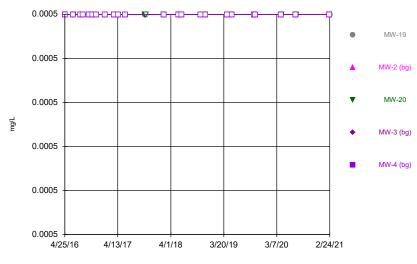

Constituent: Lithium Analysis Run 5/20/2021 7:27 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### Sanitas™ v.9.6.28 . UG



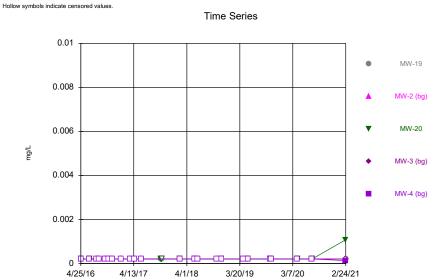

Constituent: Lithium Analysis Run 5/20/2021 7:27 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: Mercury Analysis Run 5/20/2021 7:27 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

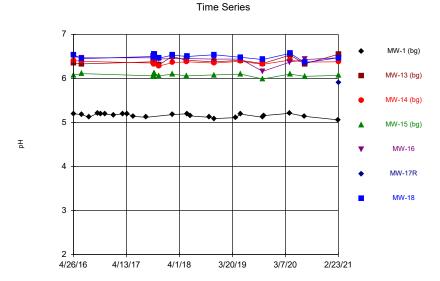
#### Sanitas™ v.9.6.28 . UG Hollow symbols indicate censored values



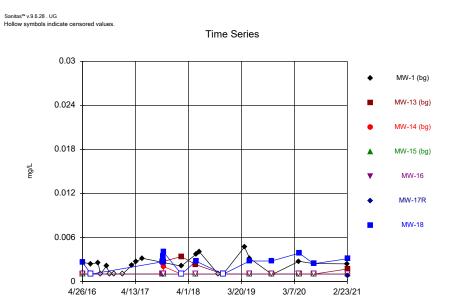

Constituent: Molybdenum Analysis Run 5/20/2021 7:27 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### Time Series

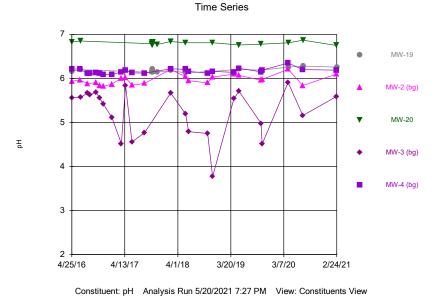



Constituent: Mercury Analysis Run 5/20/2021 7:27 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

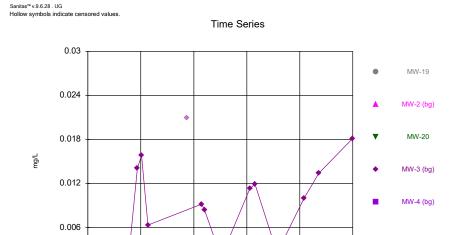
#### Sanitas™ v.9.6.28 . UG




Constituent: Molybdenum Analysis Run 5/20/2021 7:27 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28. UG Sanitas™ v.9.6.28. UG




Constituent: pH Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



Constituent: Selenium Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

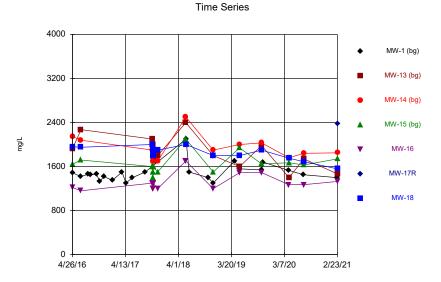


Constituent: Selenium Analysis Run 5/20/2021 7:27 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

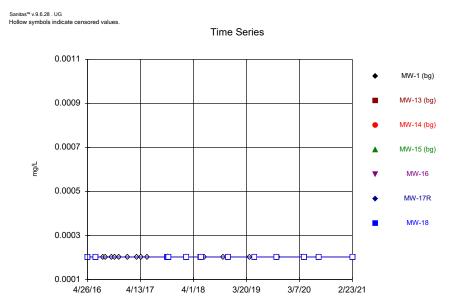
3/20/19

3/7/20

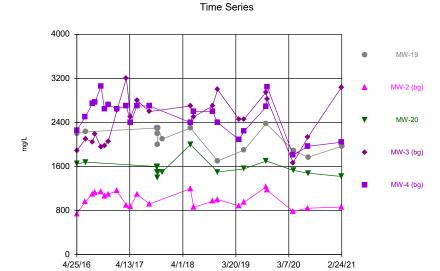
2/24/21


4/1/18

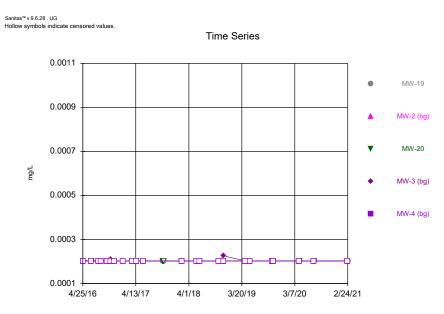
0


4/25/16

4/13/17

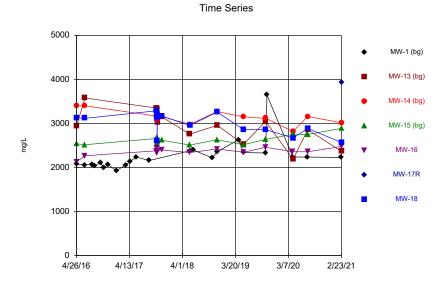

Sanitas™ v.9.6.28 . UG




Constituent: Sulfate as SO4 Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



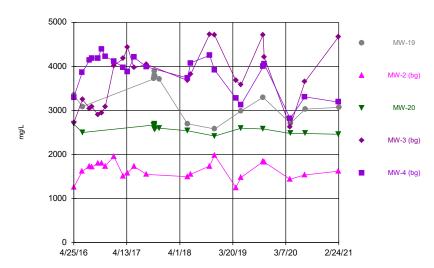
Constituent: Thallium Analysis Run 5/20/2021 7:27 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: Sulfate as SO4 Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



Constituent: Thallium Analysis Run 5/20/2021 7:27 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG



Constituent: Total Dissolved Solids [TDS] Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Time Series

Sanitas™ v.9.6.28 . UG



Constituent: Total Dissolved Solids [TDS] Analysis Run 5/20/2021 7:27 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Constituent: Antimony (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg)   | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16     | MW-17R    | MW-18     |
|------------|-------------|------------|------------|------------|-----------|-----------|-----------|
| 4/26/2016  | <0.001015   | <0.001015  | <0.001015  | <0.001015  |           |           | <0.001015 |
| 4/27/2016  |             |            |            |            | <0.001015 |           |           |
| 6/20/2016  | <0.001015   |            |            |            |           |           |           |
| 6/22/2016  |             | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 8/8/2016   | <0.001015   |            |            |            |           |           |           |
| 8/24/2016  | <0.001015   |            |            |            |           |           |           |
| 10/3/2016  | <0.001015   |            |            |            |           |           |           |
| 10/26/2016 | <0.001015   |            |            |            |           |           |           |
| 11/21/2016 | <0.001015   |            |            |            |           |           |           |
| 1/17/2017  | <0.001015   |            |            |            |           |           |           |
| 3/22/2017  | <0.001015   |            |            |            |           |           |           |
| 4/18/2017  | <0.001015   |            |            |            |           |           |           |
| 5/30/2017  | <0.001015   |            |            |            |           |           |           |
| 10/12/2017 |             | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 10/13/2017 |             | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 10/14/2017 |             | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 10/15/2017 |             | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 10/16/2017 |             | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 10/17/2017 |             | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 2/13/2018  | <0.001015   | <0.001015  | <0.001015  |            |           |           |           |
| 2/14/2018  |             |            |            | <0.001015  | <0.001015 |           | <0.001015 |
| 5/21/2018  |             | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           |           |
| 5/22/2018  | <0.001015   |            |            |            |           |           | <0.001015 |
| 6/12/2018  | <0.001015   |            |            |            |           |           |           |
| 10/17/2018 | <0.001015   |            |            |            |           |           |           |
| 11/19/2018 | <0.001015   | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 4/10/2019  | 0.00143 (J) |            |            |            |           |           |           |
| 5/14/2019  | 0.00137 (J) | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           |           |
| 5/15/2019  |             |            |            |            |           |           | <0.001015 |
| 10/8/2019  | <0.001015   | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 10/16/2019 | <0.001015   |            |            |            |           |           |           |
| 4/6/2020   | <0.001015   |            |            |            | <0.001015 |           |           |
| 4/7/2020   |             | <0.001015  | <0.001015  | <0.001015  |           |           |           |
| 4/8/2020   |             |            |            |            |           |           | <0.001015 |
| 7/13/2020  | <0.001015   |            |            |            |           |           |           |
| 7/14/2020  |             | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 2/22/2021  | <0.001015   |            |            |            |           |           |           |
| 2/23/2021  |             | <0.001015  | <0.001015  | <0.001015  | <0.001015 | <0.001015 | <0.001015 |
|            |             |            |            |            |           |           |           |

Constituent: Antimony (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|                         |                  |              | i idili do | rgao onomi ooum           | copa, 2a    |
|-------------------------|------------------|--------------|------------|---------------------------|-------------|
|                         | MW-19            | MW-2 (bg)    | MW-20      | MW-3 (bg)                 | MW-4 (bg)   |
| 4/25/2016               |                  | <0.001015    |            | <0.001015                 | <0.001015   |
| 4/26/2016               | <0.001015        |              | <0.001015  |                           |             |
| 6/20/2016               |                  | <0.001015    |            |                           | <0.001015   |
| 6/22/2016               | <0.001015        |              | <0.001015  | <0.001015                 |             |
| 8/8/2016                |                  | <0.001015    |            |                           |             |
| 8/9/2016                |                  |              |            | <0.001015                 | <0.001015   |
| 8/24/2016               |                  | <0.001015    |            | <0.001015                 | <0.001015   |
| 10/3/2016               |                  | <0.001015    |            |                           | <0.001015   |
| 10/4/2016               |                  |              |            | <0.001015                 |             |
| 10/26/2016              |                  | <0.001015    |            | <0.001015                 | <0.001015   |
| 11/21/2016              |                  | <0.001015    |            | <0.001015                 | <0.001015   |
| 1/17/2017               |                  | <0.001015    |            |                           |             |
| 1/18/2017               |                  |              |            | <0.001015                 | <0.001015   |
| 3/22/2017               |                  | <0.001015    |            | <0.001015                 | <0.001015   |
| 4/18/2017               |                  | <0.001015    |            | <0.001015                 | <0.001015   |
| 5/31/2017               |                  | <0.001015    |            | <0.001015                 | <0.001015   |
| 10/12/2017              | <0.001015        |              | <0.001015  |                           |             |
| 10/13/2017              | <0.001015        |              | <0.001015  |                           |             |
| 10/14/2017              | <0.001015        |              | <0.001015  |                           |             |
| 10/15/2017              | <0.001015        |              | <0.001015  |                           |             |
| 10/16/2017              | <0.001015        |              | <0.001015  |                           |             |
| 10/17/2017              | <0.001015        |              | <0.001015  |                           |             |
| 2/13/2018               |                  | <0.001015    |            | <0.001015                 | <0.001015   |
| 2/14/2018               | <0.001015        |              | <0.001015  |                           |             |
| 5/22/2018               | <0.001015        | <0.001015    | <0.001015  |                           |             |
| 5/23/2018               |                  |              |            |                           | <0.001015   |
| 5/24/2018               |                  | 0.001015     |            | <0.001015                 | .0.004045   |
| 6/12/2018               |                  | <0.001015    |            | <0.001015                 | <0.001015   |
| 10/17/2018              |                  | <0.001015    |            | <0.001015                 | <0.001015   |
| 11/19/2018              | <0.00101E        | <0.001015    | <0.00101E  | <0.001015                 | <0.001015   |
| 11/20/2018<br>4/10/2019 | <0.001015        | 0.000003 (1) | <0.001015  | 0.000078 / I)             | 0.00007 (1) |
| 5/14/2019               |                  | 0.000993 (J) |            | 0.000978 (J)<br><0.001015 | 0.00097 (J) |
| 5/15/2019               | <0.001015        | 0.000989 (J) | <0.001015  | <0.001015                 | <0.001015   |
| 10/8/2019               | <0.001015        | <0.001015    | <0.001013  | <0.001015                 |             |
| 10/10/2019              | <b>~0.001013</b> | <0.001013    | <0.001015  | <0.001013                 | <0.001015   |
| 10/16/2019              |                  | <0.001015    | 40.001013  | <0.001015                 | <0.001015   |
| 4/6/2020                |                  | <0.001015    |            | <0.001015                 | <0.001015   |
| 4/8/2020                | <0.001015        | 10.001013    | <0.001015  | 10.001013                 | 10.001013   |
| 7/13/2020               | -0.001010        | <0.001015    | -0.001010  | <0.001015                 |             |
| 7/14/2020               |                  | 0.001010     |            | 0.001010                  | <0.001015   |
| 7/15/2020               | <0.001015        |              | <0.001015  |                           | 3.551010    |
| 2/22/2021               |                  | <0.001015    |            | <0.001015                 | <0.001015   |
| 2/23/2021               |                  |              | <0.001015  |                           |             |
| 2/24/2021               | <0.001015        |              |            |                           |             |
|                         |                  |              |            |                           |             |

Constituent: Arsenic (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg)  | MW-15 (bg) | MW-16       | MW-17R | MW-18     |
|------------|-----------|------------|-------------|------------|-------------|--------|-----------|
| 4/26/2016  | <0.000203 | <0.000203  | 0.00106 (J) | <0.000203  |             |        | <0.000203 |
| 4/27/2016  |           |            |             |            | 0.00244 (J) |        |           |
| 6/20/2016  | <0.000203 |            |             |            |             |        |           |
| 6/22/2016  |           | <0.000203  | 0.00169 (J) | <0.000203  | 0.00422 (J) |        | <0.000203 |
| 8/8/2016   | <0.000203 |            |             |            |             |        |           |
| 8/24/2016  | <0.000203 |            |             |            |             |        |           |
| 10/3/2016  | <0.000203 |            |             |            |             |        |           |
| 10/26/2016 | <0.000203 |            |             |            |             |        |           |
| 11/21/2016 | <0.000203 |            |             |            |             |        |           |
| 1/17/2017  | <0.000203 |            |             |            |             |        |           |
| 3/22/2017  | <0.000203 |            |             |            |             |        |           |
| 4/18/2017  | <0.000203 |            |             |            |             |        |           |
| 5/30/2017  | <0.000203 |            |             |            |             |        |           |
| 10/12/2017 |           | 0.0011 (J) | 0.00149 (J) | <0.000203  | 0.00454 (J) |        | <0.000203 |
| 10/13/2017 |           | <0.000203  | 0.00152 (J) | <0.000203  | 0.00399 (J) |        | <0.000203 |
| 10/14/2017 |           | <0.000203  | 0.00145 (J) | <0.000203  | 0.00325 (J) |        | <0.000203 |
| 10/15/2017 |           | <0.000203  | 0.00145 (J) | <0.000203  | 0.00323 (J) |        | <0.000203 |
| 10/16/2017 |           | <0.000203  | 0.00135 (J) | <0.000203  | 0.00327 (J) |        | <0.000203 |
| 10/17/2017 |           | <0.000203  | 0.00133 (J) | <0.000203  | 0.00315 (J) |        | <0.000203 |
| 2/13/2018  | <0.000203 | <0.000203  | 0.00139 (J) |            |             |        |           |
| 2/14/2018  |           |            |             | <0.000203  | 0.00275 (J) |        | <0.000203 |
| 5/21/2018  |           | <0.000203  | 0.00125 (J) | <0.000203  | 0.00343 (J) |        |           |
| 5/22/2018  | <0.000203 |            |             |            |             |        | <0.000203 |
| 6/12/2018  | <0.000203 |            |             |            |             |        |           |
| 10/17/2018 | <0.000203 |            |             |            |             |        |           |
| 11/19/2018 | <0.000203 | <0.000203  | 0.00127 (J) | <0.000203  | 0.00301 (J) |        | <0.000203 |
| 4/10/2019  | <0.000203 |            |             |            |             |        |           |
| 5/14/2019  | <0.000203 | <0.000203  | 0.00114 (J) | <0.000203  | 0.00362 (J) |        |           |
| 5/15/2019  |           |            |             |            |             |        | <0.000203 |
| 10/8/2019  | <0.000203 | <0.000203  | 0.0012 (J)  | <0.000203  | 0.00372 (J) |        | <0.000203 |
| 10/16/2019 | <0.000203 |            |             |            |             |        |           |
| 4/6/2020   | <0.000203 |            |             |            | 0.00333 (J) |        |           |
| 4/7/2020   |           | <0.000203  | 0.00102 (J) | <0.000203  |             |        |           |
| 4/8/2020   |           |            |             |            |             |        | <0.000203 |
| 7/13/2020  | <0.000203 |            |             |            |             |        |           |
| 7/14/2020  |           | <0.000203  | <0.000203   | <0.000203  | 0.00275 (J) |        | <0.000203 |
| 2/22/2021  | 0.000403  |            |             |            |             |        |           |
| 2/23/2021  |           | 0.000293   | 0.000893    | 0.000217   | 0.00257     | 0.0019 | <0.000203 |
|            |           |            |             |            |             |        |           |

Constituent: Arsenic (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |           |             |             | guo onomi coum | o company ba |
|------------|-----------|-------------|-------------|----------------|--------------|
|            | MW-19     | MW-2 (bg)   | MW-20       | MW-3 (bg)      | MW-4 (bg)    |
| 4/25/2016  |           | <0.000203   |             | <0.000203      | <0.000203    |
| 4/26/2016  | <0.000203 |             | <0.000203   |                |              |
| 6/20/2016  |           | <0.000203   |             |                | <0.000203    |
| 6/22/2016  | <0.000203 |             | <0.000203   | <0.000203      |              |
| 8/8/2016   |           | <0.000203   |             |                |              |
| 8/9/2016   |           |             |             | <0.000203      | <0.000203    |
| 8/24/2016  |           | <0.000203   |             | <0.000203      | <0.000203    |
| 10/3/2016  |           | <0.000203   |             |                | <0.000203    |
| 10/4/2016  |           |             |             | <0.000203      |              |
| 10/26/2016 |           | <0.000203   |             | <0.000203      | <0.000203    |
| 11/21/2016 |           | 0.00111 (J) |             | <0.000203      | <0.000203    |
| 1/17/2017  |           | <0.000203   |             |                |              |
| 1/18/2017  |           |             |             | <0.000203      | <0.000203    |
| 3/22/2017  |           | <0.000203   |             | 0.00122 (J)    | <0.000203    |
| 4/18/2017  |           | <0.000203   |             | <0.000203      | <0.000203    |
| 5/31/2017  |           | <0.000203   |             | <0.000203      | <0.000203    |
| 10/12/2017 | <0.000203 |             | <0.000203   |                |              |
| 10/13/2017 | <0.000203 |             | <0.000203   |                |              |
| 10/14/2017 | <0.000203 |             | <0.000203   |                |              |
| 10/15/2017 | <0.000203 |             | <0.000203   |                |              |
| 10/16/2017 | <0.000203 |             | <0.000203   |                |              |
| 10/17/2017 | <0.000203 |             | <0.000203   |                |              |
| 2/13/2018  |           | <0.000203   |             | <0.000203      | <0.000203    |
| 2/14/2018  | <0.000203 |             | <0.000203   |                |              |
| 5/22/2018  | <0.000203 | <0.000203   | <0.000203   |                |              |
| 5/23/2018  |           |             |             |                | <0.000203    |
| 5/24/2018  |           |             |             | <0.000203      |              |
| 6/12/2018  |           | <0.000203   |             | 0.00103 (J)    | <0.000203    |
| 10/17/2018 |           | <0.000203   |             | 0.00133 (J)    | <0.000203    |
| 11/19/2018 |           | <0.000203   |             | 0.0012 (J)     | <0.000203    |
| 11/20/2018 | <0.000203 |             | <0.000203   |                |              |
| 4/10/2019  |           | <0.000203   |             | <0.000203      | <0.000203    |
| 5/14/2019  |           | <0.000203   |             | <0.000203      | <0.000203    |
| 5/15/2019  | <0.000203 |             | <0.000203   |                |              |
| 10/8/2019  | <0.000203 | <0.000203   |             | 0.0048 (J)     |              |
| 10/10/2019 |           |             | <0.000203   |                | <0.000203    |
| 10/16/2019 |           | <0.000203   |             | 0.00389 (J)    | <0.000203    |
| 4/6/2020   |           | <0.000203   |             | <0.000203      | <0.000203    |
| 4/8/2020   | <0.000203 |             | 0.00129 (J) |                |              |
| 7/13/2020  |           | <0.000203   |             | 0.00316 (J)    |              |
| 7/14/2020  |           |             |             |                | <0.000203    |
| 7/15/2020  | <0.000203 |             | <0.000203   |                |              |
| 2/22/2021  |           | 0.000295    |             | 0.000789       | 0.000125 (J) |
| 2/23/2021  |           |             | 0.000849    |                |              |
| 2/24/2021  | 0.000212  |             |             |                |              |

Constituent: Barium (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg)   | MW-13 (bg) | MW-14 (bg) | MW-15 (bg)  | MW-16  | MW-17R | MW-18       |  |
|------------|-------------|------------|------------|-------------|--------|--------|-------------|--|
| 4/26/2016  | 0.00941 (J) | 0.0134     | 0.0122     | 0.00969 (J) |        |        | 0.00912 (J) |  |
| 4/27/2016  |             |            |            |             | 0.0124 |        |             |  |
| 6/20/2016  | 0.00951 (J) |            |            |             |        |        |             |  |
| 6/22/2016  |             | 0.0151     | 0.0122     | 0.012       | 0.0135 |        | 0.00941 (J) |  |
| 8/8/2016   | 0.00991 (J) |            |            |             |        |        |             |  |
| 8/24/2016  | 0.00949 (J) |            |            |             |        |        |             |  |
| 10/3/2016  | 0.0105      |            |            |             |        |        |             |  |
| 10/26/2016 | 0.00931 (J) |            |            |             |        |        |             |  |
| 11/21/2016 | 0.00879 (J) |            |            |             |        |        |             |  |
| 1/17/2017  | 0.00929 (J) |            |            |             |        |        |             |  |
| 3/22/2017  | 0.00938 (J) |            |            |             |        |        |             |  |
| 4/18/2017  | 0.00964 (J) |            |            |             |        |        |             |  |
| 5/30/2017  | 0.00982 (J) |            |            |             |        |        |             |  |
| 10/12/2017 |             | 0.0147     | 0.0131     | 0.0117      | 0.0134 |        | 0.0102      |  |
| 10/13/2017 |             | 0.0149     | 0.013      | 0.0126      | 0.0141 |        | 0.0104      |  |
| 10/14/2017 |             | 0.0136     | 0.0124     | 0.0117      | 0.0126 |        | 0.00927 (J) |  |
| 10/15/2017 |             | 0.0128     | 0.0125     | 0.0112      | 0.0133 |        | 0.00964 (J) |  |
| 10/16/2017 |             | 0.0131     | 0.0121     | 0.0115      | 0.0133 |        | 0.00907 (J) |  |
| 10/17/2017 |             | 0.0122     | 0.0119     | 0.0112      | 0.0124 |        | 0.0087 (J)  |  |
| 2/13/2018  | 0.00937 (J) | 0.0106     | 0.0115     |             |        |        |             |  |
| 2/14/2018  |             |            |            | 0.0121      | 0.0137 |        | 0.0161      |  |
| 5/21/2018  |             | 0.015      | 0.0115     | 0.0113      | 0.0136 |        |             |  |
| 5/22/2018  | 0.0102      |            |            |             |        |        | 0.0113      |  |
| 6/12/2018  | 0.0104      |            |            |             |        |        |             |  |
| 10/17/2018 | 0.00952 (J) |            |            |             |        |        |             |  |
| 11/19/2018 | 0.00915 (J) | 0.0114     | 0.0109     | 0.0105      | 0.0128 |        | 0.0104      |  |
| 4/10/2019  | 0.0105      |            |            |             |        |        |             |  |
| 5/14/2019  | 0.00913 (J) | 0.0115     | 0.0105     | 0.0101      | 0.011  |        |             |  |
| 5/15/2019  |             |            |            |             |        |        | 0.00875 (J) |  |
| 10/8/2019  | 0.0109      | 0.0143     | 0.0132     | 0.013       | 0.014  |        | 0.00971 (J) |  |
| 10/16/2019 | 0.0106      |            |            |             |        |        |             |  |
| 4/6/2020   | 0.00971 (J) |            |            |             | 0.0131 |        |             |  |
| 4/7/2020   |             | 0.0133     | 0.0127     | 0.0127      |        |        |             |  |
| 4/8/2020   |             |            |            |             |        |        | 0.00976 (J) |  |
| 7/13/2020  | 0.0101      |            |            |             |        |        |             |  |
| 7/14/2020  |             | 0.0142     | 0.0127     | 0.0124      | 0.0128 |        | 0.0102      |  |
| 2/22/2021  | 0.0107      |            |            |             |        |        |             |  |
| 2/23/2021  |             | 0.011      | 0.0133     | 0.013       | 0.0127 | 0.013  | 0.0103      |  |

Constituent: Barium (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |             |           | 7 10.11 00 | . gao Onomi ooaan | om company bata. doigae dypoun zanam |
|------------|-------------|-----------|------------|-------------------|--------------------------------------|
|            | MW-19       | MW-2 (bg) | MW-20      | MW-3 (bg)         | MW-4 (bg)                            |
| 4/25/2016  |             | 0.0134    |            | 0.00803 (J)       | 0.0114                               |
| 4/26/2016  | 0.00969 (J) |           | 0.0146     |                   |                                      |
| 6/20/2016  |             | 0.0165    |            |                   | 0.0103                               |
| 6/22/2016  | 0.00917 (J) |           | 0.0148     | 0.0101            |                                      |
| 8/8/2016   |             | 0.0162    |            |                   |                                      |
| 8/9/2016   |             |           |            | 0.00889 (J)       | 0.0119                               |
| 8/24/2016  |             | 0.0139    |            | 0.00962 (J)       | 0.0118                               |
| 10/3/2016  |             | 0.0164    |            |                   | 0.0119                               |
| 10/4/2016  |             |           |            | 0.00984 (J)       |                                      |
| 10/26/2016 |             | 0.0138    |            | 0.00878 (J)       | 0.0104                               |
| 11/21/2016 |             | 0.0144    |            | 0.00833 (J)       | 0.0106                               |
| 1/17/2017  |             | 0.0135    |            |                   |                                      |
| 1/18/2017  |             |           |            | 0.00966 (J)       | 0.0101                               |
| 3/22/2017  |             | 0.0132    |            | 0.00991 (J)       | 0.0103                               |
| 4/18/2017  |             | 0.012     |            | 0.00976 (J)       | 0.0107                               |
| 5/31/2017  |             | 0.0126    |            | 0.00866 (J)       | 0.0104                               |
| 10/12/2017 | 0.0106      |           | 0.0162     |                   |                                      |
| 10/13/2017 | 0.0113      |           | 0.0161     |                   |                                      |
| 10/14/2017 | 0.01        |           | 0.0153     |                   |                                      |
| 10/15/2017 | 0.0105      |           | 0.0156     |                   |                                      |
| 10/16/2017 | 0.00993 (J) |           | 0.0156     |                   |                                      |
| 10/17/2017 | 0.00943 (J) |           | 0.0147     |                   |                                      |
| 2/13/2018  |             | 0.0127    |            | 0.00821 (J)       | 0.0111                               |
| 2/14/2018  | 0.01        |           | 0.0154     |                   |                                      |
| 5/22/2018  | 0.0118      | 0.0131    | 0.0164     |                   |                                      |
| 5/23/2018  |             |           |            |                   | 0.0107                               |
| 5/24/2018  |             |           |            | 0.00977 (J)       |                                      |
| 6/12/2018  |             | 0.0138    |            | 0.00997 (J)       | 0.0108                               |
| 10/17/2018 |             | 0.0137    |            | 0.0126            | 0.0119                               |
| 11/19/2018 |             | 0.0115    |            | 0.0109            | 0.0107                               |
| 11/20/2018 | 0.00942 (J) |           | 0.0145     |                   |                                      |
| 4/10/2019  |             | 0.0111    |            | 0.0101            | 0.0107                               |
| 5/14/2019  |             | 0.0109    |            | 0.00922 (J)       | 0.00949 (J)                          |
| 5/15/2019  | 0.00909 (J) |           | 0.0141     |                   |                                      |
| 10/8/2019  | 0.0106      | 0.0151    |            | 0.0154            |                                      |
| 10/10/2019 |             |           | 0.0173     |                   | 0.0116                               |
| 10/16/2019 |             | 0.0146    |            | 0.0128            | 0.0125                               |
| 4/6/2020   |             | 0.0125    |            | 0.00931 (J)       | 0.0115                               |
| 4/8/2020   | 0.00979 (J) |           | 0.019      |                   |                                      |
| 7/13/2020  |             | 0.0145    |            | 0.0142            |                                      |
| 7/14/2020  | 0.0100      |           | 0.0170     |                   | 0.0122                               |
| 7/15/2020  | 0.0102      | 0.0100    | 0.0173     | 0.00001           | 0.0111                               |
| 2/22/2021  |             | 0.0132    | 0.0107     | 0.00981           | 0.0111                               |
| 2/23/2021  | 0.00084     |           | 0.0167     |                   |                                      |
| 2/24/2021  | 0.00981     |           |            |                   |                                      |
|            |             |           |            |                   |                                      |

Constituent: Beryllium (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |           |            |            |            |           | 3,        |           |
|------------|-----------|------------|------------|------------|-----------|-----------|-----------|
|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16     | MW-17R    | MW-18     |
| 4/26/2016  | <0.001015 | <0.001015  | <0.001015  | <0.001015  |           |           | <0.001015 |
| 4/27/2016  |           |            |            |            | <0.001015 |           |           |
| 6/20/2016  | <0.001015 |            |            |            |           |           |           |
| 6/22/2016  |           | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 8/8/2016   | <0.001015 |            |            |            |           |           |           |
| 8/24/2016  | <0.001015 |            |            |            |           |           |           |
| 10/3/2016  | <0.001015 |            |            |            |           |           |           |
| 10/26/2016 | <0.001015 |            |            |            |           |           |           |
| 11/21/2016 | <0.001015 |            |            |            |           |           |           |
| 1/17/2017  | <0.001015 |            |            |            |           |           |           |
| 3/22/2017  | <0.001015 |            |            |            |           |           |           |
| 4/18/2017  | <0.001015 |            |            |            |           |           |           |
| 5/30/2017  | <0.001015 |            |            |            |           |           |           |
| 10/12/2017 |           | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 10/13/2017 |           | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 10/14/2017 |           | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 10/15/2017 |           | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 10/16/2017 |           | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 10/17/2017 |           | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 2/13/2018  | <0.001015 | <0.001015  | <0.001015  |            |           |           |           |
| 2/14/2018  |           |            |            | <0.001015  | <0.001015 |           | <0.001015 |
| 5/21/2018  |           | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           |           |
| 5/22/2018  | <0.001015 |            |            |            |           |           | <0.001015 |
| 6/12/2018  | <0.001015 |            |            |            |           |           |           |
| 10/17/2018 | <0.001015 |            |            |            |           |           |           |
| 11/19/2018 | <0.001015 | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 4/10/2019  | <0.001015 |            |            |            |           |           |           |
| 5/14/2019  | <0.001015 | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           |           |
| 5/15/2019  |           |            |            |            |           |           | <0.001015 |
| 10/8/2019  | <0.001015 | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 10/16/2019 | <0.001015 |            |            |            |           |           |           |
| 4/6/2020   | <0.001015 |            |            |            | <0.001015 |           |           |
| 4/7/2020   |           | <0.001015  | <0.001015  | <0.001015  |           |           |           |
| 4/8/2020   |           |            |            |            |           |           | <0.001015 |
| 7/13/2020  | <0.001015 |            |            |            |           |           |           |
| 7/14/2020  |           | <0.001015  | <0.001015  | <0.001015  | <0.001015 |           | <0.001015 |
| 2/22/2021  | <0.001015 |            |            |            |           |           |           |
| 2/23/2021  |           | <0.001015  | <0.001015  | <0.001015  | <0.001015 | <0.001015 | <0.001015 |
|            |           |            |            |            |           |           |           |

Constituent: Beryllium (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |           |            | •         |             | . ,       |
|------------|-----------|------------|-----------|-------------|-----------|
|            | MW-19     | MW-2 (bg)  | MW-20     | MW-3 (bg)   | MW-4 (bg) |
| 4/25/2016  |           | <0.001015  |           | 0.00122 (J) | <0.001015 |
| 4/26/2016  | <0.001015 |            | <0.001015 |             |           |
| 6/20/2016  |           | <0.001015  |           |             | <0.001015 |
| 6/22/2016  | <0.001015 |            | <0.001015 | 0.00144 (J) |           |
| 8/8/2016   |           | <0.001015  |           |             |           |
| 8/9/2016   |           |            |           | 0.00331     | <0.001015 |
| 8/24/2016  |           | <0.001015  |           | 0.00308     | <0.001015 |
| 10/3/2016  |           | <0.001015  |           |             | <0.001015 |
| 10/4/2016  |           |            |           | 0.00129 (J) |           |
| 10/26/2016 |           | <0.001015  |           | 0.0071      | <0.001015 |
| 11/21/2016 |           | <0.001015  |           | 0.00689     | <0.001015 |
| 1/17/2017  |           | <0.001015  |           |             |           |
| 1/18/2017  |           |            |           | 0.0169 (O)  | <0.001015 |
| 3/22/2017  |           | <0.001015  |           | 0.00686     | <0.001015 |
| 4/18/2017  |           | <0.001015  |           | <0.001015   | <0.001015 |
| 5/31/2017  |           | <0.001015  |           | 0.00547     | <0.001015 |
| 10/12/2017 | <0.001015 |            | <0.001015 |             |           |
| 10/13/2017 | <0.001015 |            | <0.001015 |             |           |
| 10/14/2017 | <0.001015 |            | <0.001015 |             |           |
| 10/15/2017 | <0.001015 |            | <0.001015 |             |           |
| 10/16/2017 | <0.001015 |            | <0.001015 |             |           |
| 10/17/2017 | <0.001015 |            | <0.001015 |             |           |
| 2/13/2018  |           | <0.001015  |           | <0.001015   | <0.001015 |
| 2/14/2018  | <0.001015 |            | <0.001015 |             |           |
| 5/22/2018  | <0.001015 | <0.001015  | <0.001015 |             |           |
| 5/23/2018  |           |            |           |             | <0.001015 |
| 5/24/2018  |           |            |           | 0.00164 (J) |           |
| 6/12/2018  |           | <0.001015  |           | 0.00306     | <0.001015 |
| 10/17/2018 |           | <0.001015  |           | 0.0121      | <0.001015 |
| 11/19/2018 |           | <0.001015  |           | 0.0185 (O)  | <0.001015 |
| 11/20/2018 | <0.001015 |            | <0.001015 |             |           |
| 4/10/2019  |           | <0.001015  |           | <0.001015   | <0.001015 |
| 5/14/2019  |           | <0.001015  |           | <0.001015   | <0.001015 |
| 5/15/2019  | <0.001015 |            | <0.001015 |             |           |
| 10/8/2019  | <0.001015 | <0.001015  |           | 0.0084      |           |
| 10/10/2019 |           | .0.004.045 | <0.001015 | 0.0100      | <0.001015 |
| 10/16/2019 |           | <0.001015  |           | 0.0103      | <0.001015 |
| 4/6/2020   | -0.001015 | <0.001015  | -0.001015 | <0.001015   | <0.001015 |
| 4/8/2020   | <0.001015 | -0.001015  | <0.001015 | 0.0001 (1)  |           |
| 7/13/2020  |           | <0.001015  |           | 0.0021 (J)  | -0.00101E |
| 7/14/2020  | <0.00101E |            | <0.00101E |             | <0.001015 |
| 7/15/2020  | <0.001015 | <0.001015  | <0.001015 | <0.001015   | <0.001015 |
| 2/22/2021  |           | <0.001015  | <0.001015 | <0.001015   | <0.001015 |
| 2/23/2021  | <0.001015 |            | <0.001015 |             |           |
| 2/24/2021  | <0.001015 |            |           |             |           |

Constituent: Boron, total (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg)  | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16      | MW-17R     | MW-18      |
|------------|------------|------------|------------|------------|------------|------------|------------|
| 4/26/2016  | 0.0231 (J) | 0.0585 (J) | 0.0491 (J) | 0.0476 (J) |            |            | 0.0408 (J) |
| 4/27/2016  |            |            |            |            | 0.0425 (J) |            |            |
| 6/20/2016  | 0.0227 (J) |            |            |            |            |            |            |
| 6/22/2016  |            | 0.0581 (J) | 0.0504 (J) | 0.0472 (J) | 0.0469 (J) |            | 0.0369 (J) |
| 8/8/2016   | 0.0278 (J) |            |            |            |            |            |            |
| 8/24/2016  | 0.0247 (J) |            |            |            |            |            |            |
| 10/3/2016  | 0.0307 (J) |            |            |            |            |            |            |
| 10/26/2016 | 0.0241 (J) |            |            |            |            |            |            |
| 11/21/2016 | 0.0202 (J) |            |            |            |            |            |            |
| 1/17/2017  | 0.0201 (J) |            |            |            |            |            |            |
| 3/22/2017  | 0.0224 (J) |            |            |            |            |            |            |
| 4/18/2017  | <0.1015    |            |            |            |            |            |            |
| 5/30/2017  | <0.1015    |            |            |            |            |            |            |
| 8/23/2017  | 0.0253 (J) |            |            |            |            |            |            |
| 10/12/2017 |            | 0.0673 (J) | 0.0493 (J) | 0.054 (J)  | 0.05 (J)   |            | 0.0351 (J) |
| 10/13/2017 |            | 0.06 (J)   | 0.0464 (J) | 0.0535 (J) | 0.0468 (J) |            | 0.0357 (J) |
| 10/14/2017 |            | 0.0555 (J) | 0.0458 (J) | 0.0533 (J) | 0.0471 (J) |            | 0.0333 (J) |
| 10/15/2017 |            | 0.0567 (J) | 0.046 (J)  | 0.0592 (J) | 0.0456 (J) |            | 0.0325 (J) |
| 10/16/2017 |            | 0.0576 (J) | 0.0438 (J) | 0.0608 (J) | 0.0486 (J) |            | 0.0295 (J) |
| 10/17/2017 |            | 0.0561 (J) | 0.046 (J)  | 0.0641 (J) | 0.0452 (J) |            | 0.033 (J)  |
| 11/15/2017 |            |            |            | 0.0483 (J) | 0.044 (J)  |            | 0.0313 (J) |
| 11/16/2017 |            | 0.0554 (J) | 0.0568 (J) |            |            |            |            |
| 5/21/2018  |            | 0.0651 (J) | 0.0478 (J) | 0.0478 (J) | 0.0463 (J) |            |            |
| 5/22/2018  | 0.0224 (J) |            |            |            |            |            | 0.0331 (J) |
| 6/12/2018  | 0.0214 (J) |            |            |            |            |            |            |
| 10/17/2018 | 0.0216 (J) |            |            |            |            |            |            |
| 11/19/2018 | 0.0237 (J) | 0.0624 (J) | 0.0518 (J) | 0.0615 (J) | 0.0524 (J) |            | 0.039 (J)  |
| 4/10/2019  | 0.0304 (J) |            |            |            |            |            |            |
| 5/14/2019  | <0.1015    | <0.1015    | <0.1015    | <0.1015    | <0.1015    |            |            |
| 5/15/2019  |            |            |            |            |            |            | <0.1015    |
| 10/8/2019  | <0.1015    | 0.0616 (J) | 0.0522 (J) | 0.0644 (J) | 0.0528 (J) |            | 0.038 (J)  |
| 10/16/2019 | 0.0385 (J) |            |            |            |            |            |            |
| 4/6/2020   | <0.1015    |            |            |            | 0.0507 (J) |            |            |
| 4/7/2020   |            | 0.0577 (J) | 0.0477 (J) | 0.0542 (J) |            |            |            |
| 4/8/2020   |            |            |            |            |            |            | 0.0353 (J) |
| 7/13/2020  | <0.1015    |            |            |            |            |            |            |
| 7/14/2020  |            | 0.0573 (J) | 0.0492 (J) | 0.0557 (J) | 0.0484 (J) |            | 0.0421 (J) |
| 2/22/2021  | 0.0307 (J) |            |            |            |            |            |            |
| 2/23/2021  |            | 0.065 (J)  | 0.0516 (J) | 0.0534 (J) | 0.0487 (J) | 0.0536 (J) | 0.0343 (J) |
|            |            |            |            |            |            |            |            |

Constituent: Boron, total (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-19       | MW-2 (bg)  | MW-20     | MW-3 (bg)  | MW-4 (bg)  |
|------------|-------------|------------|-----------|------------|------------|
| 4/25/2016  |             | 0.0241 (J) |           | 0.028 (J)  | 0.0414 (J) |
| 4/26/2016  | 0.0367 (J)  |            | 0.105     |            |            |
| 6/20/2016  |             | 0.0284 (J) |           |            | 0.0434 (J) |
| 6/22/2016  | 0.039 (J)   |            | 0.107     | 0.0433 (J) |            |
| 8/8/2016   |             | 0.034 (J)  |           |            |            |
| 8/9/2016   |             |            |           | 0.0429 (J) | 0.0453 (J) |
| 8/24/2016  |             | 0.0316 (J) |           | 0.0431 (J) | 0.0451 (J) |
| 10/3/2016  |             | 0.0367 (J) |           |            | 0.0511 (J) |
| 10/4/2016  |             |            |           | 0.04 (J)   |            |
| 10/26/2016 |             | 0.0331 (J) |           | 0.0375 (J) | 0.0507 (J) |
| 11/21/2016 |             | 0.035 (J)  |           | 0.0406 (J) | 0.0458 (J) |
| 1/17/2017  |             | 0.0259 (J) |           |            |            |
| 1/18/2017  |             |            |           | 0.0548 (J) | 0.0445 (J) |
| 3/22/2017  |             | 0.0243 (J) |           | 0.0344 (J) | 0.0432 (J) |
| 4/18/2017  |             | 0.0206 (J) |           | <0.1015    | 0.0409 (J) |
| 5/31/2017  |             | 0.0234 (J) |           | 0.0454 (J) | 0.0392 (J) |
| 8/23/2017  |             | 0.0267 (J) |           | 0.0425 (J) | 0.042 (J)  |
| 10/12/2017 | 0.039 (J)   |            | 0.105     |            |            |
| 10/13/2017 | 0.0384 (J)  |            | 0.106     |            |            |
| 10/14/2017 | 0.0372 (J)  |            | 0.106     |            |            |
| 10/15/2017 | 0.0354 (J)  |            | 0.107     |            |            |
| 10/16/2017 | 0.0373 (J)  |            | 0.111     |            |            |
| 10/17/2017 | 0.0367 (J)  |            | 0.107     |            |            |
| 11/15/2017 | 0.0348 (J)  |            | 0.101     |            |            |
| 5/22/2018  | 0.0362 (J)  | 0.0251 (J) | 0.105     |            |            |
| 5/23/2018  |             |            |           |            | 0.0433 (J) |
| 5/24/2018  |             |            |           | 0.0339 (J) |            |
| 6/12/2018  |             | 0.0275 (J) |           | 0.0371 (J) | 0.0478 (J) |
| 10/17/2018 |             | 0.0321 (J) |           | 0.0596 (J) | 0.0468 (J) |
| 11/19/2018 |             | 0.0324 (J) |           | 0.0514 (J) | 0.0526 (J) |
| 11/20/2018 | 0.0421 (J)  |            | 0.114     |            |            |
| 4/10/2019  |             | <0.1015    |           | <0.1015    | 0.0438 (J) |
| 5/14/2019  |             | <0.1015    |           | <0.1015    | <0.1015    |
| 5/15/2019  | <0.1015     |            | 0.103 (J) |            |            |
| 10/8/2019  | 0.0413 (J)  | 0.0371 (J) |           | 0.0537 (J) |            |
| 10/10/2019 |             |            | 0.115     |            | 0.0487 (J) |
| 10/16/2019 |             | 0.0419 (J) |           | 0.05 (J)   | 0.0505 (J) |
| 4/6/2020   | 0.0070 (1)  | <0.1015    | 0.404     | <0.1015    | 0.0428 (J) |
| 4/8/2020   | 0.0373 (J)  | -0.1015    | 0.104     | 0.0000 (1) |            |
| 7/13/2020  |             | <0.1015    |           | 0.0366 (J) | 0.0444 (1) |
| 7/14/2020  | 0.0412 ( !) |            | 0.114     |            | 0.0441 (J) |
| 7/15/2020  | 0.0412 (J)  | <0.101E    | 0.114     | <0.101E    | 0.020771   |
| 2/22/2021  |             | <0.1015    | 0.11      | <0.1015    | 0.0397 (J) |
| 2/23/2021  | 0.0303 (1)  |            | 0.11      |            |            |
| 2/24/2021  | 0.0393 (J)  |            |           |            |            |

Constituent: Cadmium (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg)   | MW-15 (bg) | MW-16     | MW-17R    | MW-18     |
|------------|-----------|------------|--------------|------------|-----------|-----------|-----------|
| 4/26/2016  | 0.00196   | <0.000203  | <0.000203    | <0.000203  |           |           | <0.000203 |
| 4/27/2016  |           |            |              |            | <0.000203 |           |           |
| 6/20/2016  | 0.0021    |            |              |            |           |           |           |
| 6/22/2016  |           | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 8/8/2016   | 0.00206   |            |              |            |           |           |           |
| 8/24/2016  | 0.00182   |            |              |            |           |           |           |
| 10/3/2016  | 0.00188   |            |              |            |           |           |           |
| 10/26/2016 | 0.00175   |            |              |            |           |           |           |
| 11/21/2016 | 0.00197   |            |              |            |           |           |           |
| 1/17/2017  | 0.002     |            |              |            |           |           |           |
| 3/22/2017  | 0.0019    |            |              |            |           |           |           |
| 4/18/2017  | 0.00159   |            |              |            |           |           |           |
| 5/30/2017  | 0.00214   |            |              |            |           |           |           |
| 10/12/2017 |           | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 10/13/2017 |           | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 10/14/2017 |           | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 10/15/2017 |           | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 10/16/2017 |           | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 10/17/2017 |           | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 2/13/2018  | 0.0018    | <0.000203  | <0.000203    |            |           |           |           |
| 2/14/2018  |           |            |              | <0.000203  | <0.000203 |           | <0.000203 |
| 5/21/2018  |           | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           |           |
| 5/22/2018  | 0.00201   |            |              |            |           |           | <0.000203 |
| 6/12/2018  | 0.00217   |            |              |            |           |           |           |
| 10/17/2018 | 0.00228   |            |              |            |           |           |           |
| 11/19/2018 | 0.00156   | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 4/10/2019  | 0.00224   |            |              |            |           |           |           |
| 5/14/2019  | 0.00238   | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           |           |
| 5/15/2019  |           |            |              |            |           |           | <0.000203 |
| 10/8/2019  | 0.00218   | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 10/16/2019 | 0.00225   |            |              |            |           |           |           |
| 4/6/2020   | 0.00184   |            |              |            | <0.000203 |           |           |
| 4/7/2020   |           | <0.000203  | <0.000203    | <0.000203  |           |           |           |
| 4/8/2020   |           |            |              |            |           |           | <0.000203 |
| 7/13/2020  | 0.00194   |            |              |            |           |           |           |
| 7/14/2020  |           | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 2/22/2021  | 0.00184   |            |              |            |           |           |           |
| 2/23/2021  |           | <0.000203  | 0.000122 (J) | <0.000203  | <0.000203 | <0.000203 | <0.000203 |

Constituent: Cadmium (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-19     | MW-2 (bg)    | MW-20     | MW-3 (bg)    | MW-4 (bg)    |
|------------|-----------|--------------|-----------|--------------|--------------|
| 4/25/2016  |           | <0.000203    |           | 0.0121 (O)   | <0.000203    |
| 4/26/2016  | <0.000203 |              | <0.000203 |              |              |
| 6/20/2016  |           | <0.000203    |           |              | <0.000203    |
| 6/22/2016  | <0.000203 |              | <0.000203 | 0.00163      |              |
| 8/8/2016   |           | <0.000203    |           |              |              |
| 8/9/2016   |           |              |           | 0.00122      | <0.000203    |
| 8/24/2016  |           | <0.000203    |           | <0.000203    | <0.000203    |
| 10/3/2016  |           | <0.000203    |           |              | <0.000203    |
| 10/4/2016  |           |              |           | 0.000689 (J) |              |
| 10/26/2016 |           | <0.000203    |           | 0.00136      | <0.000203    |
| 11/21/2016 |           | <0.000203    |           | 0.00171      | <0.000203    |
| 1/17/2017  |           | 0.000311 (J) |           |              |              |
| 1/18/2017  |           |              |           | 0.003        | <0.000203    |
| 3/22/2017  |           | <0.000203    |           | 0.00473      | <0.000203    |
| 4/18/2017  |           | <0.000203    |           | 0.00117      | <0.000203    |
| 5/31/2017  |           | 0.000212 (J) |           | 0.00296      | <0.000203    |
| 10/12/2017 | <0.000203 |              | <0.000203 |              |              |
| 10/13/2017 | <0.000203 |              | <0.000203 |              |              |
| 10/14/2017 | <0.000203 |              | <0.000203 |              |              |
| 10/15/2017 | <0.000203 |              | <0.000203 |              |              |
| 10/16/2017 | <0.000203 |              | <0.000203 |              |              |
| 10/17/2017 | <0.000203 |              | <0.000203 |              |              |
| 2/13/2018  |           | <0.000203    |           | 0.00232      | <0.000203    |
| 2/14/2018  | <0.000203 |              | <0.000203 |              |              |
| 5/22/2018  | <0.000203 | <0.000203    | <0.000203 |              |              |
| 5/23/2018  |           |              |           |              | <0.000203    |
| 5/24/2018  |           |              |           | 0.00459      |              |
| 6/12/2018  |           | <0.000203    |           | 0.00351      | <0.000203    |
| 10/17/2018 |           | <0.000203    |           | 0.00393      | <0.000203    |
| 11/19/2018 |           | <0.000203    |           | 0.00309      | <0.000203    |
| 11/20/2018 | <0.000203 |              | <0.000203 |              |              |
| 4/10/2019  |           | <0.000203    |           | 0.00337      | <0.000203    |
| 5/14/2019  |           | <0.000203    |           | 0.0013       | <0.000203    |
| 5/15/2019  | <0.000203 |              | <0.000203 |              |              |
| 10/8/2019  | <0.000203 | <0.000203    |           | 0.00598      |              |
| 10/10/2019 |           |              | <0.000203 |              | <0.000203    |
| 10/16/2019 |           | <0.000203    |           | 0.00448      | <0.000203    |
| 4/6/2020   |           | <0.000203    |           | 0.000645 (J) | <0.000203    |
| 4/8/2020   | <0.000203 |              | <0.000203 |              |              |
| 7/13/2020  |           | <0.000203    |           | 0.00885 (O)  |              |
| 7/14/2020  | <0.000000 |              | <0.000202 |              | <0.000203    |
| 7/15/2020  | <0.000203 | 0.005.05.43  | <0.000203 | 0.00520      | 0.005.05.45  |
| 2/22/2021  |           | 8.96E-05 (J) | -0.000000 | 0.00536      | 8.96E-05 (J) |
| 2/23/2021  | <0.000000 |              | <0.000203 |              |              |
| 2/24/2021  | <0.000203 |              |           |              |              |

Constituent: Calcium, total (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16 | MW-17R | MW-18 |
|------------|-----------|------------|------------|------------|-------|--------|-------|
| 4/26/2016  | 147       | 302        | 335        | 257        |       |        | 319   |
| 4/27/2016  |           |            |            |            | 276   |        |       |
| 6/20/2016  | 152       |            |            |            |       |        |       |
| 6/22/2016  |           | 354        | 360        | 282        | 301   |        | 354   |
| 8/8/2016   | 150       |            |            |            |       |        |       |
| 8/24/2016  | 142       |            |            |            |       |        |       |
| 10/3/2016  | 139       |            |            |            |       |        |       |
| 10/26/2016 | 133       |            |            |            |       |        |       |
| 11/21/2016 | 144       |            |            |            |       |        |       |
| 1/17/2017  | 131       |            |            |            |       |        |       |
| 3/22/2017  | 141       |            |            |            |       |        |       |
| 4/18/2017  | 149       |            |            |            |       |        |       |
| 5/30/2017  | 140       |            |            |            |       |        |       |
| 8/23/2017  | 152       |            |            |            |       |        |       |
| 10/12/2017 |           | 321        | 315        | 256        | 320   |        | 340   |
| 10/13/2017 |           | 312        | 317        | 269        | 297   |        | 326   |
| 10/14/2017 |           | 300        | 315        | 262        | 299   |        | 345   |
| 10/15/2017 |           | 300        | 325        | 275        | 307   |        | 327   |
| 10/16/2017 |           | 290        | 333        | 258        | 310   |        | 325   |
| 10/17/2017 |           | 296        | 309        | 263        | 297   |        | 341   |
| 11/15/2017 |           |            |            | 254        | 287   |        | 318   |
| 11/16/2017 |           | 296        | 313        |            |       |        |       |
| 5/21/2018  |           | 321        | 349        | 298        | 338   |        |       |
| 5/22/2018  | 166       |            |            |            |       |        | 364   |
| 6/12/2018  | 203       |            |            |            |       |        |       |
| 10/17/2018 | 171       |            |            |            |       |        |       |
| 11/19/2018 | 154       | 288        | 323        | 272        | 301   |        | 356   |
| 4/10/2019  | 243       |            |            |            |       |        |       |
| 5/14/2019  | 167       | 302        | 337        | 280        | 319   |        |       |
| 5/15/2019  |           |            |            |            |       |        | 337   |
| 10/8/2019  | 157       | 304        | 341        | 299        | 325   |        | 312   |
| 10/16/2019 | 157       |            |            |            |       |        |       |
| 4/6/2020   | 149       |            |            |            | 302   |        |       |
| 4/7/2020   |           | 222        | 290        | 276        |       |        |       |
| 4/8/2020   |           |            |            |            |       |        | 283   |
| 7/13/2020  | 147       |            |            |            |       |        |       |
| 7/14/2020  |           | 291        | 332        | 281        | 306   |        | 316   |
| 2/22/2021  | 151       |            |            |            |       |        |       |
| 2/23/2021  |           | 238        | 312        | 302        | 317   | 389    | 284   |
|            |           |            |            |            |       |        |       |

Constituent: Calcium, total (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-19 | MW-2 (bg) | MW-20 | MW-3 (bg) | MW-4 (bg) |
|------------|-------|-----------|-------|-----------|-----------|
| 4/25/2016  |       | 123       |       | 224       | 261       |
| 4/26/2016  | 342   |           | 368   |           |           |
| 6/20/2016  |       | 168       |       |           | 295       |
| 6/22/2016  | 365   |           | 386   | 266       |           |
| 8/8/2016   |       | 180       |       |           |           |
| 8/9/2016   |       |           |       | 260       | 318       |
| 8/24/2016  |       | 180       |       | 274       | 319       |
| 10/3/2016  |       | 184       |       |           | 293       |
| 10/4/2016  |       |           |       | 243       |           |
| 10/26/2016 |       | 171       |       | 254       | 311       |
| 11/21/2016 |       | 179       |       | 263       | 320       |
| 1/17/2017  |       | 188       |       |           |           |
| 1/18/2017  |       |           |       | 431       | 417       |
| 3/22/2017  |       | 155       |       | 318       | 292       |
| 4/18/2017  |       | 156       |       | 296       | 302       |
| 5/31/2017  |       | 151       |       | 306       | 284       |
| 8/23/2017  |       | 155       |       | 298       | 297       |
| 10/12/2017 | 373   |           | 353   |           |           |
| 10/13/2017 | 381   |           | 354   |           |           |
| 10/14/2017 | 399   |           | 346   |           |           |
| 10/15/2017 | 375   |           | 353   |           |           |
| 10/16/2017 | 381   |           | 347   |           |           |
| 10/17/2017 | 386   |           | 337   |           |           |
| 11/15/2017 | 371   |           | 334   |           |           |
| 5/22/2018  | 325   | 172       | 398   |           |           |
| 5/23/2018  |       |           |       |           | 296       |
| 5/24/2018  |       |           |       | 297       |           |
| 6/12/2018  |       | 179       |       | 318       | 355       |
| 10/17/2018 |       | 200       |       | 392       | 342       |
| 11/19/2018 |       | 221       |       | 387       | 289       |
| 11/20/2018 | 325   |           | 349   |           |           |
| 4/10/2019  |       | 200       |       | 348       | 356       |
| 5/14/2019  |       | 168       |       | 254       | 254       |
| 5/15/2019  | 372   |           | 381   |           |           |
| 10/8/2019  | 357   | 190       |       | 371       |           |
| 10/10/2019 |       |           | 407   |           | 302       |
| 10/16/2019 |       | 194       |       | 346       | 356       |
| 4/6/2020   |       | 152       |       | 177       | 222       |
| 4/8/2020   | 288   |           | 345   |           |           |
| 7/13/2020  |       | 163       |       | 264       |           |
| 7/14/2020  | 215   |           | 242   |           | 259       |
| 7/15/2020  | 315   | 170       | 342   | 212       | 271       |
| 2/22/2021  |       | 178       | 242   | 312       | 271       |
| 2/23/2021  | 222   |           | 343   |           |           |
| 2/24/2021  | 332   |           |       |           |           |

Constituent: Chloride, Total (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|           |           |            |            | · 9        |         |        |         |  |
|-----------|-----------|------------|------------|------------|---------|--------|---------|--|
|           | MW-1 (bg) | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16   | MW-17R | MW-18   |  |
| 4/26/2016 | 5 1.94    | 1.71       | 1.48       | 1.11       |         |        | 1.45    |  |
| 4/27/2016 | 5         |            |            |            | 2.76    |        |         |  |
| 6/20/2016 | 2.09      |            |            |            |         |        |         |  |
| 6/22/2016 | 5         | 2.1        | 1.83       | 1.19       | 3.08    |        | 1.64    |  |
| 8/8/2016  | 2.18      |            |            |            |         |        |         |  |
| 8/24/2016 | 3 2.22    |            |            |            |         |        |         |  |
| 10/3/2016 | 2.34      |            |            |            |         |        |         |  |
| 10/26/201 | 6 2.34    |            |            |            |         |        |         |  |
| 11/21/201 | 6 2.5     |            |            |            |         |        |         |  |
| 1/17/2017 | 2.68      |            |            |            |         |        |         |  |
| 3/22/2017 | 3.7       |            |            |            |         |        |         |  |
| 4/18/2017 | 2.4       |            |            |            |         |        |         |  |
| 5/30/2017 | 2.6       |            |            |            |         |        |         |  |
| 8/23/2017 | 2.7       |            |            |            |         |        |         |  |
| 10/12/201 | 17        | 2.3        | 2.2        | 1.8 (J)    | 4.4     |        | 1.8 (J) |  |
| 10/13/201 | 7         | 2.5        | 2.2        | 1.8 (J)    | 4.3 (B) |        | 2.3 (B) |  |
| 10/14/201 | 17        | 1.6 (J)    | 1.3 (J)    | 1.1 (J)    | 3.4     |        | 1 (J)   |  |
| 10/15/201 | 17        | 1.6 (J)    | 1.4 (J)    | 0.93 (J)   | 3.6     |        | 1.3 (J) |  |
| 10/16/201 | 17        | 1.5 (J)    | 1.3 (J)    | 0.83 (J)   | 3.9     |        | 1 (J)   |  |
| 10/17/201 | 17        | 2.1        | 1.8 (J)    | 1.4 (J)    | 3.8     |        | 2       |  |
| 11/15/201 | 17        |            |            | 1.4 (J)    | 4.3     |        | 3.6     |  |
| 11/16/201 | 17        | 2.4        | 1.9 (J)    |            |         |        |         |  |
| 5/21/2018 | 3         | 2.6        | 2.3        | 1.6 (J)    | 4.1     |        |         |  |
| 5/22/2018 | 3 2.3     |            |            |            |         |        | 2.1     |  |
| 6/12/2018 | 3 2.3     |            |            |            |         |        |         |  |
| 10/17/201 | 8 1.7 (J) |            |            |            |         |        |         |  |
| 11/19/201 | 8 1.7 (J) | 1.6 (J)    | <2         | <2         | 3.7     |        | <2      |  |
| 4/10/2019 | 2.36      |            |            |            |         |        |         |  |
| 5/14/2019 | 2.28      | 1.96       | 1.97       | 1.87       | 4.12    |        |         |  |
| 5/15/2019 | )         |            |            |            |         |        | 1.61    |  |
| 10/8/2019 | 2.31      | 2.1        | 2.01       | 1.8        | 3.88    |        | 1.48    |  |
| 10/16/201 | 9 2.42    |            |            |            |         |        |         |  |
| 4/6/2020  | 2.01      |            |            |            | 3.26    |        |         |  |
| 4/7/2020  |           | 1.67       | 1.59       | 1.4        |         |        |         |  |
| 4/8/2020  |           |            |            |            |         |        | 1.43    |  |
| 7/13/2020 | 2.1       |            |            |            |         |        |         |  |
| 7/14/2020 |           | 1.9        | 1.73       | 1.5        | 3.61    |        | 1.48    |  |
| 2/22/2021 | 2.16      |            |            |            |         |        |         |  |
| 2/23/2021 | l         | 1.6        | 1.53       | 1.41       | 3.08    | 2.36   | 1.34    |  |
|           |           |            |            |            |         |        |         |  |

Constituent: Chloride, Total (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |         |           | Plant Gorgas | s Client: Southern | Company Data: Gorgas Gypsum Landiiii |
|------------|---------|-----------|--------------|--------------------|--------------------------------------|
|            | MW-19   | MW-2 (bg) | MW-20        | MW-3 (bg)          | MW-4 (bg)                            |
| 4/25/2016  |         | 1.9       |              | 1.32               | 1.53                                 |
| 4/26/2016  | 1.76    |           | 2.66         |                    |                                      |
| 6/20/2016  |         | 3.43      |              |                    | 1.85                                 |
| 6/22/2016  | 2.19    |           | 2.68         | 1.46               |                                      |
| 8/8/2016   |         | 3.31      |              |                    |                                      |
| 8/9/2016   |         |           |              | 1.35               | 1.95                                 |
| 8/24/2016  |         | 3.23      |              | 1.47               | 2.07                                 |
| 10/3/2016  |         | 3.21      |              |                    | 2.02                                 |
| 10/4/2016  |         |           |              | 1.59               |                                      |
| 10/26/2016 |         | 3.35      |              | 1.27               | 2.07                                 |
| 11/21/2016 |         | 3.34      |              | 1.38               | 2.39                                 |
| 1/17/2017  |         | 3.58      |              |                    |                                      |
| 1/18/2017  |         |           |              | 1.34               | 1.9                                  |
| 3/22/2017  |         | 3.4       |              | 2                  | 1.5 (J)                              |
| 4/18/2017  |         | 2.6       |              | 2.2                | 1.6 (J)                              |
| 5/31/2017  |         | 4.4       |              | 1.5 (J)            | 2.1                                  |
| 8/23/2017  |         | 4.4       |              | 1.8 (J)            | 2.3                                  |
| 10/12/2017 | 2.9     |           | 5.6          |                    |                                      |
| 10/13/2017 | 2.6 (B) |           | 5 (B)        |                    |                                      |
| 10/14/2017 | 1.8 (J) |           | 4.4          |                    |                                      |
| 10/15/2017 | 2       |           | 4.8          |                    |                                      |
| 10/16/2017 | 2.4     |           | 4.9          |                    |                                      |
| 10/17/2017 | 2.5     |           | 5.1          |                    |                                      |
| 11/15/2017 | 2.9     |           | 6.3          |                    |                                      |
| 5/22/2018  | 2.9     | 3.2       | 24           |                    |                                      |
| 5/23/2018  |         |           |              |                    | 2                                    |
| 5/24/2018  |         |           |              | 1.6 (J)            |                                      |
| 6/12/2018  |         | 3.7       |              | 1.4 (J)            | 1.7 (J)                              |
| 10/17/2018 |         | 4.6       |              | <2                 | 1.5 (J)                              |
| 11/19/2018 |         | 3         |              | <2                 | <2                                   |
| 11/20/2018 | 1.8 (J) |           | 43           |                    |                                      |
| 4/10/2019  |         | 1.76      |              | 2.25               | 1.88                                 |
| 5/14/2019  |         | 2.98      |              | 2.28               | 1.82                                 |
| 5/15/2019  | 2.22    |           | 57.7         |                    |                                      |
| 10/8/2019  | 2.13    | 4.26      |              | 1.36               |                                      |
| 10/10/2019 |         |           | 66.1         |                    | 1.93                                 |
| 10/16/2019 |         | 4.04      |              | 1.4                | 1.92                                 |
| 4/6/2020   |         | 2.43      |              | 1.72               | 1.5                                  |
| 4/8/2020   | 1.63    |           | 62.7         |                    |                                      |
| 7/13/2020  |         | 4.05      |              | 1.34               | 404                                  |
| 7/14/2020  | 4.74    |           | 60.4         |                    | 1.61                                 |
| 7/15/2020  | 1.71    | 1.70      | 68.4         | 2.22               | 450                                  |
| 2/22/2021  |         | 1.72      | 100          | 2.22               | 1.52                                 |
| 2/23/2021  | 2.02    |           | 129          |                    |                                      |
| 2/24/2021  | 2.02    |           |              |                    |                                      |
|            |         |           |              |                    |                                      |

Constituent: Chromium (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg)    | MW-13 (bg)   | MW-14 (bg)   | MW-15 (bg) | MW-16     | MW-17R    | MW-18     |
|------------|--------------|--------------|--------------|------------|-----------|-----------|-----------|
| 4/26/2016  | <0.001015    | <0.001015    | <0.001015    | <0.001015  |           |           | <0.001015 |
| 4/27/2016  |              |              |              |            | <0.001015 |           |           |
| 6/20/2016  | <0.001015    |              |              |            |           |           |           |
| 6/22/2016  |              | <0.001015    | <0.001015    | <0.001015  | <0.001015 |           | <0.001015 |
| 8/8/2016   | <0.001015    |              |              |            |           |           |           |
| 8/24/2016  | <0.001015    |              |              |            |           |           |           |
| 10/3/2016  | <0.001015    |              |              |            |           |           |           |
| 10/26/2016 | <0.001015    |              |              |            |           |           |           |
| 11/21/2016 | <0.001015    |              |              |            |           |           |           |
| 1/17/2017  | <0.001015    |              |              |            |           |           |           |
| 3/22/2017  | <0.001015    |              |              |            |           |           |           |
| 4/18/2017  | <0.001015    |              |              |            |           |           |           |
| 5/30/2017  | <0.001015    |              |              |            |           |           |           |
| 10/12/2017 |              | <0.001015    | <0.001015    | <0.001015  | <0.001015 |           | <0.001015 |
| 10/13/2017 |              | <0.001015    | <0.001015    | <0.001015  | <0.001015 |           | <0.001015 |
| 10/14/2017 |              | <0.001015    | <0.001015    | <0.001015  | <0.001015 |           | <0.001015 |
| 10/15/2017 |              | <0.001015    | <0.001015    | <0.001015  | <0.001015 |           | <0.001015 |
| 10/16/2017 |              | <0.001015    | <0.001015    | <0.001015  | <0.001015 |           | <0.001015 |
| 10/17/2017 |              | <0.001015    | <0.001015    | <0.001015  | <0.001015 |           | <0.001015 |
| 2/13/2018  | <0.001015    | <0.001015    | <0.001015    |            |           |           |           |
| 2/14/2018  |              |              |              | <0.001015  | <0.001015 |           | <0.001015 |
| 5/21/2018  |              | <0.001015    | <0.001015    | <0.001015  | <0.001015 |           |           |
| 5/22/2018  | <0.001015    |              |              |            |           |           | <0.001015 |
| 6/12/2018  | <0.001015    |              |              |            |           |           |           |
| 10/17/2018 | <0.001015    |              |              |            |           |           |           |
| 11/19/2018 | <0.001015    | <0.001015    | <0.001015    | <0.001015  | <0.001015 |           | <0.001015 |
| 4/10/2019  | <0.001015    |              |              |            |           |           |           |
| 5/14/2019  | <0.001015    | <0.001015    | <0.001015    | <0.001015  | <0.001015 |           |           |
| 5/15/2019  |              |              |              |            |           |           | <0.001015 |
| 10/8/2019  | <0.001015    | <0.001015    | <0.001015    | <0.001015  | <0.001015 |           | <0.001015 |
| 10/16/2019 | <0.001015    |              |              |            |           |           |           |
| 4/6/2020   | <0.001015    |              |              |            | <0.001015 |           |           |
| 4/7/2020   |              | <0.001015    | <0.001015    | <0.001015  |           |           |           |
| 4/8/2020   |              |              |              |            |           |           | <0.001015 |
| 7/13/2020  | <0.001015    |              |              |            |           |           |           |
| 7/14/2020  |              | <0.001015    | <0.001015    | <0.001015  | <0.001015 |           | <0.001015 |
| 2/22/2021  | 0.000382 (J) |              |              |            |           |           |           |
| 2/23/2021  |              | 0.000295 (J) | 0.000253 (J) | <0.001015  | <0.001015 | <0.001015 | <0.001015 |
|            |              |              |              |            |           |           |           |

Constituent: Chromium (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|                         | MW-19        | MW-2 (bg) | MW-20        | MW-3 (bg)   | MW-4 (bg) |
|-------------------------|--------------|-----------|--------------|-------------|-----------|
| 4/25/2016               |              | <0.001015 |              | 0.00373 (J) | <0.001015 |
| 4/26/2016               | <0.001015    |           | <0.001015    |             |           |
| 6/20/2016               |              | <0.001015 |              |             | <0.001015 |
| 6/22/2016               | <0.001015    |           | <0.001015    | 0.00606 (J) |           |
| 8/8/2016                |              | <0.001015 |              |             |           |
| 8/9/2016                |              |           |              | <0.001015   | <0.001015 |
| 8/24/2016               |              | <0.001015 |              | <0.001015   | <0.001015 |
| 10/3/2016               |              | <0.001015 |              |             | <0.001015 |
| 10/4/2016               |              |           |              | <0.001015   |           |
| 10/26/2016              |              | <0.001015 |              | <0.001015   | <0.001015 |
| 11/21/2016              |              | <0.001015 |              | <0.001015   | <0.001015 |
| 1/17/2017               |              | <0.001015 |              |             |           |
| 1/18/2017               |              |           |              | <0.001015   | <0.001015 |
| 3/22/2017               |              | <0.001015 |              | 0.00945 (J) | <0.001015 |
| 4/18/2017               |              | <0.001015 |              | 0.0105      | <0.001015 |
| 5/31/2017               |              | <0.001015 |              | <0.001015   | <0.001015 |
| 10/12/2017              | <0.001015    |           | <0.001015    |             |           |
| 10/13/2017              | <0.001015    |           | <0.001015    |             |           |
| 10/14/2017              | <0.001015    |           | <0.001015    |             |           |
| 10/15/2017              | <0.001015    |           | <0.001015    |             |           |
| 10/16/2017              | <0.001015    |           | <0.001015    |             |           |
| 10/17/2017              | <0.001015    |           | <0.001015    |             |           |
| 2/13/2018               |              | <0.001015 |              | <0.001015   | <0.001015 |
| 2/14/2018               | <0.001015    |           | <0.001015    |             |           |
| 5/22/2018               | <0.001015    | <0.001015 | <0.001015    |             |           |
| 5/23/2018               |              |           |              | 0.001015    | <0.001015 |
| 5/24/2018               |              | 0.001015  |              | <0.001015   | .0.004045 |
| 6/12/2018               |              | <0.001015 |              | <0.001015   | <0.001015 |
| 10/17/2018              |              | <0.001015 |              | <0.001015   | <0.001015 |
| 11/19/2018              | <0.00101E    | <0.001015 | <0.00101E    | <0.001015   | <0.001015 |
| 11/20/2018<br>4/10/2019 | <0.001015    | <0.001015 | <0.001015    | <0.001015   | <0.001015 |
| 5/14/2019               |              | <0.001015 |              | <0.001015   | <0.001015 |
| 5/15/2019               | <0.001015    | <0.001015 | <0.001015    | <0.001015   | <0.001015 |
| 10/8/2019               | <0.001015    | <0.001015 | <0.001013    | <0.001015   |           |
| 10/10/2019              | 10.001013    | 10.001013 | <0.001015    | 10.001013   | <0.001015 |
| 10/16/2019              |              | <0.001015 | 10.001013    | <0.001015   | <0.001015 |
| 4/6/2020                |              | <0.001015 |              | <0.001015   | <0.001015 |
| 4/8/2020                | <0.001015    | -0.001010 | 0.00312 (J)  | -0.001010   | -0.001010 |
| 7/13/2020               | 0.001010     | <0.001015 | 0.00012 (0)  | <0.001015   |           |
| 7/14/2020               |              | 0.001010  |              | 0.001010    | <0.001015 |
| 7/15/2020               | <0.001015    |           | <0.001015    |             |           |
| 2/22/2021               | <del>-</del> | <0.001015 | <del>-</del> | 0.00035 (J) | <0.001015 |
| 2/23/2021               |              |           | <0.001015    |             |           |
| 2/24/2021               | <0.001015    |           | -            |             |           |
|                         |              |           |              |             |           |

Constituent: Cobalt (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg)  | MW-15 (bg) | MW-16       | MW-17R | MW-18       |
|------------|-----------|------------|-------------|------------|-------------|--------|-------------|
| 4/26/2016  | 0.0343    | 0.0205     | 0.00716 (J) | 0.0686     |             |        | <0.000203   |
| 4/27/2016  |           |            |             |            | 0.00779 (J) |        |             |
| 6/20/2016  | 0.0413    |            |             |            |             |        |             |
| 6/22/2016  |           | 0.0261     | 0.0113      | 0.0745     | 0.0093 (J)  |        | <0.000203   |
| 8/8/2016   | 0.0513    |            |             |            |             |        |             |
| 8/24/2016  | 0.0471    |            |             |            |             |        |             |
| 10/3/2016  | 0.0525    |            |             |            |             |        |             |
| 10/26/2016 | 0.0527    |            |             |            |             |        |             |
| 11/21/2016 | 0.0569    |            |             |            |             |        |             |
| 1/17/2017  | 0.0768    |            |             |            |             |        |             |
| 3/22/2017  | 0.0535    |            |             |            |             |        |             |
| 4/18/2017  | 0.0442    |            |             |            |             |        |             |
| 5/30/2017  | 0.0465    |            |             |            |             |        |             |
| 10/12/2017 |           | 0.0183     | 0.0108      | 0.0687     | 0.00923 (J) |        | <0.000203   |
| 10/13/2017 |           | 0.0214     | 0.0115      | 0.0705     | 0.00981 (J) |        | <0.000203   |
| 10/14/2017 |           | 0.0201     | 0.0113      | 0.0716     | 0.00954 (J) |        | <0.000203   |
| 10/15/2017 |           | 0.0193     | 0.0108      | 0.0696     | 0.00979 (J) |        | <0.000203   |
| 10/16/2017 |           | 0.0163     | 0.00981 (J) | 0.0632     | 0.00919 (J) |        | <0.000203   |
| 10/17/2017 |           | 0.0155     | 0.00949 (J) | 0.0563     | 0.00786 (J) |        | <0.000203   |
| 2/13/2018  | 0.062     | 0.0101     | 0.0104      |            |             |        |             |
| 2/14/2018  |           |            |             | 0.0685     | 0.00965 (J) |        | 0.00286 (J) |
| 5/21/2018  |           | 0.0114     | 0.00826 (J) | 0.062      | 0.0092 (J)  |        |             |
| 5/22/2018  | 0.0443    |            |             |            |             |        | <0.000203   |
| 6/12/2018  | 0.0512    |            |             |            |             |        |             |
| 10/17/2018 | 0.0751    |            |             |            |             |        |             |
| 11/19/2018 | 0.0825    | 0.0208     | 0.0119      | 0.0787     | 0.0117      |        | <0.000203   |
| 4/10/2019  | 0.0445    |            |             |            |             |        |             |
| 5/14/2019  | 0.0485    | 0.00941    | 0.0085      | 0.0739     | 0.00943     |        |             |
| 5/15/2019  |           |            |             |            |             |        | <0.000203   |
| 10/8/2019  | 0.0778    | 0.0204     | 0.0108      | 0.0725     | 0.0111      |        | <0.000203   |
| 10/16/2019 | 0.08      |            |             |            |             |        |             |
| 4/6/2020   | 0.0417    |            |             |            | 0.00859     |        |             |
| 4/7/2020   |           | 0.00814    | 0.00781     | 0.0697     |             |        |             |
| 4/8/2020   |           |            |             |            |             |        | <0.000203   |
| 7/13/2020  | 0.0532    |            |             |            |             |        |             |
| 7/14/2020  |           | 0.0143     | 0.00839     | 0.0694     | 0.00979     |        | <0.000203   |
| 2/22/2021  | 0.0657    |            |             |            |             |        |             |
| 2/23/2021  |           | 0.00685    | 0.00918     | 0.0755     | 0.01        | 0.385  | <0.000203   |
|            |           |            |             |            |             |        |             |

Constituent: Cobalt (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-19  | MW-2 (bg) | MW-20     | MW-3 (bg)   | MW-4 (bg) |
|------------|--------|-----------|-----------|-------------|-----------|
| 4/25/2016  |        | 0.0487    |           | 0.232       | <0.000203 |
| 4/26/2016  | 0.0717 |           | <0.000203 |             |           |
| 6/20/2016  |        | 0.0767    |           |             | <0.000203 |
| 6/22/2016  | 0.0844 |           | <0.000203 | 0.332       |           |
| 8/8/2016   |        | 0.103     |           |             |           |
| 8/9/2016   |        |           |           | 0.311       | <0.000203 |
| 8/24/2016  |        | 0.093     |           | 0.271       | <0.000203 |
| 10/3/2016  |        | 0.0964    |           |             | <0.000203 |
| 10/4/2016  |        |           |           | 0.148       |           |
| 10/26/2016 |        | 0.0904    |           | 0.236       | <0.000203 |
| 11/21/2016 |        | 0.0857    |           | 0.241       | <0.000203 |
| 1/17/2017  |        | 0.0745    |           |             |           |
| 1/18/2017  |        |           |           | 0.347       | <0.000203 |
| 3/22/2017  |        | 0.0328    |           | 0.271       | <0.000203 |
| 4/18/2017  |        | 0.0242    |           | 0.00324 (J) | <0.000203 |
| 5/31/2017  |        | 0.0441    |           | 0.225       | <0.000203 |
| 10/12/2017 | 0.173  |           | <0.000203 |             |           |
| 10/13/2017 | 0.171  |           | <0.000203 |             |           |
| 10/14/2017 | 0.168  |           | <0.000203 |             |           |
| 10/15/2017 | 0.166  |           | <0.000203 |             |           |
| 10/16/2017 | 0.15   |           | <0.000203 |             |           |
| 10/17/2017 | 0.13   |           | <0.000203 |             |           |
| 2/13/2018  |        | 0.0179    |           | 0.00661 (J) | <0.000203 |
| 2/14/2018  | 0.0741 |           | <0.000203 |             |           |
| 5/22/2018  | 0.077  | 0.028     | <0.000203 |             |           |
| 5/23/2018  |        |           |           |             | <0.000203 |
| 5/24/2018  |        |           |           | 0.158       |           |
| 6/12/2018  |        | 0.0366    |           | 0.291       | <0.000203 |
| 10/17/2018 |        | 0.0745    |           | 0.49        | <0.000203 |
| 11/19/2018 |        | 0.0225    |           | 0.386       | <0.000203 |
| 11/20/2018 | 0.071  |           | <0.000203 |             |           |
| 4/10/2019  |        | 0.0152    |           | 0.0144      | <0.000203 |
| 5/14/2019  |        | 0.0222    |           | 0.00536     | <0.000203 |
| 5/15/2019  | 0.0454 |           | <0.000203 |             |           |
| 10/8/2019  | 0.0545 | 0.0674    |           | 1.07        |           |
| 10/10/2019 |        |           | <0.000203 |             | <0.000203 |
| 10/16/2019 |        | 0.073     |           | 0.848       | <0.000203 |
| 4/6/2020   |        | 0.0116    |           | <0.000203   | <0.000203 |
| 4/8/2020   | 0.0257 |           | <0.000203 |             |           |
| 7/13/2020  |        | 0.0405    |           | 0.47        |           |
| 7/14/2020  | 0.0200 |           | <0.000202 |             | <0.000203 |
| 7/15/2020  | 0.0299 | 0.0101    | <0.000203 | 0.0515      | -0.000000 |
| 2/22/2021  |        | 0.0161    | 0.000004  | 0.0515      | <0.000203 |
| 2/23/2021  | 0.0383 |           | 0.000234  |             |           |
| 2/24/2021  | 0.0382 |           |           |             |           |

 $\label{lem:constituent:Combined Radium 226 + 228 (pCi/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View \\ Plant Gorgas & Client: Southern Company Data: Gorgas Gypsum Landfill View: Constituents View Plant Gorgas (Plant Company Data: Gorgas Gypsum Landfill View: Constituents View Plant Gorgas (Plant Company Data: Gorgas Gypsum Landfill View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Constituents View: Co$ 

|            |            |            | r lant dort | gas Olient. Oddine | in Company Data. | . dorgas dypsum Le | indiii      |
|------------|------------|------------|-------------|--------------------|------------------|--------------------|-------------|
|            | MW-1 (bg)  | MW-13 (bg) | MW-14 (bg)  | MW-15 (bg)         | MW-16            | MW-17R             | MW-18       |
| 4/26/2016  | 0.622      | 0.245 (U)  | 0.429       | 0.139 (U)          |                  |                    | -0.105 (U)  |
| 4/27/2016  |            |            |             |                    | 0.35 (U)         |                    |             |
| 6/20/2016  | 0.159 (U)  |            |             |                    |                  |                    |             |
| 6/22/2016  |            | 0.822      | 0.293 (U)   | 0.318 (U)          | 0.231 (U)        |                    | 0.109 (U)   |
| 8/8/2016   | 0.511 (U)  |            |             |                    |                  |                    |             |
| 8/24/2016  | 0.566 (U)  |            |             |                    |                  |                    |             |
| 10/3/2016  | 0.537 (U)  |            |             |                    |                  |                    |             |
| 10/26/2016 | 0.636      |            |             |                    |                  |                    |             |
| 11/21/2016 | 0.807      |            |             |                    |                  |                    |             |
| 1/17/2017  | 0.308 (U)  |            |             |                    |                  |                    |             |
| 3/22/2017  | 0.344 (U)  |            |             |                    |                  |                    |             |
| 4/18/2017  | 0.934      |            |             |                    |                  |                    |             |
| 5/30/2017  | 0.149 (U)  |            |             |                    |                  |                    |             |
| 10/12/2017 |            | 0.478 (U)  | 0.34 (U)    | 0.575 (U)          | 0.241 (U)        |                    | 0.0572 (U)  |
| 10/13/2017 |            | 0.561 (U)  | 0.511 (U)   | 0.593 (U)          | 0.964 (U)        |                    | 0.433 (U)   |
| 10/14/2017 |            | 2.15 (O)   | 0.701 (U)   | 0.573 (U)          | 0.858 (U)        |                    | 1.59 (U)    |
| 10/15/2017 |            | 0.198 (U)  | 0.311 (U)   | 0.769 (U)          | -0.0572 (U)      |                    | -0.0872 (U) |
| 10/16/2017 |            | 0.641 (U)  | 0.755 (U)   | 0.441 (U)          | 0.558 (U)        |                    | 0.267 (U)   |
| 10/17/2017 |            | 0.344 (U)  | 0.214 (U)   | 0.189 (U)          | 0.783 (U)        |                    | 0.427 (U)   |
| 2/13/2018  | 0.774      | 1 (U)      | 1.26        |                    |                  |                    |             |
| 2/14/2018  |            |            |             | 1.91               | 0.621            |                    | 1.15        |
| 5/21/2018  |            | 0.407 (U)  | 0.375 (U)   | 0.209 (U)          | 2.13             |                    |             |
| 5/22/2018  | -0.091 (U) |            |             |                    |                  |                    | 0.34 (U)    |
| 6/12/2018  | 1.18       |            |             |                    |                  |                    |             |
| 10/17/2018 | 0.553 (U)  |            |             |                    |                  |                    |             |
| 11/19/2018 | 0.862 (D)  | 0.637      | 0.636       | 0.306 (U)          | 0.292 (U)        |                    | 0.274 (U)   |
| 5/14/2019  | 0.509      | 0.529      | 0.518       | 0.817              | 0.53             |                    |             |
| 5/15/2019  |            |            |             |                    |                  |                    | 0.287 (U)   |
| 10/8/2019  | 1.47       | 0.29 (U)   | 0.478 (U)   | 0.712 (U)          | 0.748 (U)        |                    | -0.169 (U)  |
| 10/16/2019 | 0.204 (U)  |            |             |                    |                  |                    |             |
| 4/6/2020   | 0.309 (U)  |            |             |                    | 0.391 (U)        |                    |             |
| 4/7/2020   |            | 0.169 (U)  | 0.276 (U)   | 0.389 (U)          |                  |                    |             |
| 4/8/2020   |            |            |             |                    |                  |                    | 0.456 (U)   |
| 7/13/2020  | 0.219 (U)  |            |             |                    |                  |                    |             |
| 7/14/2020  |            | 0.779      | 0.651       | 0.369 (U)          | 0.565            |                    | 0.205 (U)   |
| 2/22/2021  | 0.677 (U)  |            |             |                    |                  |                    |             |
| 2/23/2021  |            | 0.453 (U)  | 0.804 (U)   | 0.587 (U)          | 0.546 (U)        | 0.44 (U)           | 0.748 (U)   |
|            |            |            |             |                    |                  |                    |             |

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |           |             | - idii doigo | onorit. Coddition | - Company Dan |
|------------|-----------|-------------|--------------|-------------------|---------------|
|            | MW-19     | MW-2 (bg)   | MW-20        | MW-3 (bg)         | MW-4 (bg)     |
| 4/25/2016  |           |             |              | 0.484 (U)         | 0.434 (U)     |
| 4/26/2016  | 0.415 (U) |             | 0.967        |                   |               |
| 5/5/2016   |           | -0.0718 (U) |              |                   |               |
| 6/20/2016  |           | 0.295 (U)   |              |                   | 0.287 (U)     |
| 6/22/2016  | 0.536     |             | 0.595        | 0.2 (U)           |               |
| 8/8/2016   |           | 0.231 (U)   |              |                   |               |
| 8/9/2016   |           |             |              | 0.378 (U)         | 0.516 (U)     |
| 8/24/2016  |           | 0.65        |              | 0.131 (U)         | 0.266 (U)     |
| 10/3/2016  |           | 0.845       |              |                   | 0.59 (U)      |
| 10/4/2016  |           |             |              | 0.514 (U)         |               |
| 10/26/2016 |           | 0.994       |              | 0.755             | 0.164 (U)     |
| 11/21/2016 |           | 0.537 (U)   |              | 0.7               | 0.296 (U)     |
| 1/17/2017  |           | -0.0159 (U) |              |                   |               |
| 1/18/2017  |           |             |              | 0.606             | 0.0267 (U)    |
| 3/22/2017  |           | 0.279 (U)   |              | 0.927             | 0.132 (U)     |
| 4/18/2017  |           | 0.32 (U)    |              | 0.334 (U)         | -0.0439 (U)   |
| 5/31/2017  |           | 0.178 (U)   |              | 0.8               | 0.3 (U)       |
| 10/12/2017 | 0.188 (U) |             | 0.646 (U)    |                   |               |
| 10/13/2017 | 0.561 (U) |             | 1.25 (U)     |                   |               |
| 10/14/2017 | 0.754 (U) |             | 1.16 (U)     |                   |               |
| 10/15/2017 | 1.06 (U)  |             | 0.935 (U)    |                   |               |
| 10/16/2017 | 0.6 (U)   |             | 0.929 (U)    |                   |               |
| 10/17/2017 | 0.521 (U) |             | 0.736 (U)    |                   |               |
| 2/13/2018  |           | 0.804       |              | 0.649             | 0.69          |
| 2/14/2018  | 1.08      |             | 1.47         |                   |               |
| 5/22/2018  | 0.384 (U) | 0.0077 (U)  | 0.581        |                   |               |
| 5/23/2018  |           |             |              |                   | 0.186 (U)     |
| 5/24/2018  |           |             |              | 0.448 (U)         |               |
| 6/12/2018  |           | -0.315 (U)  |              | 0.234 (U)         | 0.153 (U)     |
| 10/17/2018 |           | 0.574 (U)   |              | 0.852             | 0.313 (U)     |
| 11/19/2018 |           | 0.654 (D)   |              | 0.521 (D)         | 0.794 (D)     |
| 11/20/2018 | 0.302 (U) |             | 0.65         |                   |               |
| 5/14/2019  |           | 0.579       |              | 0.176 (U)         | 0.352 (U)     |
| 5/15/2019  | 0.286 (U) |             | 0.418        |                   |               |
| 10/8/2019  | 0.616 (U) | 0.493 (U)   |              | 0.833 (U)         |               |
| 10/10/2019 |           |             | 1.18         |                   | 1.02 (U)      |
| 10/16/2019 |           | 0.046 (U)   |              | 0.0279 (U)        | 0.356 (U)     |
| 4/6/2020   |           | 0.212 (U)   |              | 0.569 (U)         | 0.459 (U)     |
| 4/8/2020   | 0.502 (U) |             | 0.7          |                   |               |
| 7/13/2020  |           | 0.0814 (U)  |              | 0.53              |               |
| 7/14/2020  |           |             |              |                   | 0.169 (U)     |
| 7/15/2020  | 0.371 (U) |             | 0.96         |                   |               |
| 2/22/2021  |           | 0.434 (U)   |              | 0.472 (U)         | 0 (U)         |
| 2/23/2021  |           |             | 1.19 (U)     |                   |               |
| 2/24/2021  | 0.82 (U)  |             |              |                   |               |
|            |           |             |              |                   |               |

Constituent: Fluoride, total (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |            |            | _          |            |           |        |         |
|------------|------------|------------|------------|------------|-----------|--------|---------|
|            | MW-1 (bg)  | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16     | MW-17R | MW-18   |
| 4/26/2016  | 0.146 (J)  | 0.197 (J)  | 0.271 (J)  | 0.379      |           |        | 0.329   |
| 4/27/2016  |            |            |            |            | 0.168 (J) |        |         |
| 6/20/2016  | 0.148 (J)  |            |            |            |           |        |         |
| 6/22/2016  |            | 0.208 (J)  | 0.265 (J)  | 0.347      | 0.176 (J) |        | 0.303   |
| 8/8/2016   | 0.137 (J)  |            |            |            |           |        |         |
| 8/24/2016  | 0.133 (J)  |            |            |            |           |        |         |
| 10/3/2016  | 0.103 (J)  |            |            |            |           |        |         |
| 10/26/2016 | 0.05 (J)   |            |            |            |           |        |         |
| 11/21/2016 | 0.047 (J)  |            |            |            |           |        |         |
| 1/17/2017  | 0.09 (J)   |            |            |            |           |        |         |
| 3/22/2017  | 0.12       |            |            |            |           |        |         |
| 4/18/2017  | 0.12       |            |            |            |           |        |         |
| 5/30/2017  | 0.13       |            |            |            |           |        |         |
| 8/23/2017  | 0.16       |            |            |            |           |        |         |
| 10/12/2017 |            | 0.22       | 0.26       | 0.37       | 0.18      |        | 0.31    |
| 10/13/2017 |            | 0.2        | 0.25       | 0.36       | 0.17      |        | 0.32    |
| 10/14/2017 |            | 0.21       | 0.26       | 0.37       | 0.18      |        | 0.32    |
| 10/15/2017 |            | 0.22       | 0.26       | 0.35       | 0.18      |        | 0.32    |
| 10/16/2017 |            | 0.22       | 0.25       | 0.36       | 0.18      |        | 0.31    |
| 10/17/2017 |            | 0.2        | 0.25       | 0.35       | 0.17      |        | 0.31    |
| 11/15/2017 |            |            |            | 0.35       | 0.17      |        | 0.31    |
| 11/16/2017 |            | 0.2        | 0.25       |            |           |        |         |
| 2/13/2018  | 0.14 (D)   | 0.24 (D)   | 0.25 (D)   |            |           |        |         |
| 2/14/2018  |            |            |            | 0.35 (D)   | 0.17 (D)  |        | 0.3 (D) |
| 5/21/2018  |            | 0.22       | 0.26       | 0.35       | 0.18      |        |         |
| 5/22/2018  | 0.16       |            |            |            |           |        | 0.31    |
| 6/12/2018  | 0.16       |            |            |            |           |        |         |
| 10/17/2018 | 0.18       |            |            |            |           |        |         |
| 11/19/2018 | 0.15       | 0.2        | 0.25       | 0.34       | 0.17      |        | 0.3     |
| 4/10/2019  | 0.102      |            |            |            |           |        |         |
| 5/14/2019  | 0.119      | 0.196      | 0.225      | 0.34       | 0.153     |        |         |
| 5/15/2019  |            |            |            |            |           |        | 0.27    |
| 10/8/2019  | 0.0924 (J) | 0.184      | 0.224      | 0.382      | 0.161     |        | 0.284   |
| 10/16/2019 | 0.0756 (J) |            |            |            |           |        |         |
| 4/6/2020   | 0.101      |            |            |            | 0.141     |        |         |
| 4/7/2020   |            | 0.189      | 0.201      | 0.303      |           |        |         |
| 4/8/2020   |            |            |            |            |           |        | 0.305   |
| 7/13/2020  | 0.0678 (J) |            |            |            |           |        |         |
| 7/14/2020  |            | 0.174      | 0.227      | 0.305      | 0.16      |        | 0.28    |
| 2/22/2021  | 0.082 (J)  |            |            |            |           |        |         |
| 2/23/2021  |            | 0.224      | 0.22       | 0.275      | 0.161     | 0.154  | 0.29    |
|            |            |            |            |            |           |        |         |

Constituent: Fluoride, total (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |          |           | · ·       |           | . ,       |
|------------|----------|-----------|-----------|-----------|-----------|
|            | MW-19    | MW-2 (bg) | MW-20     | MW-3 (bg) | MW-4 (bg) |
| 4/25/2016  |          | 0.149 (J) |           | 0.243 (J) | 0.372     |
| 4/26/2016  | 0.332    |           | 0.115 (J) |           |           |
| 6/20/2016  |          | 0.148 (J) |           |           | 0.361     |
| 6/22/2016  | 0.334    |           | 0.126 (J) | 0.269 (J) |           |
| 8/8/2016   |          | 0.134 (J) |           |           |           |
| 8/9/2016   |          |           |           | 0.363     | 0.326     |
| 8/24/2016  |          | 0.129 (J) |           | 0.346     | 0.329     |
| 10/3/2016  |          | 0.086 (J) |           |           | 0.287 (J) |
| 10/4/2016  |          |           |           | 0.266 (J) |           |
| 10/26/2016 |          | 0.027 (J) |           | 0.266 (J) | 0.194 (J) |
| 11/21/2016 |          | 0.027 (J) |           | 0.244 (J) | 0.192 (J) |
| 1/17/2017  |          | 0.066 (J) |           |           |           |
| 1/18/2017  |          |           |           | 0.385     | 0.223 (J) |
| 3/22/2017  |          | 0.13      |           | 0.41      | 0.32      |
| 4/18/2017  |          | 0.16      |           | 0.29      | 0.32      |
| 5/31/2017  |          | 0.13      |           | 0.37      | 0.31      |
| 8/23/2017  |          | 0.16      |           | 0.55      | 0.38      |
| 10/12/2017 | 0.34     |           | 0.12      |           |           |
| 10/13/2017 | 0.34     |           | 0.13      |           |           |
| 10/14/2017 | 0.34     |           | 0.13      |           |           |
| 10/15/2017 | 0.34     |           | 0.14      |           |           |
| 10/16/2017 | 0.35     |           | 0.13      |           |           |
| 10/17/2017 | 0.33     |           | 0.13      |           |           |
| 11/15/2017 | 0.34     |           | 0.13      |           |           |
| 2/13/2018  |          | 0.22 (D)  |           | 0.27 (D)  | 0.38 (D)  |
| 2/14/2018  | 0.28 (D) |           | 0.12 (D)  |           |           |
| 5/22/2018  | 0.29     | 0.17      | 0.13      |           |           |
| 5/23/2018  |          |           |           |           | 0.38      |
| 5/24/2018  |          |           |           | 0.6       |           |
| 6/12/2018  |          | 0.16      |           | 0.53      | 0.39      |
| 10/17/2018 |          | 0.16      |           | 0.63      | 0.39      |
| 11/19/2018 |          | 0.18      |           | 0.31      | 0.36      |
| 11/20/2018 | 0.28     |           | 0.12      |           |           |
| 4/10/2019  |          | 0.262     |           | 0.273     | 0.384     |
| 5/14/2019  |          | 0.17      |           | 0.281     | 0.335     |
| 5/15/2019  | 0.277    |           | 0.12      |           |           |
| 10/8/2019  | 0.345    | 0.164     |           | 0.225     |           |
| 10/10/2019 |          |           | 0.103     |           | 0.304     |
| 10/16/2019 |          | 0.114     |           | 0.106     | 0.302     |
| 4/6/2020   |          | 0.207     |           | 0.314     | 0.368     |
| 4/8/2020   | 0.304    |           | 0.107     |           |           |
| 7/13/2020  |          | 0.132     |           | 0.13      |           |
| 7/14/2020  | 0.242    |           | 0.11      |           | 0.33      |
| 7/15/2020  | 0.342    | 0.200     | 0.11      | 0.246     | 0.257     |
| 2/22/2021  |          | 0.209     | 0.117     | 0.246     | 0.357     |
| 2/23/2021  | 0.242    |           | 0.117     |           |           |
| 2/24/2021  | 0.343    |           |           |           |           |
|            |          |           |           |           |           |

Constituent: Lead (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg)   | MW-15 (bg) | MW-16     | MW-17R    | MW-18     |
|------------|-----------|------------|--------------|------------|-----------|-----------|-----------|
| 4/26/2016  | <0.000203 | <0.000203  | <0.000203    | <0.000203  |           |           | <0.000203 |
| 4/27/2016  |           |            |              |            | <0.000203 |           |           |
| 6/20/2016  | <0.000203 |            |              |            |           |           |           |
| 6/22/2016  |           | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 8/8/2016   | <0.000203 |            |              |            |           |           |           |
| 8/24/2016  | <0.000203 |            |              |            |           |           |           |
| 10/3/2016  | <0.000203 |            |              |            |           |           |           |
| 10/26/2016 | <0.000203 |            |              |            |           |           |           |
| 11/21/2016 | <0.000203 |            |              |            |           |           |           |
| 1/17/2017  | <0.000203 |            |              |            |           |           |           |
| 3/22/2017  | <0.000203 |            |              |            |           |           |           |
| 4/18/2017  | <0.000203 |            |              |            |           |           |           |
| 5/30/2017  | <0.000203 |            |              |            |           |           |           |
| 10/12/2017 |           | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 10/13/2017 |           | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 10/14/2017 |           | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 10/15/2017 |           | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 10/16/2017 |           | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 10/17/2017 |           | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 2/13/2018  | <0.000203 | <0.000203  | <0.000203    |            |           |           |           |
| 2/14/2018  |           |            |              | <0.000203  | <0.000203 |           | <0.000203 |
| 5/21/2018  |           | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           |           |
| 5/22/2018  | <0.000203 |            |              |            |           |           | <0.000203 |
| 6/12/2018  | <0.000203 |            |              |            |           |           |           |
| 10/17/2018 | <0.000203 |            |              |            |           |           |           |
| 11/19/2018 | <0.000203 | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 4/10/2019  | <0.000203 |            |              |            |           |           |           |
| 5/14/2019  | <0.000203 | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           |           |
| 5/15/2019  |           |            |              |            |           |           | <0.000203 |
| 10/8/2019  | <0.000203 | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 10/16/2019 | <0.000203 |            |              |            |           |           |           |
| 4/6/2020   | <0.000203 |            |              |            | <0.000203 |           |           |
| 4/7/2020   |           | <0.000203  | <0.000203    | <0.000203  |           |           |           |
| 4/8/2020   |           |            |              |            |           |           | <0.000203 |
| 7/13/2020  | <0.000203 |            |              |            |           |           |           |
| 7/14/2020  |           | <0.000203  | <0.000203    | <0.000203  | <0.000203 |           | <0.000203 |
| 2/22/2021  | <0.000203 |            |              |            |           |           |           |
| 2/23/2021  |           | <0.000203  | 0.000108 (J) | <0.000203  | <0.000203 | <0.000203 | <0.000203 |
|            |           |            |              |            |           |           |           |

Constituent: Lead (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |           |           | . idin dorga | onomi codunom | 00pay De  |
|------------|-----------|-----------|--------------|---------------|-----------|
|            | MW-19     | MW-2 (bg) | MW-20        | MW-3 (bg)     | MW-4 (bg) |
| 4/25/2016  |           | <0.000203 |              | <0.000203     | <0.000203 |
| 4/26/2016  | <0.000203 |           | <0.000203    |               |           |
| 6/20/2016  |           | <0.000203 |              |               | <0.000203 |
| 6/22/2016  | <0.000203 |           | <0.000203    | <0.000203     |           |
| 8/8/2016   |           | <0.000203 |              |               |           |
| 8/9/2016   |           |           |              | <0.000203     | <0.000203 |
| 8/24/2016  |           | <0.000203 |              | <0.000203     | <0.000203 |
| 10/3/2016  |           | <0.000203 |              |               | <0.000203 |
| 10/4/2016  |           |           |              | <0.000203     |           |
| 10/26/2016 |           | <0.000203 |              | <0.000203     | <0.000203 |
| 11/21/2016 |           | <0.000203 |              | <0.000203     | <0.000203 |
| 1/17/2017  |           | <0.000203 |              |               |           |
| 1/18/2017  |           |           |              | <0.000203     | <0.000203 |
| 3/22/2017  |           | <0.000203 |              | <0.000203     | <0.000203 |
| 4/18/2017  |           | <0.000203 |              | <0.000203     | <0.000203 |
| 5/31/2017  |           | <0.000203 |              | <0.000203     | <0.000203 |
| 10/12/2017 | <0.000203 |           | <0.000203    |               |           |
| 10/13/2017 | <0.000203 |           | <0.000203    |               |           |
| 10/14/2017 | <0.000203 |           | <0.000203    |               |           |
| 10/15/2017 | <0.000203 |           | <0.000203    |               |           |
| 10/16/2017 | <0.000203 |           | <0.000203    |               |           |
| 10/17/2017 | <0.000203 |           | <0.000203    |               |           |
| 2/13/2018  |           | <0.000203 |              | <0.000203     | <0.000203 |
| 2/14/2018  | <0.000203 |           | <0.000203    |               |           |
| 5/22/2018  | <0.000203 | <0.000203 | <0.000203    |               |           |
| 5/23/2018  |           |           |              |               | <0.000203 |
| 5/24/2018  |           |           |              | <0.000203     |           |
| 6/12/2018  |           | <0.000203 |              | <0.000203     | <0.000203 |
| 10/17/2018 |           | <0.000203 |              | 0.00102 (J)   | <0.000203 |
| 11/19/2018 |           | <0.000203 |              | 0.00692       | <0.000203 |
| 11/20/2018 | <0.000203 |           | <0.000203    |               |           |
| 4/10/2019  |           | <0.000203 |              | <0.000203     | <0.000203 |
| 5/14/2019  |           | <0.000203 |              | <0.000203     | <0.000203 |
| 5/15/2019  | <0.000203 |           | <0.000203    |               |           |
| 10/8/2019  | <0.000203 | <0.000203 |              | <0.000203     |           |
| 10/10/2019 |           |           | <0.000203    |               | <0.000203 |
| 10/16/2019 |           | <0.000203 |              | 0.00108 (J)   | <0.000203 |
| 4/6/2020   |           | <0.000203 |              | <0.000203     | <0.000203 |
| 4/8/2020   | <0.000203 |           | 0.00686      |               |           |
| 7/13/2020  |           | <0.000203 |              | <0.000203     |           |
| 7/14/2020  |           |           |              |               | <0.000203 |
| 7/15/2020  | <0.000203 |           | <0.000203    |               |           |
| 2/22/2021  |           | <0.000203 |              | 8.8E-05 (J)   | <0.000203 |
| 2/23/2021  |           |           | <0.000203    |               |           |
| 2/24/2021  | <0.000203 |           |              |               |           |
|            |           |           |              |               |           |

Constituent: Lithium (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg)  | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16      | MW-17R | MW-18  |
|------------|------------|------------|------------|------------|------------|--------|--------|
| 4/26/2016  | 0.0264 (J) | 0.0184 (J) | 0.0373 (J) | 0.0634     |            |        | 0.0589 |
| 4/27/2016  |            |            |            |            | 0.018 (J)  |        |        |
| 6/20/2016  | 0.0246 (J) |            |            |            |            |        |        |
| 6/22/2016  |            | 0.0222 (J) | 0.0374 (J) | 0.0666     | 0.0191 (J) |        | 0.0647 |
| 8/8/2016   | 0.0229 (J) |            |            |            |            |        |        |
| 8/24/2016  | 0.0236 (J) |            |            |            |            |        |        |
| 10/3/2016  | 0.0229 (J) |            |            |            |            |        |        |
| 10/26/2016 | 0.0227 (J) |            |            |            |            |        |        |
| 11/21/2016 | 0.0236 (J) |            |            |            |            |        |        |
| 1/17/2017  | 0.0228 (J) |            |            |            |            |        |        |
| 3/22/2017  | 0.0238 (J) |            |            |            |            |        |        |
| 4/18/2017  | 0.0242 (J) |            |            |            |            |        |        |
| 5/30/2017  | 0.0229 (J) |            |            |            |            |        |        |
| 10/12/2017 |            | 0.0211 (J) | 0.0338 (J) | 0.0618     | 0.0174 (J) |        | 0.0601 |
| 10/13/2017 |            | 0.0198 (J) | 0.0333 (J) | 0.0614     | 0.0164 (J) |        | 0.0614 |
| 10/14/2017 |            | 0.0193 (J) | 0.0327 (J) | 0.0596     | 0.0167 (J) |        | 0.0581 |
| 10/15/2017 |            | 0.0204 (J) | 0.0351 (J) | 0.0634     | 0.0165 (J) |        | 0.0592 |
| 10/16/2017 |            | 0.0206 (J) | 0.0352 (J) | 0.0687     | 0.0176 (J) |        | 0.0542 |
| 10/17/2017 |            | 0.0206 (J) | 0.0352 (J) | 0.0634     | 0.0164 (J) |        | 0.0618 |
| 2/13/2018  | 0.0233 (J) | 0.0249 (J) | 0.0325 (J) |            |            |        |        |
| 2/14/2018  |            |            |            | 0.0637     | 0.0168 (J) |        | 0.055  |
| 5/21/2018  |            | 0.0241 (J) | 0.0339 (J) | 0.0634     | 0.0171 (J) |        |        |
| 5/22/2018  | 0.0263 (J) |            |            |            |            |        | 0.0604 |
| 6/12/2018  | 0.0251 (J) |            |            |            |            |        |        |
| 10/17/2018 | 0.025 (J)  |            |            |            |            |        |        |
| 11/19/2018 | 0.0241     | 0.0195 (J) | 0.0346     | 0.0664     | 0.0174 (J) |        | 0.0586 |
| 4/10/2019  | 0.0285     |            |            |            |            |        |        |
| 5/14/2019  | 0.026 (J)  | <0.0406    | 0.0334 (J) | 0.0679     | <0.0406    |        |        |
| 5/15/2019  |            |            |            |            |            |        | 0.0593 |
| 10/8/2019  | 0.0268     | 0.02 (J)   | 0.0389     | 0.0772     | 0.0194 (J) |        | 0.0658 |
| 10/16/2019 | 0.0263     |            |            |            |            |        |        |
| 4/6/2020   | 0.0278     |            |            |            | 0.019 (J)  |        |        |
| 4/7/2020   |            | 0.0224     | 0.0372     | 0.0711     |            |        |        |
| 4/8/2020   |            |            |            |            |            |        | 0.0633 |
| 7/13/2020  | 0.028      |            |            |            |            |        |        |
| 7/14/2020  |            | 0.017 (J)  | 0.0384     | 0.0705     | 0.0182 (J) |        | 0.0686 |
| 2/22/2021  | 0.0301     |            |            |            |            |        |        |
| 2/23/2021  |            | 0.024      | 0.0398     | 0.0741     | 0.02       | 0.0569 | 0.0627 |

Constituent: Lithium (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-19  | MW-2 (bg)  | MW-20 | MW-3 (bg) | MW-4 (bg)  |
|------------|--------|------------|-------|-----------|------------|
| 4/25/2016  |        | 0.0353 (J) |       | 0.0964    | 0.0528     |
| 4/26/2016  | 0.0702 |            | 0.256 |           |            |
| 6/20/2016  |        | 0.0583     |       |           | 0.0554     |
| 6/22/2016  | 0.0761 |            | 0.271 | 0.156     |            |
| 8/8/2016   |        | 0.0627     |       |           |            |
| 8/9/2016   |        |            |       | 0.122     | 0.0452 (J) |
| 8/24/2016  |        | 0.0651     |       | 0.138     | 0.0488 (J) |
| 10/3/2016  |        | 0.0622     |       |           | 0.0476 (J) |
| 10/4/2016  |        |            |       | 0.0966    |            |
| 10/26/2016 |        | 0.0293 (J) |       | 0.134     | 0.049 (J)  |
| 11/21/2016 |        | 0.0667     |       | 0.167     | 0.0477 (J) |
| 1/17/2017  |        | 0.0636     |       |           |            |
| 1/18/2017  |        |            |       | 0.237     | 0.045 (J)  |
| 3/22/2017  |        | 0.0464 (J) |       | 0.203     | 0.0493 (J) |
| 4/18/2017  |        | 0.0446 (J) |       | 0.0764    | 0.0494 (J) |
| 5/31/2017  |        | 0.0496 (J) |       | 0.218     | 0.0501     |
| 10/12/2017 | 0.0863 |            | 0.259 |           |            |
| 10/13/2017 | 0.0853 |            | 0.253 |           |            |
| 10/14/2017 | 0.087  |            | 0.265 |           |            |
| 10/15/2017 | 0.084  |            | 0.262 |           |            |
| 10/16/2017 | 0.09   |            | 0.278 |           |            |
| 10/17/2017 | 0.0826 |            | 0.26  |           |            |
| 2/13/2018  |        | 0.0615     |       | 0.0964    | 0.0446 (J) |
| 2/14/2018  | 0.0569 |            | 0.256 |           |            |
| 5/22/2018  | 0.0543 | 0.0465 (J) | 0.262 |           |            |
| 5/23/2018  |        |            |       |           | 0.0513     |
| 5/24/2018  |        |            |       | 0.145     |            |
| 6/12/2018  |        | 0.0472 (J) |       | 0.194     | 0.0511     |
| 10/17/2018 |        | 0.0633     |       | 0.384     | 0.0532     |
| 11/19/2018 |        | 0.0584     |       | 0.323     | 0.0467     |
| 11/20/2018 | 0.0526 |            | 0.253 |           |            |
| 4/10/2019  |        | 0.0574     |       | 0.0905    | 0.0504     |
| 5/14/2019  |        | 0.0445     |       | 0.0828    | 0.0485     |
| 5/15/2019  | 0.059  |            | 0.241 |           |            |
| 10/8/2019  | 0.0698 | 0.0677     |       | 0.419     |            |
| 10/10/2019 |        |            | 0.264 |           | 0.054      |
| 10/16/2019 |        | 0.0661     |       | 0.337     | 0.052      |
| 4/6/2020   |        | 0.0496     |       | 0.0689    | 0.0519     |
| 4/8/2020   | 0.0657 |            | 0.238 |           |            |
| 7/13/2020  |        | 0.0615     |       | 0.256     |            |
| 7/14/2020  | 0.0744 |            | 0.050 |           | 0.0543     |
| 7/15/2020  | 0.0714 | 0.0005     | 0.256 | 0.100     | 0.0550     |
| 2/22/2021  |        | 0.0625     | 0.07  | 0.126     | 0.0558     |
| 2/23/2021  | 0.0720 |            | 0.27  |           |            |
| 2/24/2021  | 0.0739 |            |       |           |            |
|            |        |            |       |           |            |

Constituent: Mercury (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16   | MW-17R  | MW-18   |
|------------|-----------|------------|------------|------------|---------|---------|---------|
| 4/26/2016  | <0.0005   | <0.0005    | <0.0005    | <0.0005    |         |         | <0.0005 |
| 4/27/2016  |           |            |            |            | <0.0005 |         |         |
| 6/20/2016  | <0.0005   |            |            |            |         |         |         |
| 6/22/2016  |           | <0.0005    | <0.0005    | <0.0005    | <0.0005 |         | <0.0005 |
| 8/8/2016   | <0.0005   |            |            |            |         |         |         |
| 8/24/2016  | <0.0005   |            |            |            |         |         |         |
| 10/3/2016  | <0.0005   |            |            |            |         |         |         |
| 10/26/2016 | <0.0005   |            |            |            |         |         |         |
| 11/21/2016 | <0.0005   |            |            |            |         |         |         |
| 1/17/2017  | <0.0005   |            |            |            |         |         |         |
| 3/22/2017  | <0.0005   |            |            |            |         |         |         |
| 4/18/2017  | <0.0005   |            |            |            |         |         |         |
| 5/30/2017  | <0.0005   |            |            |            |         |         |         |
| 10/12/2017 |           | <0.0005    | <0.0005    | <0.0005    | <0.0005 |         | <0.0005 |
| 10/13/2017 |           | <0.0005    | <0.0005    | <0.0005    | <0.0005 |         | <0.0005 |
| 10/14/2017 |           | <0.0005    | <0.0005    | <0.0005    | <0.0005 |         | <0.0005 |
| 10/15/2017 |           | <0.0005    | <0.0005    | <0.0005    | <0.0005 |         | <0.0005 |
| 10/16/2017 |           | <0.0005    | <0.0005    | <0.0005    | <0.0005 |         | <0.0005 |
| 10/17/2017 |           | <0.0005    | <0.0005    | <0.0005    | <0.0005 |         | <0.0005 |
| 2/13/2018  | <0.0005   | <0.0005    | <0.0005    |            |         |         |         |
| 2/14/2018  |           |            |            | <0.0005    | <0.0005 |         | <0.0005 |
| 5/21/2018  |           | <0.0005    | <0.0005    | <0.0005    | <0.0005 |         |         |
| 5/22/2018  | <0.0005   |            |            |            |         |         | <0.0005 |
| 6/12/2018  | <0.0005   |            |            |            |         |         |         |
| 10/17/2018 | <0.0005   |            |            |            |         |         |         |
| 11/19/2018 | <0.0005   | <0.0005    | <0.0005    | <0.0005    | <0.0005 |         | <0.0005 |
| 4/10/2019  | <0.0005   |            |            |            |         |         |         |
| 5/14/2019  | <0.0005   | <0.0005    | <0.0005    | <0.0005    | <0.0005 |         |         |
| 5/15/2019  |           |            |            |            |         |         | <0.0005 |
| 10/8/2019  | <0.0005   | <0.0005    | <0.0005    | <0.0005    | <0.0005 |         | <0.0005 |
| 10/16/2019 | <0.0005   |            |            |            |         |         |         |
| 4/6/2020   | <0.0005   |            |            |            | <0.0005 |         |         |
| 4/7/2020   |           | <0.0005    | <0.0005    | <0.0005    |         |         |         |
| 4/8/2020   |           |            |            |            |         |         | <0.0005 |
| 7/13/2020  | <0.0005   |            |            |            |         |         |         |
| 7/14/2020  |           | <0.0005    | <0.0005    | <0.0005    | <0.0005 |         | <0.0005 |
| 2/22/2021  | <0.0005   |            |            |            |         |         |         |
| 2/23/2021  |           | <0.0005    | <0.0005    | <0.0005    | <0.0005 | <0.0005 | <0.0005 |
|            |           |            |            |            |         |         |         |

Constituent: Mercury (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |         |           |         |           | om company 5 |
|------------|---------|-----------|---------|-----------|--------------|
|            | MW-19   | MW-2 (bg) | MW-20   | MW-3 (bg) | MW-4 (bg)    |
| 4/25/2016  |         | <0.0005   |         | <0.0005   | <0.0005      |
| 4/26/2016  | <0.0005 |           | <0.0005 |           |              |
| 6/20/2016  |         | <0.0005   |         |           | <0.0005      |
| 6/22/2016  | <0.0005 |           | <0.0005 | <0.0005   |              |
| 8/8/2016   |         | <0.0005   |         |           |              |
| 8/9/2016   |         |           |         | <0.0005   | <0.0005      |
| 8/24/2016  |         | <0.0005   |         | <0.0005   | <0.0005      |
| 10/3/2016  |         | <0.0005   |         |           | <0.0005      |
| 10/4/2016  |         |           |         | <0.0005   |              |
| 10/26/2016 |         | <0.0005   |         | <0.0005   | <0.0005      |
| 11/21/2016 |         | <0.0005   |         | <0.0005   | <0.0005      |
| 1/17/2017  |         | <0.0005   |         |           |              |
| 1/18/2017  |         |           |         | <0.0005   | <0.0005      |
| 3/22/2017  |         | <0.0005   |         | <0.0005   | <0.0005      |
| 4/18/2017  |         | <0.0005   |         | <0.0005   | <0.0005      |
| 5/31/2017  |         | <0.0005   |         | <0.0005   | <0.0005      |
| 10/12/2017 | <0.0005 |           | <0.0005 |           |              |
| 10/13/2017 | <0.0005 |           | <0.0005 |           |              |
| 10/14/2017 | <0.0005 |           | <0.0005 |           |              |
| 10/15/2017 | <0.0005 |           | <0.0005 |           |              |
| 10/16/2017 | <0.0005 |           | <0.0005 |           |              |
| 10/17/2017 | <0.0005 |           | <0.0005 |           |              |
| 2/13/2018  |         | <0.0005   |         | <0.0005   | <0.0005      |
| 2/14/2018  | <0.0005 |           | <0.0005 |           |              |
| 5/22/2018  | <0.0005 | <0.0005   | <0.0005 |           |              |
| 5/23/2018  |         |           |         |           | <0.0005      |
| 5/24/2018  |         |           |         | <0.0005   |              |
| 6/12/2018  |         | <0.0005   |         | <0.0005   | <0.0005      |
| 10/17/2018 |         | <0.0005   |         | <0.0005   | <0.0005      |
| 11/19/2018 |         | <0.0005   |         | <0.0005   | <0.0005      |
| 11/20/2018 | <0.0005 |           | <0.0005 |           |              |
| 4/10/2019  |         | <0.0005   |         | <0.0005   | <0.0005      |
| 5/14/2019  |         | <0.0005   |         | <0.0005   | <0.0005      |
| 5/15/2019  | <0.0005 |           | <0.0005 |           |              |
| 10/8/2019  | <0.0005 | <0.0005   |         | <0.0005   |              |
| 10/10/2019 |         |           | <0.0005 |           | <0.0005      |
| 10/16/2019 |         | <0.0005   |         | <0.0005   | <0.0005      |
| 4/6/2020   | 0.0005  | <0.0005   |         | <0.0005   | <0.0005      |
| 4/8/2020   | <0.0005 | .0.005    | <0.0005 | .0.005    |              |
| 7/13/2020  |         | <0.0005   |         | <0.0005   | .0.005       |
| 7/14/2020  | <0.000E |           | <0.000E |           | <0.0005      |
| 7/15/2020  | <0.0005 | <0.0005   | <0.0005 | <0.0005   | <0.000E      |
| 2/22/2021  |         | <0.0005   | <0.000E | <0.0005   | <0.0005      |
| 2/23/2021  | <0.0005 |           | <0.0005 |           |              |
| 2/24/2021  | <0.0005 |           |         |           |              |

Constituent: Molybdenum (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg) | MW-15 (bg)   | MW-16     | MW-17R       | MW-18       |
|------------|-----------|------------|------------|--------------|-----------|--------------|-------------|
| 4/26/2016  | <0.000203 | <0.000203  | <0.000203  | <0.000203    |           |              | <0.000203   |
| 4/27/2016  |           |            |            |              | <0.000203 |              |             |
| 6/20/2016  | <0.000203 |            |            |              |           |              |             |
| 6/22/2016  |           | <0.000203  | <0.000203  | <0.000203    | <0.000203 |              | <0.000203   |
| 8/8/2016   | <0.000203 |            |            |              |           |              |             |
| 8/24/2016  | <0.000203 |            |            |              |           |              |             |
| 10/3/2016  | <0.000203 |            |            |              |           |              |             |
| 10/26/2016 | <0.000203 |            |            |              |           |              |             |
| 11/21/2016 | <0.000203 |            |            |              |           |              |             |
| 1/17/2017  | <0.000203 |            |            |              |           |              |             |
| 3/22/2017  | <0.000203 |            |            |              |           |              |             |
| 4/18/2017  | <0.000203 |            |            |              |           |              |             |
| 5/30/2017  | <0.000203 |            |            |              |           |              |             |
| 10/12/2017 |           | <0.000203  | <0.000203  | <0.000203    | <0.000203 |              | <0.000203   |
| 10/13/2017 |           | <0.000203  | <0.000203  | <0.000203    | <0.000203 |              | <0.000203   |
| 10/14/2017 |           | <0.000203  | <0.000203  | <0.000203    | <0.000203 |              | <0.000203   |
| 10/15/2017 |           | <0.000203  | <0.000203  | <0.000203    | <0.000203 |              | <0.000203   |
| 10/16/2017 |           | <0.000203  | <0.000203  | <0.000203    | <0.000203 |              | <0.000203   |
| 10/17/2017 |           | <0.000203  | <0.000203  | <0.000203    | <0.000203 |              | <0.000203   |
| 2/13/2018  | <0.000203 | <0.000203  | <0.000203  |              |           |              |             |
| 2/14/2018  |           |            |            | <0.000203    | <0.000203 |              | <0.000203   |
| 5/21/2018  |           | <0.000203  | <0.000203  | <0.000203    | <0.000203 |              |             |
| 5/22/2018  | <0.000203 |            |            |              |           |              | <0.000203   |
| 6/12/2018  | <0.000203 |            |            |              |           |              |             |
| 10/17/2018 | <0.000203 |            |            |              |           |              |             |
| 11/19/2018 | <0.000203 | <0.000203  | <0.000203  | <0.000203    | <0.000203 |              | <0.000203   |
| 4/10/2019  | <0.000203 |            |            |              |           |              |             |
| 5/14/2019  | <0.000203 | <0.000203  | <0.000203  | <0.000203    | <0.000203 |              |             |
| 5/15/2019  |           |            |            |              |           |              | <0.000203   |
| 10/8/2019  | <0.000203 | <0.000203  | <0.000203  | <0.000203    | <0.000203 |              | <0.000203   |
| 10/16/2019 | <0.000203 |            |            |              |           |              |             |
| 4/6/2020   | <0.000203 |            |            |              | <0.000203 |              |             |
| 4/7/2020   |           | <0.000203  | <0.000203  | <0.000203    |           |              |             |
| 4/8/2020   |           |            |            |              |           |              | <0.000203   |
| 7/13/2020  | <0.000203 |            |            |              |           |              |             |
| 7/14/2020  |           | <0.000203  | <0.000203  | <0.000203    | <0.000203 |              | <0.000203   |
| 2/22/2021  | <0.000203 |            |            |              |           |              |             |
| 2/23/2021  |           | 0.000495   | 0.000933   | 7.97E-05 (J) | 0.000486  | 0.000159 (J) | 0.00012 (J) |
|            |           |            |            |              |           |              |             |

Constituent: Molybdenum (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|                        |              |           | . idiii do | rgao onomi ooan | om company Da |
|------------------------|--------------|-----------|------------|-----------------|---------------|
|                        | MW-19        | MW-2 (bg) | MW-20      | MW-3 (bg)       | MW-4 (bg)     |
| 4/25/2016              |              | <0.000203 |            | <0.000203       | <0.000203     |
| 4/26/2016              | <0.000203    |           | <0.000203  |                 |               |
| 6/20/2016              |              | <0.000203 |            |                 | <0.000203     |
| 6/22/2016              | <0.000203    |           | <0.000203  | <0.000203       |               |
| 8/8/2016               |              | <0.000203 |            |                 |               |
| 8/9/2016               |              |           |            | <0.000203       | <0.000203     |
| 8/24/2016              |              | <0.000203 |            | <0.000203       | <0.000203     |
| 10/3/2016              |              | <0.000203 |            |                 | <0.000203     |
| 10/4/2016              |              |           |            | <0.000203       |               |
| 10/26/2016             |              | <0.000203 |            | <0.000203       | <0.000203     |
| 11/21/2016             |              | <0.000203 |            | <0.000203       | <0.000203     |
| 1/17/2017              |              | <0.000203 |            |                 |               |
| 1/18/2017              |              |           |            | <0.000203       | <0.000203     |
| 3/22/2017              |              | <0.000203 |            | <0.000203       | <0.000203     |
| 4/18/2017              |              | <0.000203 |            | <0.000203       | <0.000203     |
| 5/31/2017              |              | <0.000203 |            | <0.000203       | <0.000203     |
| 10/12/2017             | <0.000203    |           | <0.000203  |                 |               |
| 10/13/2017             | <0.000203    |           | <0.000203  |                 |               |
| 10/14/2017             | <0.000203    |           | <0.000203  |                 |               |
| 10/15/2017             | <0.000203    |           | <0.000203  |                 |               |
| 10/16/2017             | <0.000203    |           | <0.000203  |                 |               |
| 10/17/2017             | <0.000203    |           | <0.000203  |                 |               |
| 2/13/2018              |              | <0.000203 |            | <0.000203       | <0.000203     |
| 2/14/2018              | <0.000203    |           | <0.000203  |                 |               |
| 5/22/2018              | <0.000203    | <0.000203 | <0.000203  |                 |               |
| 5/23/2018              |              |           |            |                 | <0.000203     |
| 5/24/2018              |              |           |            | <0.000203       |               |
| 6/12/2018              |              | <0.000203 |            | <0.000203       | <0.000203     |
| 10/17/2018             |              | <0.000203 |            | <0.000203       | <0.000203     |
| 11/19/2018             |              | <0.000203 |            | <0.000203       | <0.000203     |
| 11/20/2018             | <0.000203    |           | <0.000203  |                 |               |
| 4/10/2019              |              | <0.000203 |            | <0.000203       | <0.000203     |
| 5/14/2019              |              | <0.000203 |            | <0.000203       | <0.000203     |
| 5/15/2019              | <0.000203    |           | <0.000203  |                 |               |
| 10/8/2019              | <0.000203    | <0.000203 |            | <0.000203       |               |
| 10/10/2019             |              |           | <0.000203  |                 | <0.000203     |
| 10/16/2019             |              | <0.000203 |            | <0.000203       | <0.000203     |
| 4/6/2020               |              | <0.000203 |            | <0.000203       | <0.000203     |
| 4/8/2020               | <0.000203    |           | <0.000203  | 0.00000         |               |
| 7/13/2020              |              | <0.000203 |            | <0.000203       | 0.00000       |
| 7/14/2020              | <0.000203    |           | <0.000203  |                 | <0.000203     |
| 7/15/2020              | <0.000203    | <0.000000 | <0.000203  | <0.000000       | 0.000121 ( !) |
| 2/22/2021<br>2/23/2021 |              | <0.000203 | 0.00108    | <0.000203       | 0.000131 (J)  |
| 2/23/2021              | 0.000197 (J) |           | 0.00100    |                 |               |
| 212412U21              | 0.000187 (3) |           |            |                 |               |

Constituent: pH (pH) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |           |            |            | -          |       |        |       |
|------------|-----------|------------|------------|------------|-------|--------|-------|
|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16 | MW-17R | MW-18 |
| 4/26/2016  | 5.2       | 6.35       | 6.41       | 6.08       |       |        | 6.54  |
| 4/27/2016  |           |            |            |            | 6.5   |        |       |
| 6/20/2016  | 5.18      |            |            |            |       |        |       |
| 6/22/2016  |           | 6.33       | 6.39       | 6.11       | 6.47  |        | 6.45  |
| 8/8/2016   | 5.12      |            |            |            |       |        |       |
| 10/3/2016  | 5.21 (D)  |            |            |            |       |        |       |
| 10/26/2016 | 5.2       |            |            |            |       |        |       |
| 11/21/2016 | 5.19 (D)  |            |            |            |       |        |       |
| 1/17/2017  | 5.17 (D)  |            |            |            |       |        |       |
| 3/22/2017  | 5.2 (D)   |            |            |            |       |        |       |
| 4/18/2017  | 5.2       |            |            |            |       |        |       |
| 5/30/2017  | 5.14 (D)  |            |            |            |       |        |       |
| 8/23/2017  | 5.12 (D)  |            |            |            |       |        |       |
| 10/12/2017 |           | 6.38       | 6.35       | 6.06       | 6.47  |        | 6.5   |
| 10/13/2017 |           | 6.37       | 6.34       | 6.06       | 6.45  |        | 6.49  |
| 10/14/2017 |           | 6.4        | 6.38       | 6.12       | 6.48  |        | 6.54  |
| 10/15/2017 |           | 6.35       | 6.32       | 6.05       | 6.43  |        | 6.55  |
| 10/16/2017 |           | 6.37       | 6.33       | 6.05       | 6.42  |        | 6.55  |
| 10/17/2017 |           | 6.44       | 6.4        | 6.12       | 6.48  |        | 6.55  |
| 11/15/2017 |           |            |            | 6.06       | 6.44  |        | 6.46  |
| 11/16/2017 |           | 6.31       | 6.28       |            |       |        |       |
| 2/13/2018  | 5.18      | 6.5        | 6.36       |            |       |        |       |
| 2/14/2018  |           |            |            | 6.1        | 6.45  |        | 6.53  |
| 5/21/2018  |           | 6.41       | 6.38       | 6.06       | 6.45  |        |       |
| 5/22/2018  | 5.2       |            |            |            |       |        | 6.5   |
| 6/12/2018  | 5.15      |            |            |            |       |        |       |
| 10/17/2018 | 5.12      |            |            |            |       |        |       |
| 11/19/2018 | 5.09      | 6.38       | 6.35       | 6.08       | 6.44  |        | 6.54  |
| 4/10/2019  | 5.11      |            |            |            |       |        |       |
| 5/14/2019  | 5.19      | 6.41       | 6.39       | 6.1        | 6.44  |        |       |
| 5/15/2019  |           |            |            |            |       |        | 6.48  |
| 10/8/2019  | 5.12      | 6.34       | 6.32       | 5.99       | 6.16  |        | 6.43  |
| 10/16/2019 | 5.16      |            |            |            |       |        |       |
| 4/6/2020   | 5.21      |            |            |            | 6.37  |        |       |
| 4/7/2020   |           | 6.53       | 6.42       | 6.1        |       |        |       |
| 4/8/2020   |           |            |            |            |       |        | 6.57  |
| 7/13/2020  | 5.14      |            |            |            |       |        |       |
| 7/14/2020  |           | 6.33       | 6.37       | 6.05       | 6.43  |        | 6.36  |
| 2/22/2021  | 5.06      |            |            |            |       |        |       |
| 2/23/2021  |           | 6.55       | 6.38       | 6.07       | 6.47  | 5.91   | 6.47  |
|            |           |            |            |            |       |        |       |

Constituent: pH (pH) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-19 | MW-2 (bg) | MW-20 | MW-3 (bg) | MW-4 (bg) |
|------------|-------|-----------|-------|-----------|-----------|
| 4/25/2016  |       | 5.94      |       | 5.56      | 6.22      |
| 4/26/2016  | 6.16  |           | 6.83  |           |           |
| 6/20/2016  |       | 5.96      |       |           | 6.21      |
| 6/22/2016  | 6.2   |           | 6.85  | 5.57      |           |
| 8/8/2016   |       | 5.88      |       |           |           |
| 8/9/2016   |       |           |       | 5.67      | 6.11      |
| 8/24/2016  |       |           |       | 5.63      | 6.11      |
| 10/3/2016  |       | 5.91 (D)  |       |           | 6.13 (D)  |
| 10/4/2016  |       |           |       | 5.69 (D)  |           |
| 10/26/2016 |       | 5.84      |       | 5.56      | 6.12      |
| 11/21/2016 |       | 5.82 (D)  |       | 5.42 (D)  | 6.09 (D)  |
| 1/17/2017  |       | 5.87 (D)  |       |           |           |
| 1/18/2017  |       |           |       | 5.11 (D)  | 6.09 (D)  |
| 3/22/2017  |       | 6.01 (D)  |       | 4.52 (D)  | 6.15 (D)  |
| 4/18/2017  |       | 6.02      |       | 5.84      | 6.19      |
| 5/31/2017  |       | 5.85 (D)  |       | 4.56 (D)  | 6.13 (D)  |
| 8/23/2017  |       | 5.89 (D)  |       | 4.77 (D)  | 6.12 (D)  |
| 10/12/2017 | 6.14  |           | 6.79  |           |           |
| 10/13/2017 | 6.18  |           | 6.75  |           |           |
| 10/14/2017 | 6.21  |           | 6.82  |           |           |
| 10/15/2017 | 6.14  |           | 6.8   |           |           |
| 10/16/2017 | 6.16  |           | 6.83  |           |           |
| 10/17/2017 | 6.15  |           | 6.82  |           |           |
| 11/15/2017 | 6.15  |           | 6.77  |           |           |
| 2/13/2018  |       | 6.21      |       | 5.67      | 6.22      |
| 2/14/2018  | 6.18  |           | 6.84  |           |           |
| 5/22/2018  | 6.13  | 6.04      | 6.81  |           |           |
| 5/23/2018  |       |           |       |           | 6.21      |
| 5/24/2018  |       |           |       | 5.19      |           |
| 6/12/2018  |       | 5.95      |       | 4.79      | 6.16      |
| 10/17/2018 |       | 5.9       |       | 4.75      | 6.12      |
| 11/19/2018 |       | 6.03      |       | 3.77 (E)  | 6.16      |
| 11/20/2018 | 6.16  |           | 6.81  |           |           |
| 4/10/2019  |       | 6.1       |       | 5.54      | 6.14      |
| 5/14/2019  |       | 6.07      |       | 5.71      | 6.23      |
| 5/15/2019  | 6.21  |           | 6.76  |           |           |
| 10/8/2019  | 6.19  | 5.96      |       | 4.98      |           |
| 10/10/2019 |       |           | 6.78  |           | 6.15      |
| 10/16/2019 |       | 5.98      |       | 4.51      | 6.19      |
| 4/6/2020   |       | 6.21      |       | 5.91      | 6.35      |
| 4/8/2020   | 6.26  |           | 6.81  |           |           |
| 7/13/2020  |       | 5.84      |       | 5.16      |           |
| 7/14/2020  |       |           |       |           | 6.2       |
| 7/15/2020  | 6.28  |           | 6.87  |           |           |
| 2/22/2021  |       | 6.1       |       | 5.59      | 6.19      |
| 2/23/2021  |       |           | 6.75  |           |           |
| 2/24/2021  | 6.26  |           |       |           |           |
|            |       |           |       |           |           |

Constituent: Selenium (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg)   | MW-13 (bg)  | MW-14 (bg)  | MW-15 (bg) | MW-16     | MW-17R       | MW-18       |
|------------|-------------|-------------|-------------|------------|-----------|--------------|-------------|
| 4/26/2016  | 0.00261 (J) | <0.001015   | <0.001015   | <0.001015  |           |              | 0.00263 (J) |
| 4/27/2016  |             |             |             |            | <0.001015 |              |             |
| 6/20/2016  | 0.00242 (J) |             |             |            |           |              |             |
| 6/22/2016  |             | <0.001015   | <0.001015   | <0.001015  | <0.001015 |              | <0.001015   |
| 8/8/2016   | 0.00253 (J) |             |             |            |           |              |             |
| 8/24/2016  | <0.001015   |             |             |            |           |              |             |
| 10/3/2016  | 0.00211 (J) |             |             |            |           |              |             |
| 10/26/2016 | <0.001015   |             |             |            |           |              |             |
| 11/21/2016 | <0.001015   |             |             |            |           |              |             |
| 1/17/2017  | <0.001015   |             |             |            |           |              |             |
| 3/22/2017  | 0.0022 (J)  |             |             |            |           |              |             |
| 4/18/2017  | 0.0027 (J)  |             |             |            |           |              |             |
| 5/30/2017  | 0.00316 (J) |             |             |            |           |              |             |
| 10/12/2017 |             | <0.001015   | <0.001015   | <0.001015  | <0.001015 |              | 0.00268 (J) |
| 10/13/2017 |             | <0.001015   | <0.001015   | <0.001015  | <0.001015 |              | 0.00267 (J) |
| 10/14/2017 |             | <0.001015   | <0.001015   | <0.001015  | <0.001015 |              | 0.00295 (J) |
| 10/15/2017 |             | <0.001015   | <0.001015   | <0.001015  | <0.001015 |              | 0.00349 (J) |
| 10/16/2017 |             | <0.001015   | <0.001015   | <0.001015  | <0.001015 |              | 0.0027 (J)  |
| 10/17/2017 |             | 0.00274 (J) | 0.00205 (J) | <0.001015  | <0.001015 |              | 0.00404 (J) |
| 2/13/2018  | 0.00211 (J) | 0.0034 (J)  | <0.001015   |            |           |              |             |
| 2/14/2018  |             |             |             | <0.001015  | <0.001015 |              | <0.001015   |
| 5/21/2018  |             | 0.0023 (J)  | <0.001015   | <0.001015  | <0.001015 |              |             |
| 5/22/2018  | 0.00372 (J) |             |             |            |           |              | 0.00278 (J) |
| 6/12/2018  | 0.00409 (J) |             |             |            |           |              |             |
| 10/17/2018 | <0.001015   |             |             |            |           |              |             |
| 11/19/2018 | <0.001015   | <0.001015   | <0.001015   | <0.001015  | <0.001015 |              | <0.001015   |
| 4/10/2019  | 0.00471 (J) |             |             |            |           |              |             |
| 5/14/2019  | 0.00316 (J) | <0.001015   | <0.001015   | <0.001015  | <0.001015 |              |             |
| 5/15/2019  |             |             |             |            |           |              | 0.0028 (J)  |
| 10/8/2019  | <0.001015   | <0.001015   | <0.001015   | <0.001015  | <0.001015 |              | 0.00279 (J) |
| 10/16/2019 | <0.001015   |             |             |            |           |              |             |
| 4/6/2020   | 0.00275 (J) |             |             |            | <0.001015 |              |             |
| 4/7/2020   |             | <0.001015   | <0.001015   | <0.001015  |           |              |             |
| 4/8/2020   |             |             |             |            |           |              | 0.00387 (J) |
| 7/13/2020  | 0.00245 (J) |             |             |            |           |              |             |
| 7/14/2020  |             | <0.001015   | <0.001015   | <0.001015  | <0.001015 |              | 0.00243 (J) |
| 2/22/2021  | 0.00241     |             |             |            |           |              |             |
| 2/23/2021  |             | 0.0017      | <0.001015   | <0.001015  | <0.001015 | 0.000778 (J) | 0.0031      |

Constituent: Selenium (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|                          |                        |             |            | rgao onomi oodan    | on company ban         |  |
|--------------------------|------------------------|-------------|------------|---------------------|------------------------|--|
|                          | MW-19                  | MW-2 (bg)   | MW-20      | MW-3 (bg)           | MW-4 (bg)              |  |
| 4/25/2016                |                        | <0.001015   |            | <0.001015           | <0.001015              |  |
| 4/26/2016                | <0.001015              |             | <0.001015  |                     |                        |  |
| 6/20/2016                |                        | <0.001015   |            |                     | <0.001015              |  |
| 6/22/2016                | <0.001015              |             | <0.001015  | <0.001015           |                        |  |
| 8/8/2016                 |                        | <0.001015   |            |                     |                        |  |
| 8/9/2016                 |                        |             |            | <0.001015           | <0.001015              |  |
| 8/24/2016                |                        | <0.001015   |            | <0.001015           | <0.001015              |  |
| 10/3/2016                |                        | <0.001015   |            |                     | <0.001015              |  |
| 10/4/2016                |                        |             |            | <0.001015           |                        |  |
| 10/26/2016               |                        | <0.001015   |            | <0.001015           | <0.001015              |  |
| 11/21/2016               |                        | <0.001015   |            | <0.001015           | <0.001015              |  |
| 1/17/2017                |                        | <0.001015   |            |                     |                        |  |
| 1/18/2017                |                        |             |            | <0.001015           | <0.001015              |  |
| 3/22/2017                |                        | <0.001015   |            | 0.0141              | <0.001015              |  |
| 4/18/2017                |                        | <0.001015   |            | 0.0158              | <0.001015              |  |
| 5/31/2017                |                        | <0.001015   |            | 0.00632 (J)         | <0.001015              |  |
| 10/12/2017               | <0.001015              |             | <0.001015  |                     |                        |  |
| 10/13/2017               | <0.001015              |             | <0.001015  |                     |                        |  |
| 10/14/2017               | <0.001015              |             | <0.001015  |                     |                        |  |
| 10/15/2017               | <0.001015              |             | <0.001015  |                     |                        |  |
| 10/16/2017               | <0.001015              |             | <0.001015  |                     |                        |  |
| 10/17/2017               | <0.001015              |             | <0.001015  |                     |                        |  |
| 2/13/2018                |                        | <0.001015   |            | 0.0209 (O)          | 0.00403 (J)            |  |
| 2/14/2018                | <0.001015              |             | <0.001015  |                     |                        |  |
| 5/22/2018                | <0.001015              | <0.001015   | <0.001015  |                     |                        |  |
| 5/23/2018                |                        |             |            |                     | <0.001015              |  |
| 5/24/2018                |                        |             |            | 0.00918 (J)         |                        |  |
| 6/12/2018                |                        | <0.001015   |            | 0.00836 (J)         | <0.001015              |  |
| 10/17/2018               |                        | <0.001015   |            | <0.001015           | <0.001015              |  |
| 11/19/2018               | .0.004045              | <0.001015   | .0.004.045 | 0.00439 (J)         | 0.00436 (J)            |  |
| 11/20/2018               | <0.001015              | 0.00000 (1) | <0.001015  | 0.0112              | -0.001015              |  |
| 4/10/2019                |                        | 0.00322 (J) |            | 0.0113              | <0.001015              |  |
| 5/14/2019                | -0.001015              | <0.001015   | -0.001015  | 0.0119              | 0.00201 (J)            |  |
| 5/15/2019<br>10/8/2019   | <0.001015<br><0.001015 | <0.001015   | <0.001015  | 0.00356 (1)         |                        |  |
|                          | <0.001015              | <0.001015   | <0.001015  | 0.00256 (J)         | <0.00101E              |  |
| 10/10/2019<br>10/16/2019 |                        | <0.001015   | <0.001015  | 0.00286 ( 1)        | <0.001015<br><0.001015 |  |
| 4/6/2020                 |                        | <0.001015   |            | 0.00286 (J)<br>0.01 | 0.00284 (J)            |  |
| 4/8/2020                 | <0.001015              | <0.001013   | <0.001015  | 0.01                | 0.00284 (3)            |  |
| 7/13/2020                | 10.001013              | <0.001015   | 10.001013  | 0.0134              |                        |  |
| 7/14/2020                |                        | 10.001013   |            | 0.0134              | <0.001015              |  |
| 7/15/2020                | <0.001015              |             | <0.001015  |                     | -0.001010              |  |
| 2/22/2021                | 3.331010               | <0.001015   | 3.331010   | 0.0181              | 0.00222                |  |
| 2/23/2021                |                        | 5.551010    | <0.001015  | 0.0.01              | 0.00222                |  |
| 2/24/2021                | <0.001015              |             | 2.23.0.0   |                     |                        |  |
|                          |                        |             |            |                     |                        |  |

 $\label{lem:constituent: Sulfate as SO4 (mg/L)} Constituents Sulfate as SO4 (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill$ 

|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16 | MW-17R | MW-18 |
|------------|-----------|------------|------------|------------|-------|--------|-------|
| 4/26/2016  | 1490      | 1920       | 2150       | 1640       |       |        | 1960  |
| 4/27/2016  |           |            |            |            | 1220  |        |       |
| 6/20/2016  | 1420      |            |            |            |       |        |       |
| 6/22/2016  |           | 2270       | 2080       | 1720       | 1160  |        | 1950  |
| 8/8/2016   | 1460      |            |            |            |       |        |       |
| 8/24/2016  | 1450      |            |            |            |       |        |       |
| 10/3/2016  | 1460      |            |            |            |       |        |       |
| 10/26/2016 | 1330      |            |            |            |       |        |       |
| 11/21/2016 | 1420      |            |            |            |       |        |       |
| 1/17/2017  | 1350      |            |            |            |       |        |       |
| 3/22/2017  | 1500      |            |            |            |       |        |       |
| 4/18/2017  | 1300      |            |            |            |       |        |       |
| 5/30/2017  | 1400      |            |            |            |       |        |       |
| 8/23/2017  | 1500      |            |            |            |       |        |       |
| 10/12/2017 |           | 2100       | 1900       | 1600       | 1300  |        | 2000  |
| 10/13/2017 |           | 2000       | 1800       | 1600       | 1300  |        | 1900  |
| 10/14/2017 |           | 1800       | 1700       | 1500       | 1200  |        | 1800  |
| 10/15/2017 |           | 1800       | 1800       | 1500       | 1200  |        | 1800  |
| 10/16/2017 |           | 1800       | 1800       | 1400       | 1200  |        | 1900  |
| 10/17/2017 |           | 1700       | 1900       | 1600       | 1300  |        | 1800  |
| 11/15/2017 |           |            |            | 1500       | 1200  |        | 1900  |
| 11/16/2017 |           | 1800       | 1700       |            |       |        |       |
| 5/21/2018  |           | 2400       | 2500       | 2100       | 1700  |        |       |
| 5/22/2018  | 2100      |            |            |            |       |        | 2000  |
| 6/12/2018  | 1500      |            |            |            |       |        |       |
| 10/17/2018 | 1400      |            |            |            |       |        |       |
| 11/19/2018 | 1300      | 1800       | 1900       | 1500       | 1200  |        | 1800  |
| 4/10/2019  | 1700      |            |            |            |       |        |       |
| 5/14/2019  | 1560      | 1600       | 2000       | 1940       | 1490  |        |       |
| 5/15/2019  |           |            |            |            |       |        | 1800  |
| 10/8/2019  | 1540      | 1980       | 2030       | 1650       | 1490  |        | 1900  |
| 10/16/2019 | 1680      |            |            |            |       |        |       |
| 4/6/2020   | 1530      |            |            |            | 1270  |        |       |
| 4/7/2020   |           | 1400       | 1760       | 1670       |       |        |       |
| 4/8/2020   |           |            |            |            |       |        | 1750  |
| 7/13/2020  | 1450      |            |            |            |       |        |       |
| 7/14/2020  |           | 1740       | 1840       | 1630       | 1270  |        | 1690  |
| 2/22/2021  | 1400      |            |            |            |       |        |       |
| 2/23/2021  |           | 1470       | 1850       | 1740       | 1330  | 2380   | 1560  |
|            |           |            |            |            |       |        |       |

Constituent: Sulfate as SO4 (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-19 | MW-2 (bg) | MW-20 | MW-3 (bg) | MW-4 (bg) |
|------------|-------|-----------|-------|-----------|-----------|
| 4/25/2016  |       | 745       |       | 1890      | 2260      |
| 4/26/2016  | 2200  |           | 1650  |           |           |
| 6/20/2016  |       | 964       |       |           | 2500      |
| 6/22/2016  | 2230  |           | 1680  | 2100      |           |
| 8/8/2016   |       | 1100      |       |           |           |
| 8/9/2016   |       |           |       | 2050      | 2750      |
| 8/24/2016  |       | 1130      |       | 2190      | 2770      |
| 10/3/2016  |       | 1140      |       |           | 3060      |
| 10/4/2016  |       |           |       | 1950      |           |
| 10/26/2016 |       | 1060      |       | 1980      | 2650      |
| 11/21/2016 |       | 1100      |       | 2060      | 2720      |
| 1/17/2017  |       | 1160      |       |           |           |
| 1/18/2017  |       |           |       | 2620      | 2650      |
| 3/22/2017  |       | 900       |       | 3200      | 2700      |
| 4/18/2017  |       | 870       |       | 2500      | 2400      |
| 5/31/2017  |       | 1100      |       | 2800      | 2700      |
| 8/23/2017  |       | 920       |       | 2600      | 2700      |
| 10/12/2017 | 2300  |           | 1600  |           |           |
| 10/13/2017 | 2200  |           | 1600  |           |           |
| 10/14/2017 | 2300  |           | 1500  |           |           |
| 10/15/2017 | 2200  |           | 1500  |           |           |
| 10/16/2017 | 2000  |           | 1400  |           |           |
| 10/17/2017 | 2300  |           | 1500  |           |           |
| 11/15/2017 | 2100  |           | 1500  |           |           |
| 5/22/2018  | 2300  | 1200      | 2000  |           |           |
| 5/23/2018  |       |           |       |           | 2400      |
| 5/24/2018  |       |           |       | 2700      |           |
| 6/12/2018  |       | 860       |       | 2500      | 2600      |
| 10/17/2018 |       | 970       |       | 2700      | 2600      |
| 11/19/2018 |       | 1000      |       | 3000      | 2400      |
| 11/20/2018 | 1700  |           | 1500  |           |           |
| 4/10/2019  |       | 889       |       | 2460      | 2090      |
| 5/14/2019  |       | 948       |       | 2460      | 2240      |
| 5/15/2019  | 1900  |           | 1560  |           |           |
| 10/8/2019  | 2380  | 1230      |       | 2950      |           |
| 10/10/2019 |       |           | 1700  |           | 2690      |
| 10/16/2019 |       | 1170      |       | 2820      | 3050      |
| 4/6/2020   |       | 786       |       | 1670      | 1810      |
| 4/8/2020   | 1890  |           | 1530  |           |           |
| 7/13/2020  |       | 843       |       | 2130      |           |
| 7/14/2020  |       |           |       |           | 1970      |
| 7/15/2020  | 1770  |           | 1480  |           |           |
| 2/22/2021  |       | 864       |       | 3040      | 2040      |
| 2/23/2021  |       |           | 1420  |           |           |
| 2/24/2021  | 1970  |           |       |           |           |
|            |       |           |       |           |           |

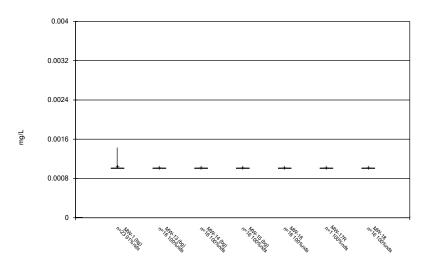
Constituent: Thallium (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16     | MW-17R    | MW-18     |
|------------|-----------|------------|------------|------------|-----------|-----------|-----------|
| 4/26/2016  | <0.000203 | <0.000203  | <0.000203  | <0.000203  |           |           | <0.000203 |
| 4/27/2016  |           |            |            |            | <0.000203 |           |           |
| 6/20/2016  | <0.000203 |            |            |            |           |           |           |
| 6/22/2016  |           | <0.000203  | <0.000203  | <0.000203  | <0.000203 |           | <0.000203 |
| 8/8/2016   | <0.000203 |            |            |            |           |           |           |
| 8/24/2016  | <0.000203 |            |            |            |           |           |           |
| 10/3/2016  | <0.000203 |            |            |            |           |           |           |
| 10/26/2016 | <0.000203 |            |            |            |           |           |           |
| 11/21/2016 | <0.000203 |            |            |            |           |           |           |
| 1/17/2017  | <0.000203 |            |            |            |           |           |           |
| 3/22/2017  | <0.000203 |            |            |            |           |           |           |
| 4/18/2017  | <0.000203 |            |            |            |           |           |           |
| 5/30/2017  | <0.000203 |            |            |            |           |           |           |
| 10/12/2017 |           | <0.000203  | <0.000203  | <0.000203  | <0.000203 |           | <0.000203 |
| 10/13/2017 |           | <0.000203  | <0.000203  | <0.000203  | <0.000203 |           | <0.000203 |
| 10/14/2017 |           | <0.000203  | <0.000203  | <0.000203  | <0.000203 |           | <0.000203 |
| 10/15/2017 |           | <0.000203  | <0.000203  | <0.000203  | <0.000203 |           | <0.000203 |
| 10/16/2017 |           | <0.000203  | <0.000203  | <0.000203  | <0.000203 |           | <0.000203 |
| 10/17/2017 |           | <0.000203  | <0.000203  | <0.000203  | <0.000203 |           | <0.000203 |
| 2/13/2018  | <0.000203 | <0.000203  | <0.000203  |            |           |           |           |
| 2/14/2018  |           |            |            | <0.000203  | <0.000203 |           | <0.000203 |
| 5/21/2018  |           | <0.000203  | <0.000203  | <0.000203  | <0.000203 |           |           |
| 5/22/2018  | <0.000203 |            |            |            |           |           | <0.000203 |
| 6/12/2018  | <0.000203 |            |            |            |           |           |           |
| 10/17/2018 | <0.000203 |            |            |            |           |           |           |
| 11/19/2018 | <0.000203 | <0.000203  | <0.000203  | <0.000203  | <0.000203 |           | <0.000203 |
| 4/10/2019  | <0.000203 |            |            |            |           |           |           |
| 5/14/2019  | <0.000203 | <0.000203  | <0.000203  | <0.000203  | <0.000203 |           |           |
| 5/15/2019  |           |            |            |            |           |           | <0.000203 |
| 10/8/2019  | <0.000203 | <0.000203  | <0.000203  | <0.000203  | <0.000203 |           | <0.000203 |
| 10/16/2019 | <0.000203 |            |            |            |           |           |           |
| 4/6/2020   | <0.000203 |            |            |            | <0.000203 |           |           |
| 4/7/2020   |           | <0.000203  | <0.000203  | <0.000203  |           |           |           |
| 4/8/2020   |           |            |            |            |           |           | <0.000203 |
| 7/13/2020  | <0.000203 |            |            |            |           |           |           |
| 7/14/2020  |           | <0.000203  | <0.000203  | <0.000203  | <0.000203 |           | <0.000203 |
| 2/22/2021  | <0.000203 |            |            |            |           |           |           |
| 2/23/2021  |           | <0.000203  | <0.000203  | <0.000203  | <0.000203 | <0.000203 | <0.000203 |
|            |           |            |            |            |           |           |           |

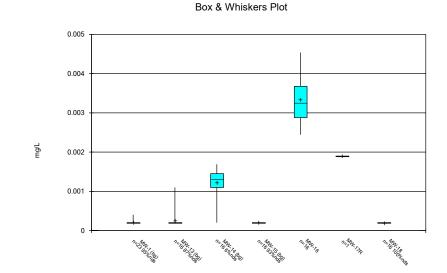
Constituent: Thallium (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |           |           | r iam dorgan | onom. countri | 50pa, 5a. |
|------------|-----------|-----------|--------------|---------------|-----------|
|            | MW-19     | MW-2 (bg) | MW-20        | MW-3 (bg)     | MW-4 (bg) |
| 4/25/2016  |           | <0.000203 |              | 0.000205 (J)  | <0.000203 |
| 4/26/2016  | <0.000203 |           | <0.000203    |               |           |
| 6/20/2016  |           | <0.000203 |              |               | <0.000203 |
| 6/22/2016  | <0.000203 |           | <0.000203    | <0.000203     |           |
| 8/8/2016   |           | <0.000203 |              |               |           |
| 8/9/2016   |           |           |              | <0.000203     | <0.000203 |
| 8/24/2016  |           | <0.000203 |              | <0.000203     | <0.000203 |
| 10/3/2016  |           | <0.000203 |              |               | <0.000203 |
| 10/4/2016  |           |           |              | <0.000203     |           |
| 10/26/2016 |           | <0.000203 |              | 0.000209 (J)  | <0.000203 |
| 11/21/2016 |           | <0.000203 |              | <0.000203     | <0.000203 |
| 1/17/2017  |           | <0.000203 |              |               |           |
| 1/18/2017  |           |           |              | <0.000203     | <0.000203 |
| 3/22/2017  |           | <0.000203 |              | <0.000203     | <0.000203 |
| 4/18/2017  |           | <0.000203 |              | <0.000203     | <0.000203 |
| 5/31/2017  |           | <0.000203 |              | <0.000203     | <0.000203 |
| 10/12/2017 | <0.000203 |           | <0.000203    |               |           |
| 10/13/2017 | <0.000203 |           | <0.000203    |               |           |
| 10/14/2017 | <0.000203 |           | <0.000203    |               |           |
| 10/15/2017 | <0.000203 |           | <0.000203    |               |           |
| 10/16/2017 | <0.000203 |           | <0.000203    |               |           |
| 10/17/2017 | <0.000203 |           | <0.000203    |               |           |
| 2/13/2018  |           | <0.000203 |              | <0.000203     | <0.000203 |
| 2/14/2018  | <0.000203 |           | <0.000203    |               |           |
| 5/22/2018  | <0.000203 | <0.000203 | <0.000203    |               |           |
| 5/23/2018  |           |           |              |               | <0.000203 |
| 5/24/2018  |           |           |              | <0.000203     |           |
| 6/12/2018  |           | <0.000203 |              | <0.000203     | <0.000203 |
| 10/17/2018 |           | <0.000203 |              | <0.000203     | <0.000203 |
| 11/19/2018 |           | <0.000203 |              | 0.000226 (J)  | <0.000203 |
| 11/20/2018 | <0.000203 |           | <0.000203    |               |           |
| 4/10/2019  |           | <0.000203 |              | <0.000203     | <0.000203 |
| 5/14/2019  |           | <0.000203 |              | <0.000203     | <0.000203 |
| 5/15/2019  | <0.000203 |           | <0.000203    |               |           |
| 10/8/2019  | <0.000203 | <0.000203 |              | <0.000203     |           |
| 10/10/2019 |           |           | <0.000203    |               | <0.000203 |
| 10/16/2019 |           | <0.000203 |              | <0.000203     | <0.000203 |
| 4/6/2020   |           | <0.000203 |              | <0.000203     | <0.000203 |
| 4/8/2020   | <0.000203 |           | <0.000203    |               |           |
| 7/13/2020  |           | <0.000203 |              | <0.000203     |           |
| 7/14/2020  |           |           |              |               | <0.000203 |
| 7/15/2020  | <0.000203 |           | <0.000203    |               |           |
| 2/22/2021  |           | <0.000203 |              | <0.000203     | <0.000203 |
| 2/23/2021  |           |           | <0.000203    |               |           |
| 2/24/2021  | <0.000203 |           |              |               |           |
|            |           |           |              |               |           |

Constituent: Total Dissolved Solids [TDS] (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

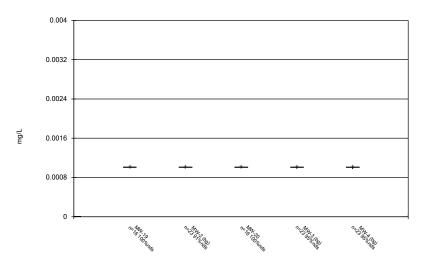

|            |           |            |            |            | ,     |        | <del></del> |
|------------|-----------|------------|------------|------------|-------|--------|-------------|
|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16 | MW-17R | MW-18       |
| 4/26/2016  | 2080 (D)  | 2940       | 3400       | 2540       |       |        | 3130        |
| 4/27/2016  |           |            |            |            | 2130  |        |             |
| 6/20/2016  | 2060 (D)  |            |            |            |       |        |             |
| 6/22/2016  |           | 3580       | 3400       | 2520       | 2270  |        | 3120        |
| 8/8/2016   | 2070 (D)  |            |            |            |       |        |             |
| 8/24/2016  | 2040      |            |            |            |       |        |             |
| 10/3/2016  | 2110 (D)  |            |            |            |       |        |             |
| 10/26/2016 | 2000      |            |            |            |       |        |             |
| 11/21/2016 | 2070 (D)  |            |            |            |       |        |             |
| 1/17/2017  | 1930 (D)  |            |            |            |       |        |             |
| 3/22/2017  | 2060 (D)  |            |            |            |       |        |             |
| 4/18/2017  | 2140      |            |            |            |       |        |             |
| 5/30/2017  | 2240 (D)  |            |            |            |       |        |             |
| 8/23/2017  | 2160 (D)  |            |            |            |       |        |             |
| 10/12/2017 |           | 3350       | 3170       | 2660       | 2380  |        | 3290        |
| 10/13/2017 |           | 3340       | 3070       | 2680       | 2340  |        | 3140        |
| 10/14/2017 |           | 3120       | 3090       | 2530       | 2340  |        | 3150        |
| 10/15/2017 |           | 3210       | 3190       | 2640       | 2440  |        | 3210        |
| 10/16/2017 |           | 3150       | 3110       | 2550       | 2330  |        | 2610        |
| 10/17/2017 |           | 3030       | 3110       | 2600       | 2380  |        | 3180        |
| 11/15/2017 |           |            |            | 2620       | 2400  |        | 3170        |
| 11/16/2017 |           | 3150       | 3160       |            |       |        |             |
| 5/21/2018  |           | 2760       | 2980       | 2510       | 2340  |        |             |
| 5/22/2018  | 2380 (D)  |            |            |            |       |        | 2960        |
| 6/12/2018  | 2400      |            |            |            |       |        |             |
| 10/17/2018 | 2220      |            |            |            |       |        |             |
| 11/19/2018 | 2360      | 2960       | 3270       | 2630       | 2420  |        | 3260        |
| 4/10/2019  | 2630      |            |            |            |       |        |             |
| 5/14/2019  | 2340 (D)  | 2530       | 3150       | 2520       | 2350  |        |             |
| 5/15/2019  |           |            |            |            |       |        | 2860        |
| 10/8/2019  | 2330      | 3050       | 3120       | 2640       | 2460  |        | 2860        |
| 10/16/2019 | 3650      |            |            |            |       |        |             |
| 4/6/2020   | 2240      |            |            |            | 2360  |        |             |
| 4/7/2020   |           | 2190       | 2820       | 2760       |       |        |             |
| 4/8/2020   |           |            |            |            |       |        | 2670        |
| 7/13/2020  | 2240      |            |            |            |       |        |             |
| 7/14/2020  |           | 2860       | 3160       | 2750       | 2360  |        | 2890        |
| 2/22/2021  | 2230      |            |            |            |       |        |             |
| 2/23/2021  |           | 2370       | 3020       | 2890       | 2480  | 3930   | 2570        |
|            |           |            |            |            |       |        |             |

Constituent: Total Dissolved Solids [TDS] (mg/L) Analysis Run 5/20/2021 7:29 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


|            | MW-19 | MW-2 (bg) | MW-20 | MW-3 (bg) | MW-4 (bg) |
|------------|-------|-----------|-------|-----------|-----------|
| 4/25/2016  |       | 1260 (D)  |       | 2720 (D)  | 3300 (D)  |
| 4/26/2016  | 3350  |           | 2690  |           |           |
| 6/20/2016  |       | 1620 (D)  |       |           | 3870 (D)  |
| 6/22/2016  | 3090  |           | 2500  | 3250 (D)  |           |
| 8/8/2016   |       | 1740 (D)  |       |           |           |
| 8/9/2016   |       |           |       | 3050 (D)  | 4140 (D)  |
| 8/24/2016  |       | 1720      |       | 3080      | 4190      |
| 10/3/2016  |       | 1800 (D)  |       |           | 4190 (D)  |
| 10/4/2016  |       |           |       | 2900 (D)  |           |
| 10/26/2016 |       | 1800      |       | 2940      | 4400      |
| 11/21/2016 |       | 1740 (D)  |       | 3090 (D)  | 4230 (D)  |
| 1/17/2017  |       | 1960 (D)  |       |           |           |
| 1/18/2017  |       |           |       | 4020 (D)  | 4120 (D)  |
| 3/22/2017  |       | 1510 (D)  |       | 4180 (D)  | 3980 (D)  |
| 4/18/2017  |       | 1580      |       | 4440      | 3880      |
| 5/31/2017  |       | 1730 (D)  |       | 3970 (D)  | 4210 (D)  |
| 8/23/2017  |       | 1550 (D)  |       | 4050 (D)  | 3990 (D)  |
| 10/12/2017 | 3720  |           | 2670  |           |           |
| 10/13/2017 | 3890  |           | 2640  |           |           |
| 10/14/2017 | 3800  |           | 2590  |           |           |
| 10/15/2017 | 3800  |           | 2700  |           |           |
| 10/16/2017 | 3770  |           | 2670  |           |           |
| 10/17/2017 | 3780  |           | 2570  |           |           |
| 11/15/2017 | 3710  |           | 2600  |           |           |
| 5/22/2018  | 2700  | 1500 (D)  | 2540  |           |           |
| 5/23/2018  |       |           |       |           | 3740 (D)  |
| 5/24/2018  |       |           |       | 3680 (D)  |           |
| 6/12/2018  |       | 1550      |       | 3820      | 4080      |
| 10/17/2018 |       | 1740      |       | 4730      | 4250      |
| 11/19/2018 |       | 1990      |       | 4710      | 3920      |
| 11/20/2018 | 2580  |           | 2420  |           |           |
| 4/10/2019  |       | 1250      |       | 3680      | 3280      |
| 5/14/2019  |       | 1480      |       | 3580 (D)  | 3130 (D)  |
| 5/15/2019  | 2990  |           | 2600  |           |           |
| 10/8/2019  | 3300  | 1840      |       | 4720      |           |
| 10/10/2019 |       |           | 2580  |           | 4000      |
| 10/16/2019 |       | 1830      |       | 4210      | 4060      |
| 4/6/2020   |       | 1440      |       | 2630      | 2820      |
| 4/8/2020   | 2710  |           | 2480  |           |           |
| 7/13/2020  |       | 1540      |       | 3650      |           |
| 7/14/2020  |       |           |       |           | 3310      |
| 7/15/2020  | 3030  |           | 2480  |           |           |
| 2/22/2021  |       | 1620      |       | 4670      | 3190      |
| 2/23/2021  |       |           | 2460  |           |           |
| 2/24/2021  | 3070  |           |       |           |           |
|            |       |           |       |           |           |

# FIGURE B.

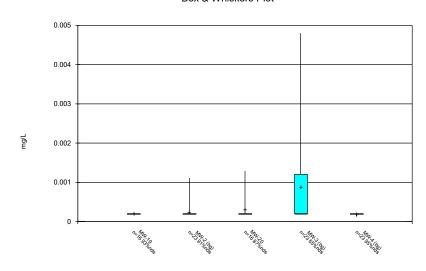





Constituent: Antimony Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

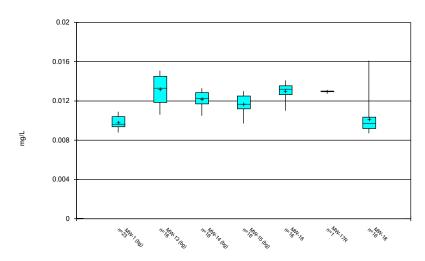


Constituent: Arsenic Analysis Run 5/20/2021 7:30 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Box & Whiskers Plot

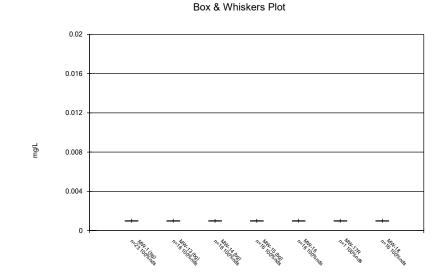


Constituent: Antimony Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG

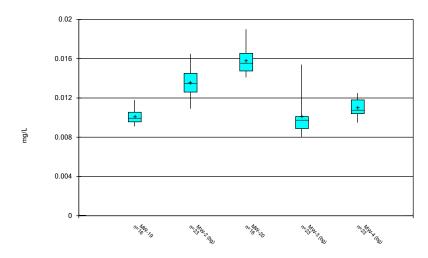
Box & Whiskers Plot




Constituent: Arsenic Analysis Run 5/20/2021 7:30 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

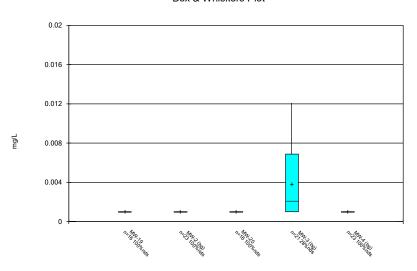





Constituent: Barium Analysis Run 5/20/2021 7:30 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

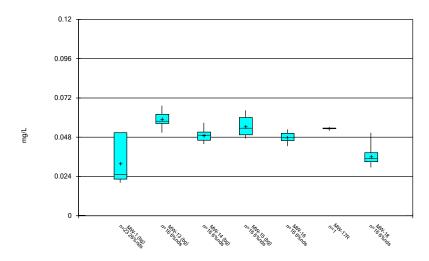
Sanitas™ v.9.6.28 . UG




Constituent: Beryllium Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Box & Whiskers Plot

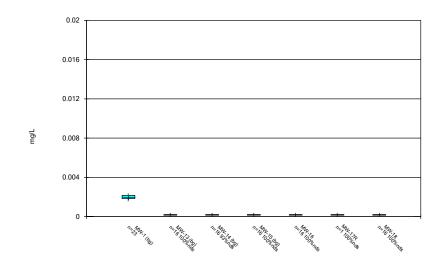



Constituent: Barium Analysis Run 5/20/2021 7:30 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Box & Whiskers Plot

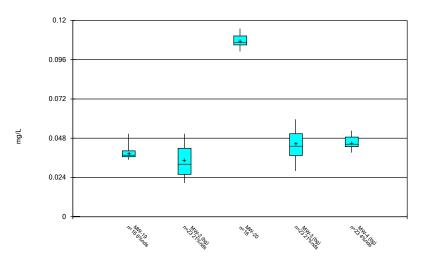


Constituent: Beryllium Analysis Run 5/20/2021 7:30 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Box & Whiskers Plot

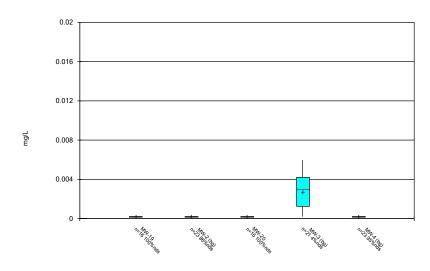


Constituent: Boron, total Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG

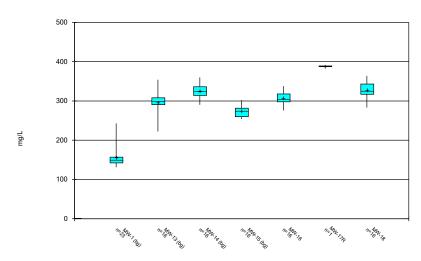
Box & Whiskers Plot




Constituent: Cadmium Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Box & Whiskers Plot

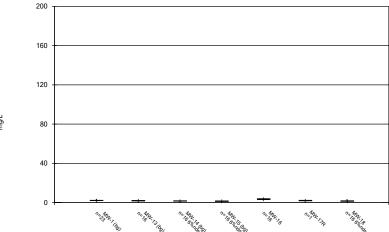



Constituent: Boron, total Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Box & Whiskers Plot

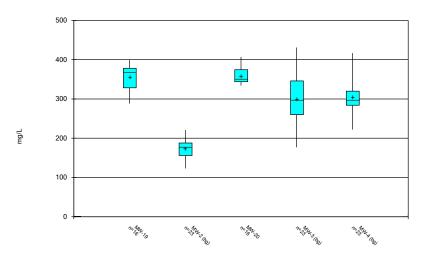


Constituent: Cadmium Analysis Run 5/20/2021 7:30 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Box & Whiskers Plot



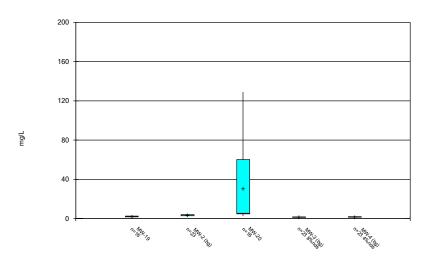
Constituent: Calcium, total Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG

Box & Whiskers Plot



Constituent: Chloride, Total Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Box & Whiskers Plot

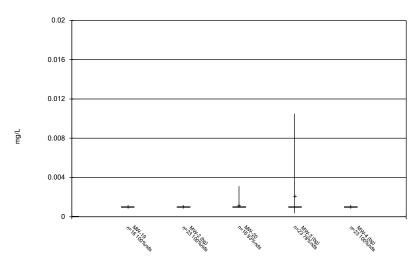


Constituent: Calcium, total Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG

Box & Whiskers Plot

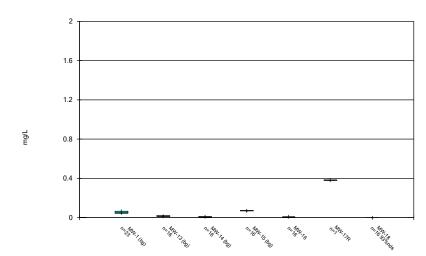



Constituent: Chloride, Total Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Box & Whiskers Plot



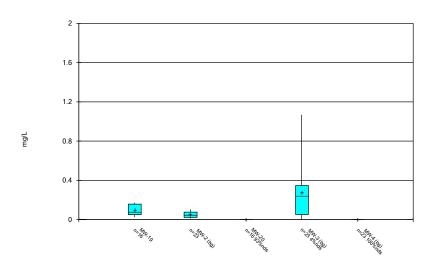
Constituent: Chromium Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Box & Whiskers Plot



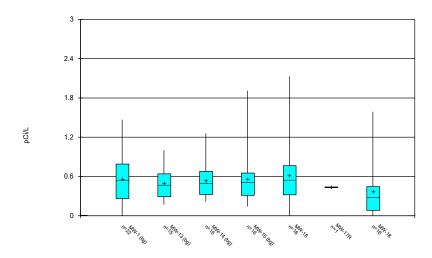
Constituent: Chromium Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG


Box & Whiskers Plot

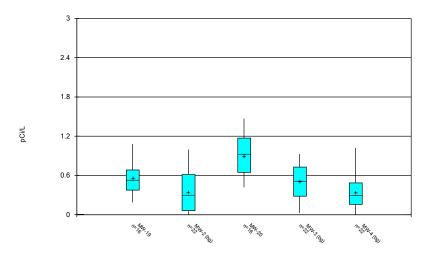


Constituent: Cobalt Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG

Box & Whiskers Plot

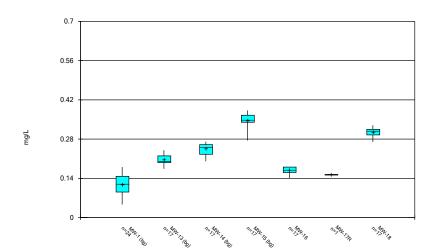



Constituent: Cobalt Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Box & Whiskers Plot



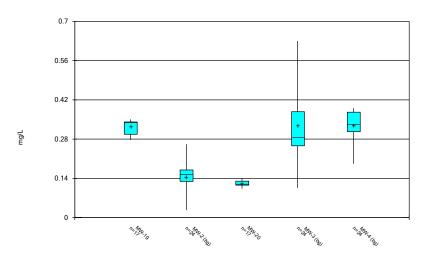
Constituent: Combined Radium 226 + 228 Analysis Run 5/20/2021 7:30 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Box & Whiskers Plot



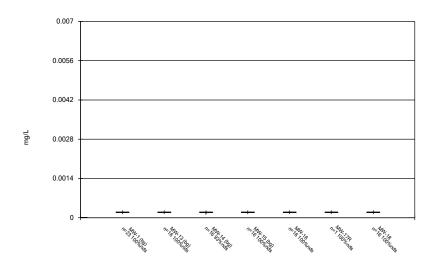
Constituent: Combined Radium 226 + 228 Analysis Run 5/20/2021 7:30 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG


Box & Whiskers Plot

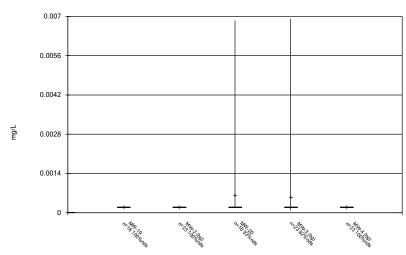


Constituent: Fluoride, total Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG

Box & Whiskers Plot

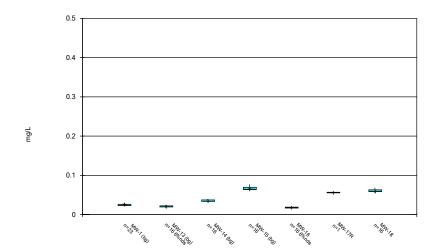



Constituent: Fluoride, total Analysis Run 5/20/2021 7:30 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Box & Whiskers Plot



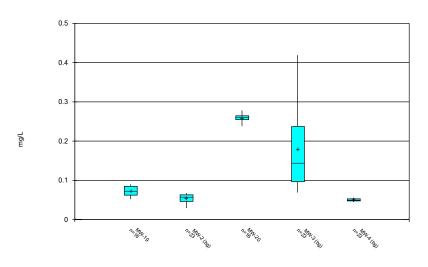
Constituent: Lead Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Box & Whiskers Plot



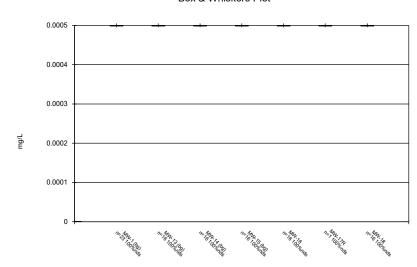
Constituent: Lead Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG


Box & Whiskers Plot

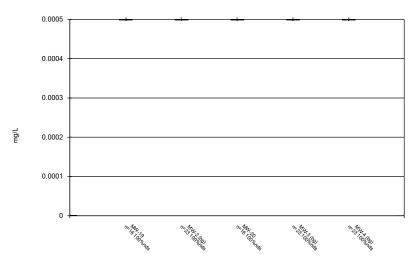


Constituent: Lithium Analysis Run 5/20/2021 7:30 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG

Box & Whiskers Plot

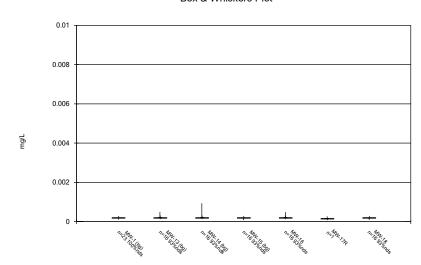



Constituent: Lithium Analysis Run 5/20/2021 7:30 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill





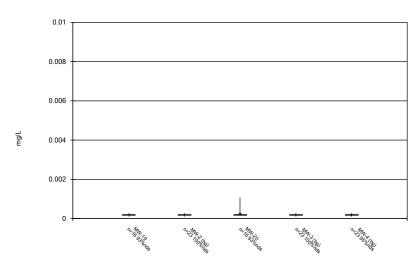
Constituent: Mercury Analysis Run 5/20/2021 7:30 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


### Box & Whiskers Plot



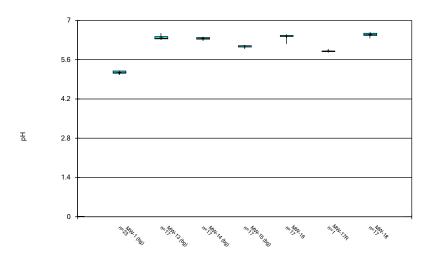
Constituent: Mercury Analysis Run 5/20/2021 7:30 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### Sanitas™ v.9.6.28 . UG


Box & Whiskers Plot

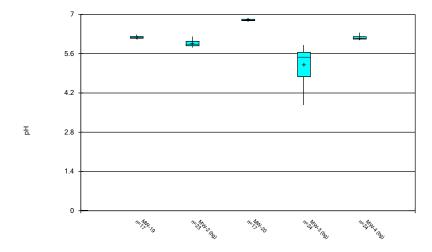


Constituent: Molybdenum Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG

Box & Whiskers Plot

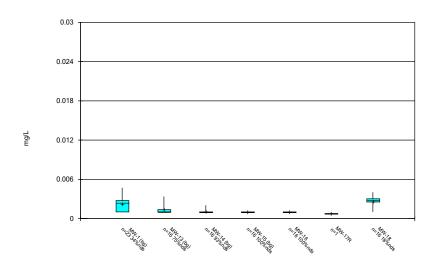



Constituent: Molybdenum Analysis Run 5/20/2021 7:30 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Box & Whiskers Plot



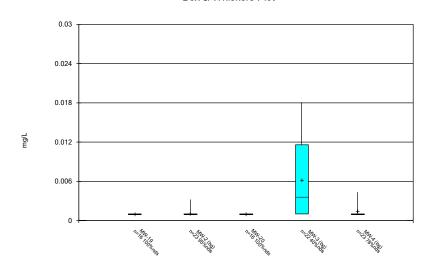
Constituent: pH Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Box & Whiskers Plot



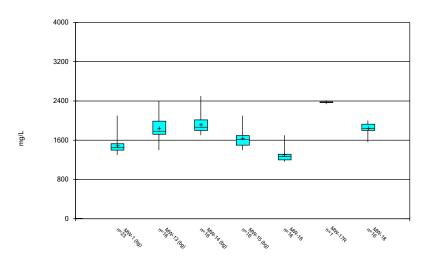
Constituent: pH Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG


Box & Whiskers Plot



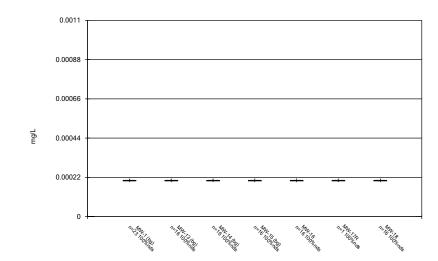
Constituent: Selenium Analysis Run 5/20/2021 7:30 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG

Box & Whiskers Plot

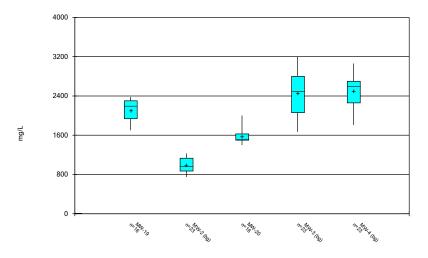


Constituent: Selenium Analysis Run 5/20/2021 7:30 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Box & Whiskers Plot



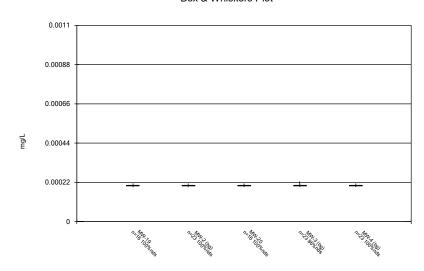
Constituent: Sulfate as SO4 Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG

Box & Whiskers Plot

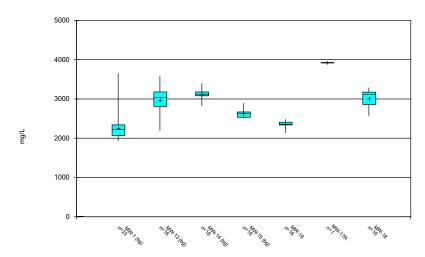


Constituent: Thallium Analysis Run 5/20/2021 7:30 PM View: Constituents View
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Box & Whiskers Plot



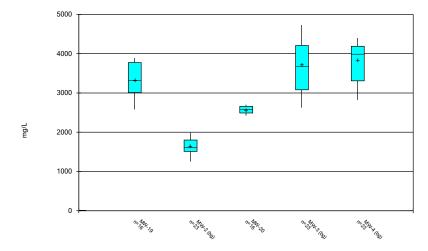
Constituent: Sulfate as SO4 Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG

Box & Whiskers Plot



Constituent: Thallium Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill






Constituent: Total Dissolved Solids [TDS] Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG

Box & Whiskers Plot



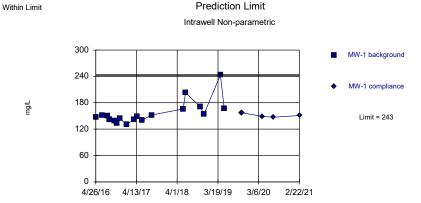
Constituent: Total Dissolved Solids [TDS] Analysis Run 5/20/2021 7:30 PM View: Constituents View Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

# FIGURE C.

Outlier Summary Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 5/20/2021, 7:31 PM MW-3 Beryllium (mg/L)
MW-3 Cadmium (mg/L)
MW-13 Combined Radium 226 + 228 (pCi/L)
MW-3 Selenium (mg/L)
MW-3 Selenium (mg/L) 4/25/2016 0.0121 (O) 1/18/2017 0.0169 (O) 2.15 (O) 10/14/2017 2/13/2018 0.0209 (O) 11/19/2018 0.0185 (O) 0.00885 (O) 7/13/2020

# FIGURE D.

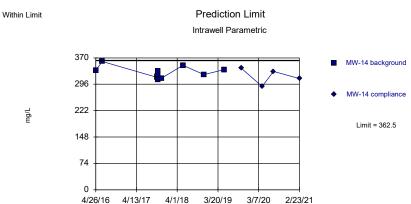
## Appendix III - Intrawell Prediction Limits - Significant Results


Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 5/20/2021, 9:58 PM

| Constituent                         | Well  | Upper Lim. | Lower Lim. | <u>Date</u> | Observ. | Sig. | Bg N | Bg Mean | Std. Dev. | %NDs | ND Adj. | Transform | <u>Alpha</u> | Method             |
|-------------------------------------|-------|------------|------------|-------------|---------|------|------|---------|-----------|------|---------|-----------|--------------|--------------------|
| Calcium, total (mg/L)               | MW-15 | 298.3      | n/a        | 2/23/2021   | 302     | Yes  | 12   | 268.8   | 13.21     | 0    | None    | No        | 0.00188      | Param Intra 1 of 2 |
| Chloride, Total (mg/L)              | MW-20 | 7.306      | n/a        | 2/23/2021   | 129     | Yes  | 8    | 4.393   | 1.114     | 0    | None    | No        | 0.00188      | Param Intra 1 of 2 |
| Total Dissolved Solids [TDS] (mg/L) | MW-15 | 2720       | n/a        | 2/23/2021   | 2890    | Yes  | 12   | 2583    | 61.4      | 0    | None    | No        | 0.00188      | Param Intra 1 of 2 |

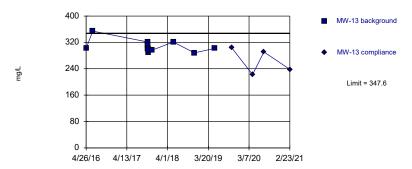
### Appendix III - Intrawell Prediction Limits - All Results

Client: Southern Company Data: Gorgas Gypsum Landfill Printed 5/20/2021, 9:57 PM Constituent <u>Well</u> Bg Mean Std. Dev. %NDs ND Adj. Lower Lim. Date Observ. Bg N Transform Alpha 0.005373 MW-1 243 2/22/2021 0 NP Intra (normality) 1 of 2 Calcium, total (mg/L) n/a 151 No 18 n/a n/a n/a n/a Calcium, total (mg/L) MW-13 347.6 n/a 2/23/2021 238 No 12 306.8 18.25 0 None No 0.00188 Param Intra 1 of 2 MW-14 2/23/2021 312 327 6 Calcium, total (mg/L) 362.5 12 15.66 n No 0.00188 Param Intra 1 of 2 n/a No None 298.3 Calcium, total (mg/L) MW-15 2/23/2021 302 Yes 12 268.8 13.21 0 None No 0.00188 Param Intra 1 of 2 Calcium, total (mg/L) MW-16 340.5 2/23/2021 317 12 304.3 16.22 0 0.00188 Param Intra 1 of 2 No n/a No None Calcium, total (mg/L) MW-18 2/23/2021 284 12 337.7 0.00188 Param Intra 1 of 2 371.4 n/a No 15.11 0 None No Calcium, total (mg/L) MW-19 418.7 n/a 2/24/2021 332 No 12 366.3 23.49 0 None No 0.00188 Param Intra 1 of 2 Calcium, total (mg/L) MW-2 2/22/2021 178 No 18 173.9 22.02 0 None No 0.00188 Param Intra 1 of 2 Calcium, total (mg/L) MW-20 403.6 n/a 2/23/2021 343 Nο 12 358.8 20.08 0 None Nο 0.00188 Param Intra 1 of 2 Calcium, total (mg/L) MW-3 416.4 n/a 2/22/2021 312 No 18 301.6 56.48 None 0.00188 Param Intra 1 of 2 Calcium, total (mg/L) MW-4 388.7 n/a 2/22/2021 271 Nο 18 311.2 38.16 0 None Nο 0.00188 Param Intra 1 of 2 MW-1 Chloride, Total (mg/L) 3.267 2/22/2021 2.16 No 18 1.528 0.1377 0 0.00188 Param Intra 1 of 2 Chloride, Total (mg/L) MW-13 2/23/2021 1.6 12 0.3926 0 0.00188 Param Intra 1 of 2 2.874 n/a No 1.998 None No Chloride, Total (mg/L) MW-14 2.661 n/a 2/23/2021 1.53 No 12 1.723 0.4201 8.333 None 0.00188 Param Intra 1 of 2 Chloride Total (mg/L) MW-15 2 148 n/a 2/23/2021 1.41 Nο 12 1 336 0.3638 8 333 None Nο 0.00188 Param Intra 1 of 2 Chloride, Total (mg/L) 2/23/2021 3.08 No 12 0.5109 0 0.00188 Param Intra 1 of 2 n/a None No Chloride, Total (mg/L) MW-18 3 371 n/a 2/23/2021 1.34 No 12 1 733 0.7337 8.333 None No 0.00188 Param Intra 1 of 2 Chloride, Total (mg/L) MW-19 2/24/2021 2.02 12 2.331 0.4378 0 0.00188 Param Intra 1 of 2 3.308 No No n/a None Chloride, Total (mg/L) MW-2 4.812 n/a 2/22/2021 1.72 No 18 3 299 0.7443 0 None No 0.00188 Param Intra 1 of 2 Chloride, Total (mg/L) MW-20 7.306 n/a 2/23/2021 4 393 1.114 0 None Nο 0.00188 Param Intra 1 of 2 Yes Chloride, Total (mg/L) MW-3 2.362 n/a 2/22/2021 2.22 Nο 18 1.567 0.3909 11.11 None Nο 0.00188 Param Intra 1 of 2 MW-4 Chloride, Total (mg/L) 2.518 2/22/2021 1.52 18 1.843 0.3319 0.00188 Param Intra 1 of 2 n/a No 5.556 None No MW-1 0.03556 Fluoride, total (mg/L) 2/22/2021 0.082J 0.1261 0.00188 Param Intra 1 of 2 0.1975 n/a No 19 0 No Fluoride, total (mg/L) MW-13 0.2389 n/a 2/23/2021 0.224 No 13 0.2101 0.01313 0 None No 0.00188 Param Intra 1 of 2 Fluoride, total (mg/L) MW-14 0.2784 n/a 2/23/2021 0.22 No 13 0.2539 0.01115 0 None No 0.00188 Param Intra 1 of 2 Fluoride, total (mg/L) MW-15 0.3813 2/23/2021 0.275 0.3551 0.01195 0 Nο 0.00188 Param Intra 1 of 2 n/a Nο 13 None Fluoride, total (mg/L) MW-16 0.1873 2/23/2021 0.161 13 0.00090220.00015030 x^4 0.00188 Param Intra 1 of 2 n/a No Fluoride, total (mg/L) MW-18 2/23/2021 0.29 0.00188 Param Intra 1 of 2 0.3402 13 0.3086 0.01439 0 n/a No None No 2/24/2021 0.343 MW-19 0.009692 NP Intra (normality) 1 of 2 Fluoride, total (mg/L) 0.35 No 13 n/a Fluoride, total (mg/L) 2/22/2021 0.209 Param Intra 1 of 2 MW-2 0.2572 n/a No 19 0.1404 0.05808 0 None No 0.00188 Fluoride, total (mg/L) 0.1412 2/23/2021 0.117 No 0.1262 0.006809 0 0.00188 Param Intra 1 of 2 Fluoride, total (mg/L) MW-3 0.6475 n/a 2/22/2021 0 246 Nο 19 -1 063 0.3126 n None In(x) 0.00188 Param Intra 1 of 2 Fluoride, total (mg/L) MW-4 0.4323 n/a 2/22/2021 0.357 No 19 0.1114 0.03754 0 None x^2 0.00188 Param Intra 1 of 2 Sulfate as SO4 (mg/L) MW-1 NP Intra (normality) 1 of 2 2100 n/a 2/22/2021 1400 Nο 18 n/a n/a 0 n/a n/a 0.005373 Sulfate as SO4 (mg/L) MW-13 2443 2/23/2021 No 12 1916 236.3 0 No 0.00188 Param Intra 1 of 2 n/a None Sulfate as SO4 (mg/L) MW-14 2439 n/a 2/23/2021 1850 No 12 1936 225.5 0 None Nο 0.00188 Param Intra 1 of 2 Sulfate as SO4 (mg/L) MW-15 2084 n/a 2/23/2021 1740 No 12 1633 201.9 None Nο 0.00188 Param Intra 1 of 2 Sulfate as SO4 (mg/L) MW-16 1700 2/23/2021 1330 No 12 n/a 0 n/a 0.01077 NP Intra (normality) 1 of 2 n/a n/a n/a 2066 Sulfate as SO4 (mg/L) MW-18 2/23/2021 1560 12 1884 81.52 0 No 0.00188 Param Intra 1 of 2 n/a No None Sulfate as SO4 (mg/L) MW-19 2/24/2021 1970 2144 189.1 0.00188 Param Intra 1 of 2 2566 n/a No 12 0 None No Sulfate as SO4 (mg/L) MW-2 1260 2/22/2021 864 1003 126.2 None 0.00188 Param Intra 1 of 2 n/a No 18 No Sulfate as SO4 (mg/L) MW-20 1926 2/23/2021 1420 No 12 39 74 1.855 0 0.00188 Param Intra 1 of 2 n/a None sqrt(x) Sulfate as SO4 (mg/L) MW-3 3202 2/22/2021 3040 18 2431 379.6 0 0.00188 Param Intra 1 of 2 No No n/a None 3041 Sulfate as SO4 (mg/L) MW-4 2/22/2021 2040 18 2566 233.5 0.00188 Param Intra 1 of 2 n/a No n None No Total Dissolved Solids ITDS1 (mg/L) MW-1 2/22/2021 2230 2183 178 0.00188 Param Intra 1 of 2 2544 18 n No n/a No None MW-13 Total Dissolved Solids [TDS] (mg/L) 2/23/2021 2370 0.00188 Param Intra 1 of 2 3717 No 12 3093 279.3 0 Total Dissolved Solids ITDSI (mg/L) MW-14 2/23/2021 3020 12 3175 126.5 0 0.00188 3457 n/a No None No Param Intra 1 of 2 Total Dissolved Solids [TDS] (mg/L) MW-15 2720 n/a 2/23/2021 2890 Yes 12 2583 61.4 None 0.00188 Param Intra 1 of 2 Total Dissolved Solids (TDS) (mg/L) MW-16 2524 2/23/2021 2480 12 2343 81.05 0 Nο 0.00188 Param Intra 1 of 2 n/a Nο None Total Dissolved Solids [TDS] (mg/L) MW-18 3519 2/23/2021 2570 No 12 3090 192.3 No 0.00188 Param Intra 1 of 2 Total Dissolved Solids [TDS] (mg/L) 0.00188 MW-19 4487 n/a 2/24/2021 3070 Nο 12 3432 472.6 0 None Nο Param Intra 1 of 2 Total Dissolved Solids [TDS] (mg/L) MW-2 2052 n/a 2/22/2021 1620 No 18 1640 202.8 None No 0.00188 Param Intra 1 of 2 Total Dissolved Solids [TDS] (mg/L) MW-20 2785 n/a 2/23/2021 2460 No 12 2599 83.39 0 None Nο 0.00188 Param Intra 1 of 2 Total Dissolved Solids [TDS] (mg/L) 4938 2/22/2021 4670 No 18 3661 628.6 0 0.00188 Param Intra 1 of 2 Total Dissolved Solids [TDS] (mg/L) 4601 2/22/2021 3190 18 2719774 0 0.00188 MW-4 n/a Nο 1 6e7 None x^2 Param Intra 1 of 2


.6.28 . UG



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

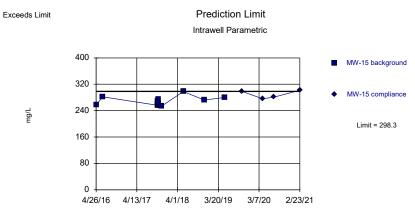

Constituent: Calcium, total Analysis Run 5/20/2021 7:45 PM View: Appendix III - Intrawell Parameters
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG



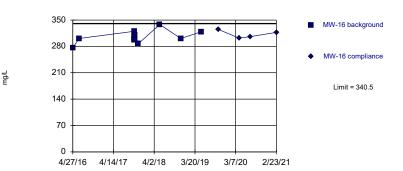
Background Data Summary: Mean=327.6, Std. Dev.=15.66, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9182, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Within Limit Prediction Limit
Intrawell Parametric




Background Data Summary: Mean=306.8, Std. Dev.=18.25, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.828, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188

Constituent: Calcium, total Analysis Run 5/20/2021 7:45 PM View: Appendix III - Intrawell Parameters
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

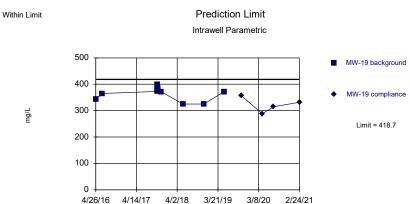

Sanitas™ v.9.6.28 . UG

Sanitas™ v.9.6.28 . UG



Background Data Summary: Mean=268.8, Std. Dev.=13.21, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.916, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Within Limit Prediction Limit
Intrawell Parametric




Background Data Summary: Mean=304.3, Std. Dev.=16.22, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.966, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188

Constituent: Calcium, total Analysis Run 5/20/2021 7:45 PM View: Appendix III - Intrawell Parameters

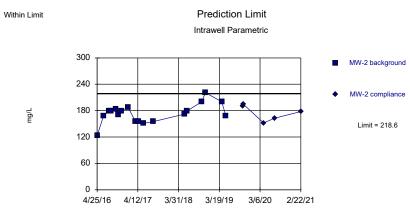
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG



Background Data Summary: Mean=366.3, Std. Dev.=23.49, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8755, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.28 . UG






Background Data Summary: Mean=337.7, Std. Dev.=15.11, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9435, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.01188

Constituent: Calcium, total Analysis Run 5/20/2021 7:45 PM View: Appendix III - Intrawell Parameters
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG



Background Data Summary: Mean=173.9, Std. Dev.=22.02, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9699, critical = 0.858. Kappa = 2.032 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.



500 400 MW-20 background MW-20 compliance Limit = 403.6

Intrawell Parametric

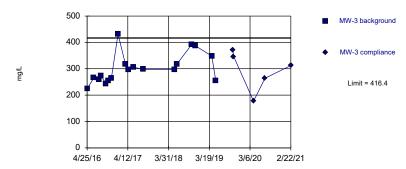
Background Data Summary: Mean=358.8, Std. Dev.=20.08, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9048, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188

Constituent: Calcium, total Analysis Run 5/20/2021 7:45 PM View: Appendix III - Intrawell Parameters
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### Sanitas™ v.9.6.28 . UG

Within Limit Prediction Limit Intrawell Parametric

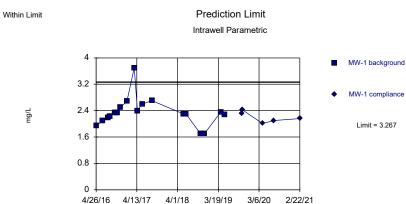
MW-4 background


MW-4 compliance

Limit = 388.7

Background Data Summary: Mean=311.2, Std. Dev.=38.16, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9055, critical = 0.858. Kappa = 2.032 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

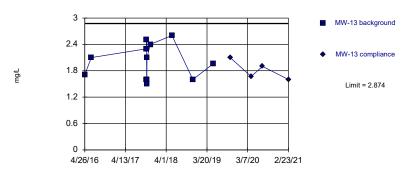
Sanitas™ v.9.6.28 . UG


## Within Limit Prediction Limit Intrawell Parametric



Background Data Summary: Mean=301.6, Std. Dev.=56.48, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9168, critical = 0.858. Kappa = 2.032 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0182

Constituent: Calcium, total Analysis Run 5/20/2021 7:45 PM View: Appendix III - Intrawell Parameters
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

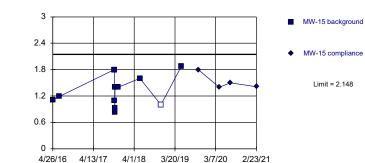

#### Sanitas™ v.9.6.28 . UG



Background Data Summary (based on square root transformation): Mean=1.528, Std. Dev.=0.1377, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8916, critical = 0.858. Kappa = 2.032 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Within Limit

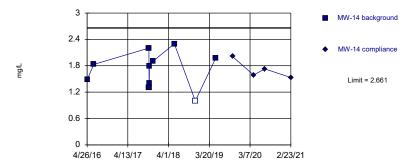
Prediction Limit Intrawell Parametric




Background Data Summary: Mean=1.998, Std. Dev.=0.3926, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9075, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

Constituent: Chloride, Total Analysis Run 5/20/2021 7:45 PM View: Appendix III - Intrawell Parameters Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG Hollow symbols indicate censored values. Within Limit

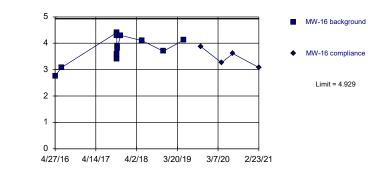

Prediction Limit Intrawell Parametric



Background Data Summary: Mean=1.336, Std. Dev.=0.3638, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9226, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

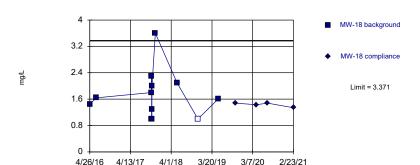
Sanitas™ v.9.6.28 . UG Hollow symbols indicate censored values. Within Limit

**Prediction Limit** Intrawell Parametric




Background Data Summary: Mean=1.723, Std. Dev.=0.4201, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9418, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride, Total Analysis Run 5/20/2021 7:45 PM View: Appendix III - Intrawell Parameters Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG

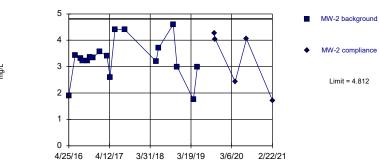
**Prediction Limit** Within Limit Intrawell Parametric



Background Data Summary: Mean=3.788, Std. Dev.=0.5109, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9337, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

Within Limit Prediction Limit

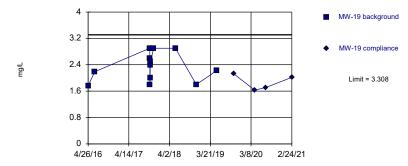



Intrawell Parametric

Background Data Summary: Mean=1.733, Std. Dev.=0.7337, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8612, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00184.

Constituent: Chloride, Total Analysis Run 5/20/2021 7:45 PM View: Appendix III - Intrawell Parameters

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

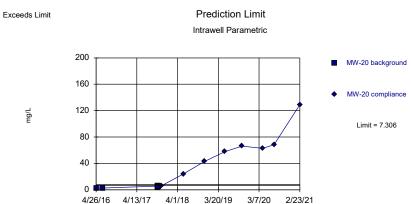

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=3.299, Std. Dev.=0.7443, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9231, critical = 0.858. Kappa = 2.032 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.28 . UG






Background Data Summary: Mean=2.331, Std. Dev.=0.4378, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8995, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188

Constituent: Chloride, Total Analysis Run 5/20/2021 7:45 PM View: Appendix III - Intrawell Parameters

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

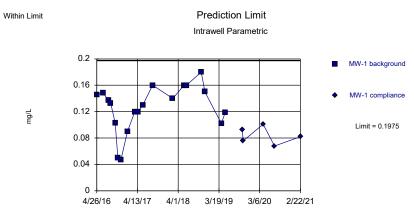
Sanitas™ v.9.6.28 . UG



Background Data Summary: Mean=4.393, Std. Dev.=1.114, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8117, critical = 0.749. Kappa = 2.616 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.28 . UG Hollow symbols indicate censored values

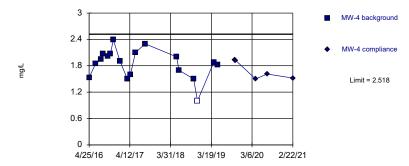
Within Limit Prediction Limit
Intrawell Parametric




Background Data Summary: Mean=1.567, Std. Dev.=0.3909, n=18, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9045, critical = 0.858. Kappa = 2.032 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride, Total Analysis Run 5/20/2021 7:45 PM View: Appendix III - Intrawell Parameters

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

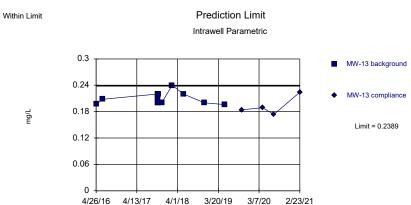

Sanitas™ v.9.6.28 . UG



Background Data Summary: Mean=0.1261, Std. Dev.=0.03556, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9188, critical = 0.863. Kappa = 2.01 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.28 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Parametric




Background Data Summary: Mean=1.843, Std. Dev.=0.3319, n=18, 5.556% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9518, critical = 0.858. Kappa = 2.032 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

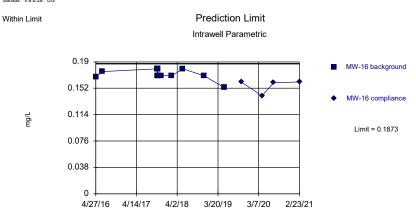
Constituent: Chloride, Total Analysis Run 5/20/2021 7:45 PM View: Appendix III - Intrawell Parameters

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG



Background Data Summary: Mean=0.2101, Std. Dev.=0.01313, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8608, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Prediction Limit Within Limit Intrawell Parametric



Background Data Summary: Mean=0.2539, Std. Dev.=0.01115, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8403, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

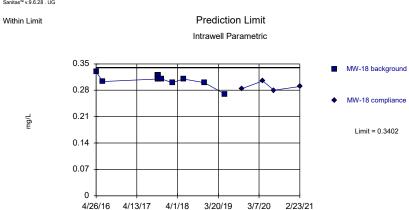
Constituent: Fluoride, total Analysis Run 5/20/2021 7:45 PM View: Appendix III - Intrawell Parameters Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG



Background Data Summary (based on x<sup>4</sup> transformation): Mean=0.0009022, Std. Dev.=0.0001503, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8205, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

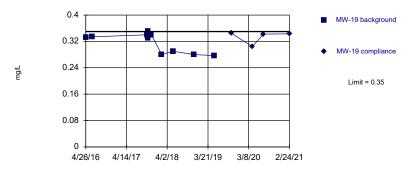
Sanitas™ v.9.6.28 . UG






Background Data Summary: Mean=0.3551, Std. Dev.=0.01195, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8974, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

Constituent: Fluoride, total Analysis Run 5/20/2021 7:45 PM View: Appendix III - Intrawell Parameters Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG



Background Data Summary: Mean=0.3086, Std. Dev.=0.01439, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8513, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

Within Limit Prediction Limit





Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.01929, Individual comparison alpha = 0.009692 (1 of 2).

Constituent: Fluoride, total Analysis Run 5/20/2021 7:46 PM View: Appendix III - Intrawell Parameters
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG

Within Limit

Prediction Limit
Intrawell Parametric

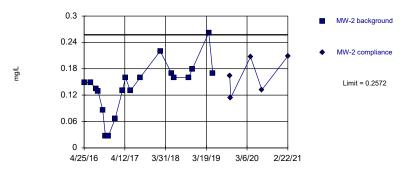
MW-20 background

MW-20 compliance

Limit = 0.1412

4/26/16 4/13/17 4/1/18

Background Data Summary: Mean=0.1262, Std. Dev.=0.006809, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8824, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


3/20/19

3/7/20

2/23/21

Sanitas™ v.9.6.28 . UG

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=0.1404, Std. Dev.=0.05808, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9263, critical = 0.863. Kappa = 2.01 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0189

Constituent: Fluoride, total Analysis Run 5/20/2021 7:46 PM View: Appendix III - Intrawell Parameters
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

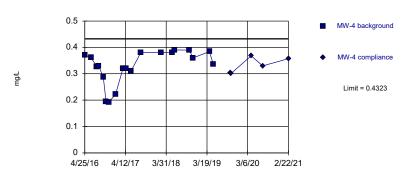
Sanitas™ v.9.6.28 . UG

Within Limit Prediction Limit Intrawell Parametric

MW-3 background

MW-3 compliance

Limit = 0.6475

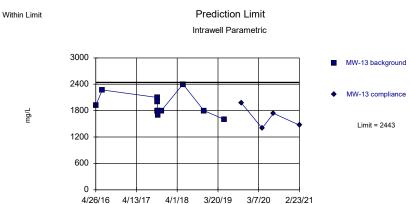

4/25/16 4/12/17 3/31/18 3/19/19

Background Data Summary (based on natural log transformation): Mean=-1.063, Std. Dev.=0.3126, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.875, critical = 0.863. Kappa = 2.01 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

3/6/20

2/22/21

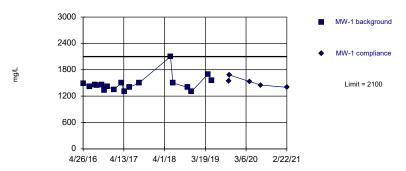
Within Limit Prediction Limit
Intrawell Parametric




Background Data Summary (based on square transformation): Mean=0.1114, Std. Dev.=0.03754, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8742, critical = 0.863. Kappa = 2.01 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride, total Analysis Run 5/20/2021 7:46 PM View: Appendix III - Intrawell Parameters

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG



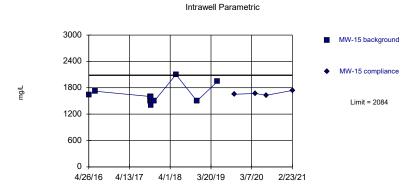
Background Data Summary: Mean=1916, Std. Dev.=236.3, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8932, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.28 . UG





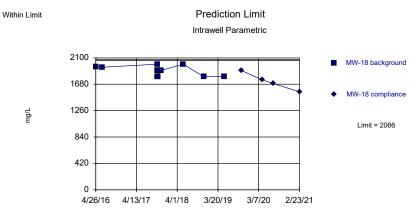
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).


Constituent: Sulfate as SO4 Analysis Run 5/20/2021 7:46 PM View: Appendix III - Intrawell Parameters
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG

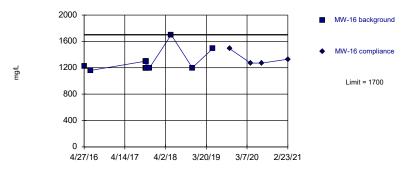


Background Data Summary: Mean=1936, Std. Dev.=225.5, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8615, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.





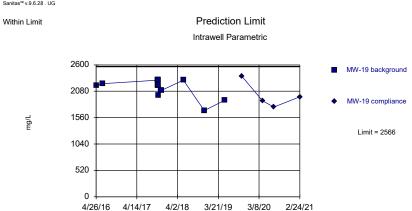

Background Data Summary: Mean=1633, Std. Dev.=201.9, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8372, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =


Constituent: Sulfate as SO4 Analysis Run 5/20/2021 7:46 PM View: Appendix III - Intrawell Parameters Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

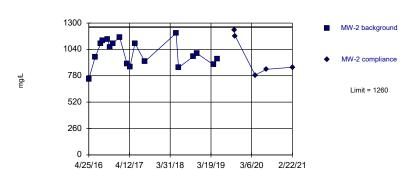
#### Sanitas™ v.9.6.28 . UG



Background Data Summary: Mean=1884, Std. Dev.=81.52, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8317, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = Sanitas™ v.9.6.28 . UG



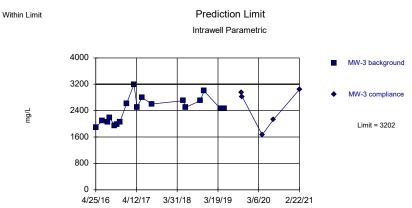




Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Constituent: Sulfate as SO4 Analysis Run 5/20/2021 7:46 PM View: Appendix III - Intrawell Parameters Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### Sanitas™ v.9.6.28 . UG

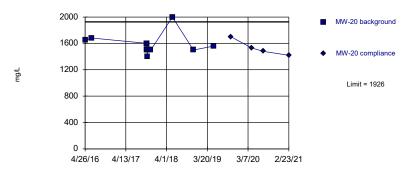



Background Data Summary: Mean=2144, Std. Dev.=189.1, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8153, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=1003, Std. Dev.=126.2, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.957, critical = 0.858. Kappa = 2.032 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188

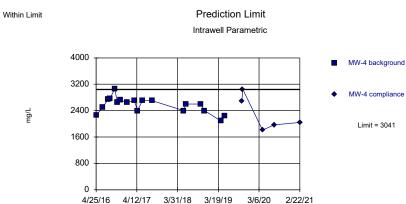
Constituent: Sulfate as SO4 Analysis Run 5/20/2021 7:46 PM View: Appendix III - Intrawell Parameters
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG



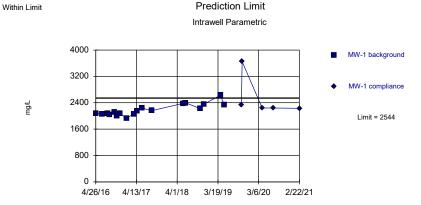
Background Data Summary: Mean=2431, Std. Dev.=379.6, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9476, critical = 0.858. Kappa = 2.032 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.28 . UG



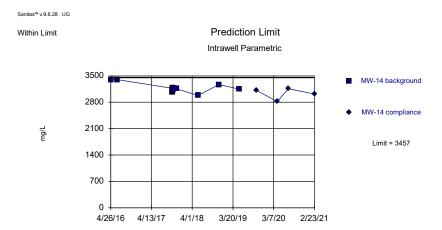



Background Data Summary (based on square root transformation): Mean=39.74, Std. Dev.=1.855, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8098, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

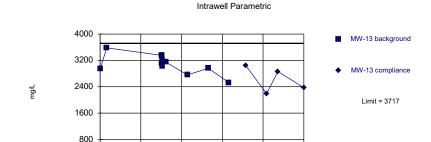

Constituent: Sulfate as SO4 Analysis Run 5/20/2021 7:46 PM View: Appendix III - Intrawell Parameters
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG




Background Data Summary: Mean=2566, Std. Dev.=233.5, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9529, critical = 0.858. Kappa = 2.032 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Within Limit




Background Data Summary: Mean=2183, Std. Dev.=178, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9142, critical = 0.858. Kappa = 2.032 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.01188

Constituent: Total Dissolved Solids [TDS] Analysis Run 5/20/2021 7:46 PM View: Appendix III - Intrawell P Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



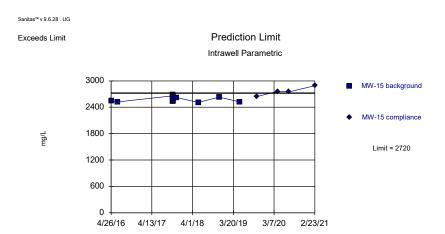
Background Data Summary: Mean=3175, Std. Dev.=126.5, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9106, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.



**Prediction Limit** 

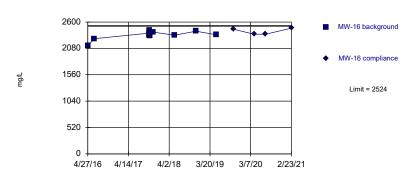
Background Data Summary: Mean=3093, Std. Dev.=279.3, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.979, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188

3/20/19


3/7/20

2/23/21

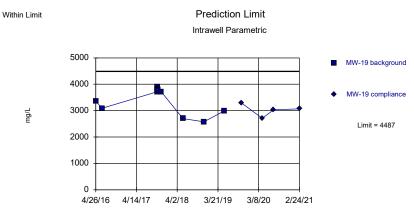
4/1/18


4/26/16 4/13/17

Constituent: Total Dissolved Solids [TDS] Analysis Run 5/20/2021 7:46 PM View: Appendix III - Intrawell P Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



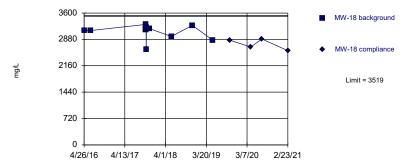
Background Data Summary: Mean=2583, Std. Dev.=61.4, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.894, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=2343, Std. Dev.=81.05, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8399, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188

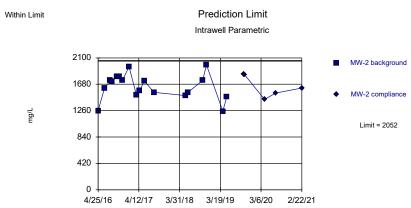

Constituent: Total Dissolved Solids [TDS] Analysis Run 5/20/2021 7:46 PM View: Appendix III - Intrawell P Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG



Background Data Summary: Mean=3432, Std. Dev.=472.6, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8225, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.28 . UG






Background Data Summary: Mean=3090, Std. Dev.=192.3, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8202, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0182

Constituent: Total Dissolved Solids [TDS] Analysis Run 5/20/2021 7:46 PM View: Appendix III - Intrawell P Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG

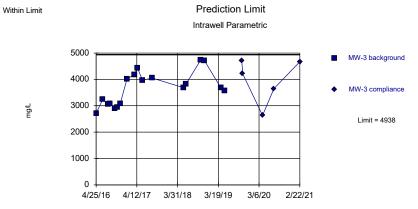


Background Data Summary: Mean=1640, Std. Dev.=202.8, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.952, critical = 0.858. Kappa = 2.032 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Within Limit Prediction Limit Intrawell Parametric



Background Data Summary: Mean=2599, Std. Dev.=83.39, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9352, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0192


Constituent: Total Dissolved Solids [TDS] Analysis Run 5/20/2021 7:46 PM View: Appendix III - Intrawell P Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG

Background Data Summary (based on square transformation): Mean=1.6e7, Std. Dev.=2719774, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8799, critical = 0.858. Kappa = 2.032 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Total Dissolved Solids [TDS] Analysis Run 5/20/2021 7:46 PM View: Appendix III - Intrawell P Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG



Background Data Summary: Mean=3661, Std. Dev.=628.6, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9455, critical = 0.858. Kappa = 2.032 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188

Constituent: Total Dissolved Solids [TDS] Analysis Run 5/20/2021 7:46 PM View: Appendix III - Intrawell P Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 | MW-1 |
|------------|------|------|
| 4/26/2016  | 147  |      |
| 6/20/2016  | 152  |      |
| 8/8/2016   | 150  |      |
| 8/24/2016  | 142  |      |
| 10/3/2016  | 139  |      |
| 10/26/2016 | 133  |      |
| 11/21/2016 | 144  |      |
| 1/17/2017  | 131  |      |
| 3/22/2017  | 141  |      |
| 4/18/2017  | 149  |      |
| 5/30/2017  | 140  |      |
| 8/23/2017  | 152  |      |
| 5/22/2018  | 166  |      |
| 6/12/2018  | 203  |      |
| 10/17/2018 | 171  |      |
| 11/19/2018 | 154  |      |
| 4/10/2019  | 243  |      |
| 5/14/2019  | 167  |      |
| 10/8/2019  |      | 157  |
| 10/16/2019 |      | 157  |
| 4/6/2020   |      | 149  |
| 7/13/2020  |      | 147  |
| 2/22/2021  |      | 151  |
|            |      |      |

| MW-13 | MW-13                                                                     |
|-------|---------------------------------------------------------------------------|
| 302   |                                                                           |
| 354   |                                                                           |
| 321   |                                                                           |
| 312   |                                                                           |
| 300   |                                                                           |
| 300   |                                                                           |
| 290   |                                                                           |
| 296   |                                                                           |
| 296   |                                                                           |
| 321   |                                                                           |
| 288   |                                                                           |
| 302   |                                                                           |
|       | 304                                                                       |
|       | 222                                                                       |
|       | 291                                                                       |
|       | 238                                                                       |
|       | 302<br>354<br>321<br>312<br>300<br>300<br>290<br>296<br>296<br>321<br>288 |

|            | MW-14 | MW-14 |
|------------|-------|-------|
| 4/26/2016  | 335   |       |
| 6/22/2016  | 360   |       |
| 10/12/2017 | 315   |       |
| 10/13/2017 | 317   |       |
| 10/14/2017 | 315   |       |
| 10/15/2017 | 325   |       |
| 10/16/2017 | 333   |       |
| 10/17/2017 | 309   |       |
| 11/16/2017 | 313   |       |
| 5/21/2018  | 349   |       |
| 11/19/2018 | 323   |       |
| 5/14/2019  | 337   |       |
| 10/8/2019  |       | 341   |
| 4/7/2020   |       | 290   |
| 7/14/2020  |       | 332   |
| 2/23/2021  |       | 312   |

|            | MW-15 | MW-15 |
|------------|-------|-------|
| 4/26/2016  | 257   |       |
| 6/22/2016  | 282   |       |
| 10/12/2017 | 256   |       |
| 10/13/2017 | 269   |       |
| 10/14/2017 | 262   |       |
| 10/15/2017 | 275   |       |
| 10/16/2017 | 258   |       |
| 10/17/2017 | 263   |       |
| 11/15/2017 | 254   |       |
| 5/21/2018  | 298   |       |
| 11/19/2018 | 272   |       |
| 5/14/2019  | 280   |       |
| 10/8/2019  |       | 299   |
| 4/7/2020   |       | 276   |
| 7/14/2020  |       | 281   |
| 2/23/2021  |       | 302   |

|            | MW-16 | MW-16 |
|------------|-------|-------|
| 4/27/2016  | 276   |       |
| 6/22/2016  | 301   |       |
| 10/12/2017 | 320   |       |
| 10/13/2017 | 297   |       |
| 10/14/2017 | 299   |       |
| 10/15/2017 | 307   |       |
| 10/16/2017 | 310   |       |
| 10/17/2017 | 297   |       |
| 11/15/2017 | 287   |       |
| 5/21/2018  | 338   |       |
| 11/19/2018 | 301   |       |
| 5/14/2019  | 319   |       |
| 10/8/2019  |       | 325   |
| 4/6/2020   |       | 302   |
| 7/14/2020  |       | 306   |
| 2/23/2021  |       | 317   |
|            |       |       |

|            | MW-18 | MW-18 |
|------------|-------|-------|
| 4/26/2016  | 319   |       |
| 6/22/2016  | 354   |       |
| 10/12/2017 | 340   |       |
| 10/13/2017 | 326   |       |
| 10/14/2017 | 345   |       |
| 10/15/2017 | 327   |       |
| 10/16/2017 | 325   |       |
| 10/17/2017 | 341   |       |
| 11/15/2017 | 318   |       |
| 5/22/2018  | 364   |       |
| 11/19/2018 | 356   |       |
| 5/15/2019  | 337   |       |
| 10/8/2019  |       | 312   |
| 4/8/2020   |       | 283   |
| 7/14/2020  |       | 316   |
| 2/23/2021  |       | 284   |

|            | MW-19 | MW-19 |
|------------|-------|-------|
| 4/26/2016  | 342   |       |
| 6/22/2016  | 365   |       |
| 10/12/2017 | 373   |       |
| 10/13/2017 | 381   |       |
| 10/14/2017 | 399   |       |
| 10/15/2017 | 375   |       |
| 10/16/2017 | 381   |       |
| 10/17/2017 | 386   |       |
| 11/15/2017 | 371   |       |
| 5/22/2018  | 325   |       |
| 11/20/2018 | 325   |       |
| 5/15/2019  | 372   |       |
| 10/8/2019  |       | 357   |
| 4/8/2020   |       | 288   |
| 7/15/2020  |       | 315   |
| 2/24/2021  |       | 332   |
|            |       |       |

|            | MW-2 | MW-2 |
|------------|------|------|
| 4/25/2016  | 123  |      |
| 6/20/2016  | 168  |      |
| 8/8/2016   | 180  |      |
| 8/24/2016  | 180  |      |
| 10/3/2016  | 184  |      |
| 10/26/2016 | 171  |      |
| 11/21/2016 | 179  |      |
| 1/17/2017  | 188  |      |
| 3/22/2017  | 155  |      |
| 4/18/2017  | 156  |      |
| 5/31/2017  | 151  |      |
| 8/23/2017  | 155  |      |
| 5/22/2018  | 172  |      |
| 6/12/2018  | 179  |      |
| 10/17/2018 | 200  |      |
| 11/19/2018 | 221  |      |
| 4/10/2019  | 200  |      |
| 5/14/2019  | 168  |      |
| 10/8/2019  |      | 190  |
| 10/16/2019 |      | 194  |
| 4/6/2020   |      | 152  |
| 7/13/2020  |      | 163  |
| 2/22/2021  |      | 178  |

|            | MW-20 | MW-20 |
|------------|-------|-------|
| 4/26/2016  | 368   |       |
| 6/22/2016  | 386   |       |
| 10/12/2017 | 353   |       |
| 10/13/2017 | 354   |       |
| 10/14/2017 | 346   |       |
| 10/15/2017 | 353   |       |
| 10/16/2017 | 347   |       |
| 10/17/2017 | 337   |       |
| 11/15/2017 | 334   |       |
| 5/22/2018  | 398   |       |
| 11/20/2018 | 349   |       |
| 5/15/2019  | 381   |       |
| 10/10/2019 |       | 407   |
| 4/8/2020   |       | 345   |
| 7/15/2020  |       | 342   |
| 2/23/2021  |       | 343   |

|            | MW-3 | MW-3 |
|------------|------|------|
| 4/25/2016  | 224  |      |
| 6/22/2016  | 266  |      |
| 8/9/2016   | 260  |      |
| 8/24/2016  | 274  |      |
| 10/4/2016  | 243  |      |
| 10/26/2016 | 254  |      |
| 11/21/2016 | 263  |      |
| 1/18/2017  | 431  |      |
| 3/22/2017  | 318  |      |
| 4/18/2017  | 296  |      |
| 5/31/2017  | 306  |      |
| 8/23/2017  | 298  |      |
| 5/24/2018  | 297  |      |
| 6/12/2018  | 318  |      |
| 10/17/2018 | 392  |      |
| 11/19/2018 | 387  |      |
| 4/10/2019  | 348  |      |
| 5/14/2019  | 254  |      |
| 10/8/2019  |      | 371  |
| 10/16/2019 |      | 346  |
| 4/6/2020   |      | 177  |
| 7/13/2020  |      | 264  |
| 2/22/2021  |      | 312  |
|            |      |      |

|            | MW-4 | MW-4 |
|------------|------|------|
| 4/25/2016  | 261  |      |
| 6/20/2016  | 295  |      |
| 8/9/2016   | 318  |      |
| 8/24/2016  | 319  |      |
| 10/3/2016  | 293  |      |
| 10/26/2016 | 311  |      |
| 11/21/2016 | 320  |      |
| 1/18/2017  | 417  |      |
| 3/22/2017  | 292  |      |
| 4/18/2017  | 302  |      |
| 5/31/2017  | 284  |      |
| 8/23/2017  | 297  |      |
| 5/23/2018  | 296  |      |
| 6/12/2018  | 355  |      |
| 10/17/2018 | 342  |      |
| 11/19/2018 | 289  |      |
| 4/10/2019  | 356  |      |
| 5/14/2019  | 254  |      |
| 10/10/2019 |      | 302  |
| 10/16/2019 |      | 356  |
| 4/6/2020   |      | 222  |
| 7/14/2020  |      | 259  |
| 2/22/2021  |      | 271  |
|            |      |      |

|            | MW-1    | MW-1 |
|------------|---------|------|
| 4/26/2016  | 1.94    |      |
| 6/20/2016  | 2.09    |      |
| 8/8/2016   | 2.18    |      |
| 8/24/2016  | 2.22    |      |
| 10/3/2016  | 2.34    |      |
| 10/26/2016 | 2.34    |      |
| 11/21/2016 | 2.5     |      |
| 1/17/2017  | 2.68    |      |
| 3/22/2017  | 3.7     |      |
| 4/18/2017  | 2.4     |      |
| 5/30/2017  | 2.6     |      |
| 8/23/2017  | 2.7     |      |
| 5/22/2018  | 2.3     |      |
| 6/12/2018  | 2.3     |      |
| 10/17/2018 | 1.7 (J) |      |
| 11/19/2018 | 1.7 (J) |      |
| 4/10/2019  | 2.36    |      |
| 5/14/2019  | 2.28    |      |
| 10/8/2019  |         | 2.31 |
| 10/16/2019 |         | 2.42 |
| 4/6/2020   |         | 2.01 |
| 7/13/2020  |         | 2.1  |
| 2/22/2021  |         | 2.16 |
|            |         |      |

|            | MW-13   | MW-13 |
|------------|---------|-------|
| 4/26/2016  | 1.71    |       |
| 6/22/2016  | 2.1     |       |
| 10/12/2017 | 2.3     |       |
| 10/13/2017 | 2.5     |       |
| 10/14/2017 | 1.6 (J) |       |
| 10/15/2017 | 1.6 (J) |       |
| 10/16/2017 | 1.5 (J) |       |
| 10/17/2017 | 2.1     |       |
| 11/16/2017 | 2.4     |       |
| 5/21/2018  | 2.6     |       |
| 11/19/2018 | 1.6 (J) |       |
| 5/14/2019  | 1.96    |       |
| 10/8/2019  |         | 2.1   |
| 4/7/2020   |         | 1.67  |
| 7/14/2020  |         | 1.9   |
| 2/23/2021  |         | 1.6   |

|            | MW-14   | MW-14 |
|------------|---------|-------|
| 4/26/2016  | 1.48    |       |
| 6/22/2016  | 1.83    |       |
| 10/12/2017 | 2.2     |       |
| 10/13/2017 | 2.2     |       |
| 10/14/2017 | 1.3 (J) |       |
| 10/15/2017 | 1.4 (J) |       |
| 10/16/2017 | 1.3 (J) |       |
| 10/17/2017 | 1.8 (J) |       |
| 11/16/2017 | 1.9 (J) |       |
| 5/21/2018  | 2.3     |       |
| 11/19/2018 | <2      |       |
| 5/14/2019  | 1.97    |       |
| 10/8/2019  |         | 2.01  |
| 4/7/2020   |         | 1.59  |
| 7/14/2020  |         | 1.73  |
| 2/23/2021  |         | 1.53  |

|            | MW-15                                                                                                                                                                                                   | MW-15                                                                                                                                                                                                                                            |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4/26/2016  | 1.11                                                                                                                                                                                                    |                                                                                                                                                                                                                                                  |
| 6/22/2016  | 1.19                                                                                                                                                                                                    |                                                                                                                                                                                                                                                  |
| 10/12/2017 | 1.8 (J)                                                                                                                                                                                                 |                                                                                                                                                                                                                                                  |
| 10/13/2017 | 1.8 (J)                                                                                                                                                                                                 |                                                                                                                                                                                                                                                  |
| 10/14/2017 | 1.1 (J)                                                                                                                                                                                                 |                                                                                                                                                                                                                                                  |
| 10/15/2017 | 0.93 (J)                                                                                                                                                                                                |                                                                                                                                                                                                                                                  |
| 10/16/2017 | 0.83 (J)                                                                                                                                                                                                |                                                                                                                                                                                                                                                  |
| 10/17/2017 | 1.4 (J)                                                                                                                                                                                                 |                                                                                                                                                                                                                                                  |
| 11/15/2017 | 1.4 (J)                                                                                                                                                                                                 |                                                                                                                                                                                                                                                  |
| 5/21/2018  | 1.6 (J)                                                                                                                                                                                                 |                                                                                                                                                                                                                                                  |
| 11/19/2018 | <2                                                                                                                                                                                                      |                                                                                                                                                                                                                                                  |
| 5/14/2019  | 1.87                                                                                                                                                                                                    |                                                                                                                                                                                                                                                  |
| 10/8/2019  |                                                                                                                                                                                                         | 1.8                                                                                                                                                                                                                                              |
| 4/7/2020   |                                                                                                                                                                                                         | 1.4                                                                                                                                                                                                                                              |
| 7/14/2020  |                                                                                                                                                                                                         | 1.5                                                                                                                                                                                                                                              |
| 2/23/2021  |                                                                                                                                                                                                         | 1.41                                                                                                                                                                                                                                             |
|            | 6/22/2016<br>10/12/2017<br>10/13/2017<br>10/13/2017<br>10/14/2017<br>10/15/2017<br>10/16/2017<br>10/17/2017<br>11/15/2017<br>5/21/2018<br>11/19/2018<br>5/14/2019<br>10/8/2019<br>4/7/2020<br>7/14/2020 | 4/26/2016 1.11 6/22/2016 1.19 10/12/2017 1.8 (J) 10/13/2017 1.8 (J) 10/14/2017 1.1 (J) 10/15/2017 0.93 (J) 10/16/2017 0.83 (J) 10/17/2017 1.4 (J) 11/15/2017 1.4 (J) 5/21/2018 1.6 (J) 11/19/2018 <2 5/14/2019 1.87 10/8/2019 4/7/2020 7/14/2020 |

|            | MW-16   | MW-16 |
|------------|---------|-------|
| 4/27/2016  | 2.76    |       |
| 6/22/2016  | 3.08    |       |
| 10/12/2017 | 4.4     |       |
| 10/13/2017 | 4.3 (B) |       |
| 10/14/2017 | 3.4     |       |
| 10/15/2017 | 3.6     |       |
| 10/16/2017 | 3.9     |       |
| 10/17/2017 | 3.8     |       |
| 11/15/2017 | 4.3     |       |
| 5/21/2018  | 4.1     |       |
| 11/19/2018 | 3.7     |       |
| 5/14/2019  | 4.12    |       |
| 10/8/2019  |         | 3.88  |
| 4/6/2020   |         | 3.26  |
| 7/14/2020  |         | 3.61  |
| 2/23/2021  |         | 3.08  |

|            | MW-18   | MW-18 |
|------------|---------|-------|
| 4/26/2016  | 1.45    |       |
| 6/22/2016  | 1.64    |       |
| 10/12/2017 | 1.8 (J) |       |
| 10/13/2017 | 2.3 (B) |       |
| 10/14/2017 | 1 (J)   |       |
| 10/15/2017 | 1.3 (J) |       |
| 10/16/2017 | 1 (J)   |       |
| 10/17/2017 | 2       |       |
| 11/15/2017 | 3.6     |       |
| 5/22/2018  | 2.1     |       |
| 11/19/2018 | <2      |       |
| 5/15/2019  | 1.61    |       |
| 10/8/2019  |         | 1.48  |
| 4/8/2020   |         | 1.43  |
| 7/14/2020  |         | 1.48  |
| 2/23/2021  |         | 1.34  |

|            | MW-19   | MW-19 |
|------------|---------|-------|
| 4/26/2016  | 1.76    |       |
| 6/22/2016  | 2.19    |       |
| 10/12/2017 | 2.9     |       |
| 10/13/2017 | 2.6 (B) |       |
| 10/14/2017 | 1.8 (J) |       |
| 10/15/2017 | 2       |       |
| 10/16/2017 | 2.4     |       |
| 10/17/2017 | 2.5     |       |
| 11/15/2017 | 2.9     |       |
| 5/22/2018  | 2.9     |       |
| 11/20/2018 | 1.8 (J) |       |
| 5/15/2019  | 2.22    |       |
| 10/8/2019  |         | 2.13  |
| 4/8/2020   |         | 1.63  |
| 7/15/2020  |         | 1.71  |
| 2/24/2021  |         | 2.02  |
|            |         |       |

|            | MW-2 | MW-2 |
|------------|------|------|
| 4/25/2016  | 1.9  |      |
| 6/20/2016  | 3.43 |      |
| 8/8/2016   | 3.31 |      |
| 8/24/2016  | 3.23 |      |
| 10/3/2016  | 3.21 |      |
| 10/26/2016 | 3.35 |      |
| 11/21/2016 | 3.34 |      |
| 1/17/2017  | 3.58 |      |
| 3/22/2017  | 3.4  |      |
| 4/18/2017  | 2.6  |      |
| 5/31/2017  | 4.4  |      |
| 8/23/2017  | 4.4  |      |
| 5/22/2018  | 3.2  |      |
| 6/12/2018  | 3.7  |      |
| 10/17/2018 | 4.6  |      |
| 11/19/2018 | 3    |      |
| 4/10/2019  | 1.76 |      |
| 5/14/2019  | 2.98 |      |
| 10/8/2019  |      | 4.26 |
| 10/16/2019 |      | 4.04 |
| 4/6/2020   |      | 2.43 |
| 7/13/2020  |      | 4.05 |
| 2/22/2021  |      | 1.72 |
|            |      |      |

|            | MW-20 | MW-20 |
|------------|-------|-------|
| 4/26/2016  | 2.66  |       |
| 6/22/2016  | 2.68  |       |
| 10/12/2017 | 5.6   |       |
| 10/13/2017 | 5 (B) |       |
| 10/14/2017 | 4.4   |       |
| 10/15/2017 | 4.8   |       |
| 10/16/2017 | 4.9   |       |
| 10/17/2017 | 5.1   |       |
| 11/15/2017 |       | 6.3   |
| 5/22/2018  |       | 24    |
| 11/20/2018 |       | 43    |
| 5/15/2019  |       | 57.7  |
| 10/10/2019 |       | 66.1  |
| 4/8/2020   |       | 62.7  |
| 7/15/2020  |       | 68.4  |
| 2/23/2021  |       | 129   |

|            | MW-3    | MW-3 |
|------------|---------|------|
| 4/25/2016  | 1.32    |      |
| 6/22/2016  | 1.46    |      |
| 8/9/2016   | 1.35    |      |
| 8/24/2016  | 1.47    |      |
| 10/4/2016  | 1.59    |      |
| 10/26/2016 | 1.27    |      |
| 11/21/2016 | 1.38    |      |
| 1/18/2017  | 1.34    |      |
| 3/22/2017  | 2       |      |
| 4/18/2017  | 2.2     |      |
| 5/31/2017  | 1.5 (J) |      |
| 8/23/2017  | 1.8 (J) |      |
| 5/24/2018  | 1.6 (J) |      |
| 6/12/2018  | 1.4 (J) |      |
| 10/17/2018 | <2      |      |
| 11/19/2018 | <2      |      |
| 4/10/2019  | 2.25    |      |
| 5/14/2019  | 2.28    |      |
| 10/8/2019  |         | 1.36 |
| 10/16/2019 |         | 1.4  |
| 4/6/2020   |         | 1.72 |
| 7/13/2020  |         | 1.34 |
| 2/22/2021  |         | 2.22 |
|            |         |      |

|            | MW-4    | MW-4 |
|------------|---------|------|
| 4/25/2016  | 1.53    |      |
| 6/20/2016  | 1.85    |      |
| 8/9/2016   | 1.95    |      |
| 8/24/2016  | 2.07    |      |
| 10/3/2016  | 2.02    |      |
| 10/26/2016 | 2.07    |      |
| 11/21/2016 | 2.39    |      |
| 1/18/2017  | 1.9     |      |
| 3/22/2017  | 1.5 (J) |      |
| 4/18/2017  | 1.6 (J) |      |
| 5/31/2017  | 2.1     |      |
| 8/23/2017  | 2.3     |      |
| 5/23/2018  | 2       |      |
| 6/12/2018  | 1.7 (J) |      |
| 10/17/2018 | 1.5 (J) |      |
| 11/19/2018 | <2      |      |
| 4/10/2019  | 1.88    |      |
| 5/14/2019  | 1.82    |      |
| 10/10/2019 |         | 1.93 |
| 10/16/2019 |         | 1.92 |
| 4/6/2020   |         | 1.5  |
| 7/14/2020  |         | 1.61 |
| 2/22/2021  |         | 1.52 |
|            |         |      |

|            | MW-1      | MW-1       |
|------------|-----------|------------|
| 4/26/2016  | 0.146 (J) |            |
| 6/20/2016  | 0.148 (J) |            |
| 8/8/2016   | 0.137 (J) |            |
| 8/24/2016  | 0.133 (J) |            |
| 10/3/2016  | 0.103 (J) |            |
| 10/26/2016 | 0.05 (J)  |            |
| 11/21/2016 | 0.047 (J) |            |
| 1/17/2017  | 0.09 (J)  |            |
| 3/22/2017  | 0.12      |            |
| 4/18/2017  | 0.12      |            |
| 5/30/2017  | 0.13      |            |
| 8/23/2017  | 0.16      |            |
| 2/13/2018  | 0.14 (D)  |            |
| 5/22/2018  | 0.16      |            |
| 6/12/2018  | 0.16      |            |
| 10/17/2018 | 0.18      |            |
| 11/19/2018 | 0.15      |            |
| 4/10/2019  | 0.102     |            |
| 5/14/2019  | 0.119     |            |
| 10/8/2019  |           | 0.0924 (J) |
| 10/16/2019 |           | 0.0756 (J) |
| 4/6/2020   |           | 0.101      |
| 7/13/2020  |           | 0.0678 (J) |
| 2/22/2021  |           | 0.082 (J)  |
|            |           |            |

|            | 101/40    |       |
|------------|-----------|-------|
|            | MW-13     | MW-13 |
| 4/26/2016  | 0.197 (J) |       |
| 6/22/2016  | 0.208 (J) |       |
| 10/12/2017 | 0.22      |       |
| 10/13/2017 | 0.2       |       |
| 10/14/2017 | 0.21      |       |
| 10/15/2017 | 0.22      |       |
| 10/16/2017 | 0.22      |       |
| 10/17/2017 | 0.2       |       |
| 11/16/2017 | 0.2       |       |
| 2/13/2018  | 0.24 (D)  |       |
| 5/21/2018  | 0.22      |       |
| 11/19/2018 | 0.2       |       |
| 5/14/2019  | 0.196     |       |
| 10/8/2019  |           | 0.184 |
| 4/7/2020   |           | 0.189 |
| 7/14/2020  |           | 0.174 |
| 2/23/2021  |           | 0.224 |
|            |           |       |

|            | MW-14     | MW-14 |
|------------|-----------|-------|
| 4/26/2016  | 0.271 (J) |       |
| 6/22/2016  | 0.265 (J) |       |
| 10/12/2017 | 0.26      |       |
| 10/13/2017 | 0.25      |       |
| 10/14/2017 | 0.26      |       |
| 10/15/2017 | 0.26      |       |
| 10/16/2017 | 0.25      |       |
| 10/17/2017 | 0.25      |       |
| 11/16/2017 | 0.25      |       |
| 2/13/2018  | 0.25 (D)  |       |
| 5/21/2018  | 0.26      |       |
| 11/19/2018 | 0.25      |       |
| 5/14/2019  | 0.225     |       |
| 10/8/2019  |           | 0.224 |
| 4/7/2020   |           | 0.201 |
| 7/14/2020  |           | 0.227 |
| 2/23/2021  |           | 0.22  |

|            | MW-15    | MW-15 |
|------------|----------|-------|
| 4/26/2016  | 0.379    |       |
| 6/22/2016  | 0.347    |       |
| 10/12/2017 | 0.37     |       |
| 10/13/2017 | 0.36     |       |
| 10/14/2017 | 0.37     |       |
| 10/15/2017 | 0.35     |       |
| 10/16/2017 | 0.36     |       |
| 10/17/2017 | 0.35     |       |
| 11/15/2017 | 0.35     |       |
| 2/14/2018  | 0.35 (D) |       |
| 5/21/2018  | 0.35     |       |
| 11/19/2018 | 0.34     |       |
| 5/14/2019  | 0.34     |       |
| 10/8/2019  |          | 0.382 |
| 4/7/2020   |          | 0.303 |
| 7/14/2020  |          | 0.305 |
| 2/23/2021  |          | 0.275 |

|            | MW-16     | MW-16 |
|------------|-----------|-------|
| 4/27/2016  | 0.168 (J) |       |
| 6/22/2016  | 0.176 (J) |       |
| 10/12/2017 | 0.18      |       |
| 10/13/2017 | 0.17      |       |
| 10/14/2017 | 0.18      |       |
| 10/15/2017 | 0.18      |       |
| 10/16/2017 | 0.18      |       |
| 10/17/2017 | 0.17      |       |
| 11/15/2017 | 0.17      |       |
| 2/14/2018  | 0.17 (D)  |       |
| 5/21/2018  | 0.18      |       |
| 11/19/2018 | 0.17      |       |
| 5/14/2019  | 0.153     |       |
| 10/8/2019  |           | 0.161 |
| 4/6/2020   |           | 0.141 |
| 7/14/2020  |           | 0.16  |
| 2/23/2021  |           | 0.161 |

|            | MW-18   | MW-18 |
|------------|---------|-------|
| 4/26/2016  | 0.329   |       |
| 6/22/2016  | 0.303   |       |
| 10/12/2017 | 0.31    |       |
| 10/13/2017 | 0.32    |       |
| 10/14/2017 | 0.32    |       |
| 10/15/2017 | 0.32    |       |
| 10/16/2017 | 0.31    |       |
| 10/17/2017 | 0.31    |       |
| 11/15/2017 | 0.31    |       |
| 2/14/2018  | 0.3 (D) |       |
| 5/22/2018  | 0.31    |       |
| 11/19/2018 | 0.3     |       |
| 5/15/2019  | 0.27    |       |
| 10/8/2019  |         | 0.284 |
| 4/8/2020   |         | 0.305 |
| 7/14/2020  |         | 0.28  |
| 2/23/2021  |         | 0.29  |

|            | MW-19    | MW-19 |
|------------|----------|-------|
| 4/26/2016  | 0.332    |       |
| 6/22/2016  | 0.334    |       |
| 10/12/2017 | 0.34     |       |
| 10/13/2017 | 0.34     |       |
| 10/14/2017 | 0.34     |       |
| 10/15/2017 | 0.34     |       |
| 10/16/2017 | 0.35     |       |
| 10/17/2017 | 0.33     |       |
| 11/15/2017 | 0.34     |       |
| 2/14/2018  | 0.28 (D) |       |
| 5/22/2018  | 0.29     |       |
| 11/20/2018 | 0.28     |       |
| 5/15/2019  | 0.277    |       |
| 10/8/2019  |          | 0.345 |
| 4/8/2020   |          | 0.304 |
| 7/15/2020  |          | 0.342 |
| 2/24/2021  |          | 0.343 |

|            | MW-2      | MW-2  |
|------------|-----------|-------|
| 4/25/2016  | 0.149 (J) |       |
| 6/20/2016  | 0.148 (J) |       |
| 8/8/2016   | 0.134 (J) |       |
| 8/24/2016  | 0.129 (J) |       |
| 10/3/2016  | 0.086 (J) |       |
| 10/26/2016 | 0.027 (J) |       |
| 11/21/2016 | 0.027 (J) |       |
| 1/17/2017  | 0.066 (J) |       |
| 3/22/2017  | 0.13      |       |
| 4/18/2017  | 0.16      |       |
| 5/31/2017  | 0.13      |       |
| 8/23/2017  | 0.16      |       |
| 2/13/2018  | 0.22 (D)  |       |
| 5/22/2018  | 0.17      |       |
| 6/12/2018  | 0.16      |       |
| 10/17/2018 | 0.16      |       |
| 11/19/2018 | 0.18      |       |
| 4/10/2019  | 0.262     |       |
| 5/14/2019  | 0.17      |       |
| 10/8/2019  |           | 0.164 |
| 10/16/2019 |           | 0.114 |
| 4/6/2020   |           | 0.207 |
| 7/13/2020  |           | 0.132 |
| 2/22/2021  |           | 0.209 |
|            |           |       |

|            | MW-20     | MW-20 |
|------------|-----------|-------|
| 4/26/2016  | 0.115 (J) |       |
| 6/22/2016  | 0.126 (J) |       |
| 10/12/2017 | 0.12      |       |
| 10/13/2017 | 0.13      |       |
| 10/14/2017 | 0.13      |       |
| 10/15/2017 | 0.14      |       |
| 10/16/2017 | 0.13      |       |
| 10/17/2017 | 0.13      |       |
| 11/15/2017 | 0.13      |       |
| 2/14/2018  | 0.12 (D)  |       |
| 5/22/2018  | 0.13      |       |
| 11/20/2018 | 0.12      |       |
| 5/15/2019  | 0.12      |       |
| 10/10/2019 |           | 0.103 |
| 4/8/2020   |           | 0.107 |
| 7/15/2020  |           | 0.11  |
| 2/23/2021  |           | 0.117 |

|            | MW-3      | MW-3  |
|------------|-----------|-------|
| 4/25/2016  | 0.243 (J) |       |
| 6/22/2016  | 0.269 (J) |       |
| 8/9/2016   | 0.363     |       |
| 8/24/2016  | 0.346     |       |
| 10/4/2016  | 0.266 (J) |       |
| 10/26/2016 | 0.266 (J) |       |
| 11/21/2016 | 0.244 (J) |       |
| 1/18/2017  | 0.385     |       |
| 3/22/2017  | 0.41      |       |
| 4/18/2017  | 0.29      |       |
| 5/31/2017  | 0.37      |       |
| 8/23/2017  | 0.55      |       |
| 2/13/2018  | 0.27 (D)  |       |
| 5/24/2018  | 0.6       |       |
| 6/12/2018  | 0.53      |       |
| 10/17/2018 | 0.63      |       |
| 11/19/2018 | 0.31      |       |
| 4/10/2019  | 0.273     |       |
| 5/14/2019  | 0.281     |       |
| 10/8/2019  |           | 0.225 |
| 10/16/2019 |           | 0.106 |
| 4/6/2020   |           | 0.314 |
| 7/13/2020  |           | 0.13  |
| 2/22/2021  |           | 0.246 |
|            |           |       |

|            | MW-4                                                                                                                                                                                                                            | MW-4                                                                                                                                                                                                                                                                                                                                               |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4/25/2016  | 0.372                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                    |
| 6/20/2016  | 0.361                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                    |
| 8/9/2016   | 0.326                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                    |
| 8/24/2016  | 0.329                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                    |
| 10/3/2016  | 0.287 (J)                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    |
| 10/26/2016 | 0.194 (J)                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    |
| 11/21/2016 | 0.192 (J)                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    |
| 1/18/2017  | 0.223 (J)                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    |
| 3/22/2017  | 0.32                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                    |
| 4/18/2017  | 0.32                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                    |
| 5/31/2017  | 0.31                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                    |
| 8/23/2017  | 0.38                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                    |
| 2/13/2018  | 0.38 (D)                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                    |
| 5/23/2018  | 0.38                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                    |
| 6/12/2018  | 0.39                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                    |
| 10/17/2018 | 0.39                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                    |
| 11/19/2018 | 0.36                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                    |
| 4/10/2019  | 0.384                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                    |
| 5/14/2019  | 0.335                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                    |
| 10/10/2019 |                                                                                                                                                                                                                                 | 0.304                                                                                                                                                                                                                                                                                                                                              |
| 10/16/2019 |                                                                                                                                                                                                                                 | 0.302                                                                                                                                                                                                                                                                                                                                              |
| 4/6/2020   |                                                                                                                                                                                                                                 | 0.368                                                                                                                                                                                                                                                                                                                                              |
| 7/14/2020  |                                                                                                                                                                                                                                 | 0.33                                                                                                                                                                                                                                                                                                                                               |
| 2/22/2021  |                                                                                                                                                                                                                                 | 0.357                                                                                                                                                                                                                                                                                                                                              |
|            | 6/20/2016 8/9/2016 8/9/2016 8/24/2016 10/3/2016 10/26/2016 11/21/2016 11/18/2017 3/22/2017 4/18/2017 5/31/2017 8/23/2017 2/13/2018 6/12/2018 10/17/2018 11/19/2018 4/10/2019 5/14/2019 10/16/2019 10/16/2019 4/6/2020 7/14/2020 | 4/25/2016 0.372 6/20/2016 0.361 8/9/2016 0.326 8/24/2016 0.329 10/3/2016 0.287 (J) 10/26/2016 0.194 (J) 11/21/2016 0.192 (J) 1/18/2017 0.32 4/18/2017 0.32 4/18/2017 0.31 8/23/2017 0.38 2/13/2018 0.38 (D) 5/23/2018 0.38 6/12/2018 0.39 10/17/2018 0.39 11/19/2018 0.36 4/10/2019 0.384 5/14/2019 0.335 10/10/2019 10/16/2019 4/6/2020 7/14/2020 |

|            | MW-1 | MW-1 |
|------------|------|------|
| 4/26/2016  | 1490 |      |
| 6/20/2016  | 1420 |      |
| 8/8/2016   | 1460 |      |
| 8/24/2016  | 1450 |      |
| 10/3/2016  | 1460 |      |
| 10/26/2016 | 1330 |      |
| 11/21/2016 | 1420 |      |
| 1/17/2017  | 1350 |      |
| 3/22/2017  | 1500 |      |
| 4/18/2017  | 1300 |      |
| 5/30/2017  | 1400 |      |
| 8/23/2017  | 1500 |      |
| 5/22/2018  | 2100 |      |
| 6/12/2018  | 1500 |      |
| 10/17/2018 | 1400 |      |
| 11/19/2018 | 1300 |      |
| 4/10/2019  | 1700 |      |
| 5/14/2019  | 1560 |      |
| 10/8/2019  |      | 1540 |
| 10/16/2019 |      | 1680 |
| 4/6/2020   |      | 1530 |
| 7/13/2020  |      | 1450 |
| 2/22/2021  |      | 1400 |
|            |      |      |

|            | MW-13 | MW-13 |
|------------|-------|-------|
| 4/26/2016  | 1920  |       |
| 6/22/2016  | 2270  |       |
| 10/12/2017 | 2100  |       |
| 10/13/2017 | 2000  |       |
| 10/14/2017 | 1800  |       |
| 10/15/2017 | 1800  |       |
| 10/16/2017 | 1800  |       |
| 10/17/2017 | 1700  |       |
| 11/16/2017 | 1800  |       |
| 5/21/2018  | 2400  |       |
| 11/19/2018 | 1800  |       |
| 5/14/2019  | 1600  |       |
| 10/8/2019  |       | 1980  |
| 4/7/2020   |       | 1400  |
| 7/14/2020  |       | 1740  |
| 2/23/2021  |       | 1470  |

|            | MW-14 | MW-14 |
|------------|-------|-------|
| 4/26/2016  | 2150  |       |
| 6/22/2016  | 2080  |       |
| 10/12/2017 | 1900  |       |
| 10/13/2017 | 1800  |       |
| 10/14/2017 | 1700  |       |
| 10/15/2017 | 1800  |       |
| 10/16/2017 | 1800  |       |
| 10/17/2017 | 1900  |       |
| 11/16/2017 | 1700  |       |
| 5/21/2018  | 2500  |       |
| 11/19/2018 | 1900  |       |
| 5/14/2019  | 2000  |       |
| 10/8/2019  |       | 2030  |
| 4/7/2020   |       | 1760  |
| 7/14/2020  |       | 1840  |
| 2/23/2021  |       | 1850  |

|            | MW-15 | MW-15 |
|------------|-------|-------|
| 4/26/2016  | 1640  |       |
| 6/22/2016  | 1720  |       |
| 10/12/2017 | 1600  |       |
| 10/13/2017 | 1600  |       |
| 10/14/2017 | 1500  |       |
| 10/15/2017 | 1500  |       |
| 10/16/2017 | 1400  |       |
| 10/17/2017 | 1600  |       |
| 11/15/2017 | 1500  |       |
| 5/21/2018  | 2100  |       |
| 11/19/2018 | 1500  |       |
| 5/14/2019  | 1940  |       |
| 10/8/2019  |       | 1650  |
| 4/7/2020   |       | 1670  |
| 7/14/2020  |       | 1630  |
| 2/23/2021  |       | 1740  |
|            |       |       |

|            | MW-16 | MW-16 |
|------------|-------|-------|
| 4/27/2016  | 1220  |       |
| 6/22/2016  | 1160  |       |
| 10/12/2017 | 1300  |       |
| 10/13/2017 | 1300  |       |
| 10/14/2017 | 1200  |       |
| 10/15/2017 | 1200  |       |
| 10/16/2017 | 1200  |       |
| 10/17/2017 | 1300  |       |
| 11/15/2017 | 1200  |       |
| 5/21/2018  | 1700  |       |
| 11/19/2018 | 1200  |       |
| 5/14/2019  | 1490  |       |
| 10/8/2019  |       | 1490  |
| 4/6/2020   |       | 1270  |
| 7/14/2020  |       | 1270  |
| 2/23/2021  |       | 1330  |

|            | MW-18 | MW-18 |
|------------|-------|-------|
| 4/26/2016  | 1960  |       |
| 6/22/2016  | 1950  |       |
| 10/12/2017 | 2000  |       |
| 10/13/2017 | 1900  |       |
| 10/14/2017 | 1800  |       |
| 10/15/2017 | 1800  |       |
| 10/16/2017 | 1900  |       |
| 10/17/2017 | 1800  |       |
| 11/15/2017 | 1900  |       |
| 5/22/2018  | 2000  |       |
| 11/19/2018 | 1800  |       |
| 5/15/2019  | 1800  |       |
| 10/8/2019  |       | 1900  |
| 4/8/2020   |       | 1750  |
| 7/14/2020  |       | 1690  |
| 2/23/2021  |       | 1560  |
|            |       |       |

|            | MW-19 | MW-19 |
|------------|-------|-------|
| 4/26/2016  | 2200  |       |
| 6/22/2016  | 2230  |       |
| 10/12/2017 | 2300  |       |
| 10/13/2017 | 2200  |       |
| 10/14/2017 | 2300  |       |
| 10/15/2017 | 2200  |       |
| 10/16/2017 | 2000  |       |
| 10/17/2017 | 2300  |       |
| 11/15/2017 | 2100  |       |
| 5/22/2018  | 2300  |       |
| 11/20/2018 | 1700  |       |
| 5/15/2019  | 1900  |       |
| 10/8/2019  |       | 2380  |
| 4/8/2020   |       | 1890  |
| 7/15/2020  |       | 1770  |
| 2/24/2021  |       | 1970  |
|            |       |       |

|            | MW-2 | MW-2 |
|------------|------|------|
| 4/25/2016  | 745  |      |
| 6/20/2016  | 964  |      |
| 8/8/2016   | 1100 |      |
| 8/24/2016  | 1130 |      |
| 10/3/2016  | 1140 |      |
| 10/26/2016 | 1060 |      |
| 11/21/2016 | 1100 |      |
| 1/17/2017  | 1160 |      |
| 3/22/2017  | 900  |      |
| 4/18/2017  | 870  |      |
| 5/31/2017  | 1100 |      |
| 8/23/2017  | 920  |      |
| 5/22/2018  | 1200 |      |
| 6/12/2018  | 860  |      |
| 10/17/2018 | 970  |      |
| 11/19/2018 | 1000 |      |
| 4/10/2019  | 889  |      |
| 5/14/2019  | 948  |      |
| 10/8/2019  |      | 1230 |
| 10/16/2019 |      | 1170 |
| 4/6/2020   |      | 786  |
| 7/13/2020  |      | 843  |
| 2/22/2021  |      | 864  |
|            |      |      |

|            | MW-20 | MW-20 |
|------------|-------|-------|
| 4/26/2016  | 1650  |       |
| 6/22/2016  | 1680  |       |
| 10/12/2017 | 1600  |       |
| 10/13/2017 | 1600  |       |
| 10/14/2017 | 1500  |       |
| 10/15/2017 | 1500  |       |
| 10/16/2017 | 1400  |       |
| 10/17/2017 | 1500  |       |
| 11/15/2017 | 1500  |       |
| 5/22/2018  | 2000  |       |
| 11/20/2018 | 1500  |       |
| 5/15/2019  | 1560  |       |
| 10/10/2019 |       | 1700  |
| 4/8/2020   |       | 1530  |
| 7/15/2020  |       | 1480  |
| 2/23/2021  |       | 1420  |

|            | MW-3 | MW-3 |
|------------|------|------|
| 4/25/2016  | 1890 |      |
| 6/22/2016  | 2100 |      |
| 8/9/2016   | 2050 |      |
| 8/24/2016  | 2190 |      |
| 10/4/2016  | 1950 |      |
| 10/26/2016 | 1980 |      |
| 11/21/2016 | 2060 |      |
| 1/18/2017  | 2620 |      |
| 3/22/2017  | 3200 |      |
| 4/18/2017  | 2500 |      |
| 5/31/2017  | 2800 |      |
| 8/23/2017  | 2600 |      |
| 5/24/2018  | 2700 |      |
| 6/12/2018  | 2500 |      |
| 10/17/2018 | 2700 |      |
| 11/19/2018 | 3000 |      |
| 4/10/2019  | 2460 |      |
| 5/14/2019  | 2460 |      |
| 10/8/2019  |      | 2950 |
| 10/16/2019 |      | 2820 |
| 4/6/2020   |      | 1670 |
| 7/13/2020  |      | 2130 |
| 2/22/2021  |      | 3040 |
|            |      |      |

|            | MW-4 | MW-4 |
|------------|------|------|
| 4/25/2016  | 2260 |      |
| 6/20/2016  | 2500 |      |
| 8/9/2016   | 2750 |      |
| 8/24/2016  | 2770 |      |
| 10/3/2016  | 3060 |      |
| 10/26/2016 | 2650 |      |
| 11/21/2016 | 2720 |      |
| 1/18/2017  | 2650 |      |
| 3/22/2017  | 2700 |      |
| 4/18/2017  | 2400 |      |
| 5/31/2017  | 2700 |      |
| 8/23/2017  | 2700 |      |
| 5/23/2018  | 2400 |      |
| 6/12/2018  | 2600 |      |
| 10/17/2018 | 2600 |      |
| 11/19/2018 | 2400 |      |
| 4/10/2019  | 2090 |      |
| 5/14/2019  | 2240 |      |
| 10/10/2019 |      | 2690 |
| 10/16/2019 |      | 3050 |
| 4/6/2020   |      | 1810 |
| 7/14/2020  |      | 1970 |
| 2/22/2021  |      | 2040 |
|            |      |      |

|            | MW-1     | MW-1 |
|------------|----------|------|
| 4/26/2016  | 2080 (D) |      |
| 6/20/2016  | 2060 (D) |      |
| 8/8/2016   | 2070 (D) |      |
| 8/24/2016  | 2040     |      |
| 10/3/2016  | 2110 (D) |      |
| 10/26/2016 | 2000     |      |
| 11/21/2016 | 2070 (D) |      |
| 1/17/2017  | 1930 (D) |      |
| 3/22/2017  | 2060 (D) |      |
| 4/18/2017  | 2140     |      |
| 5/30/2017  | 2240 (D) |      |
| 8/23/2017  | 2160 (D) |      |
| 5/22/2018  | 2380 (D) |      |
| 6/12/2018  | 2400     |      |
| 10/17/2018 | 2220     |      |
| 11/19/2018 | 2360     |      |
| 4/10/2019  | 2630     |      |
| 5/14/2019  | 2340 (D) |      |
| 10/8/2019  |          | 2330 |
| 10/16/2019 |          | 3650 |
| 4/6/2020   |          | 2240 |
| 7/13/2020  |          | 2240 |
| 2/22/2021  |          | 2230 |
|            |          |      |

|            | MW-13 | MW-13 |
|------------|-------|-------|
| 4/26/2016  | 2940  |       |
| 6/22/2016  | 3580  |       |
| 10/12/2017 | 3350  |       |
| 10/13/2017 | 3340  |       |
| 10/14/2017 | 3120  |       |
| 10/15/2017 | 3210  |       |
| 10/16/2017 | 3150  |       |
| 10/17/2017 | 3030  |       |
| 11/16/2017 | 3150  |       |
| 5/21/2018  | 2760  |       |
| 11/19/2018 | 2960  |       |
| 5/14/2019  | 2530  |       |
| 10/8/2019  |       | 3050  |
| 4/7/2020   |       | 2190  |
| 7/14/2020  |       | 2860  |
| 2/23/2021  |       | 2370  |

|            | MW-14 | MW-14 |
|------------|-------|-------|
| 4/26/2016  | 3400  |       |
| 6/22/2016  | 3400  |       |
| 10/12/2017 | 3170  |       |
| 10/13/2017 | 3070  |       |
| 10/14/2017 | 3090  |       |
| 10/15/2017 | 3190  |       |
| 10/16/2017 | 3110  |       |
|            |       |       |
| 10/17/2017 | 3110  |       |
| 11/16/2017 | 3160  |       |
| 5/21/2018  | 2980  |       |
| 11/19/2018 | 3270  |       |
| 5/14/2019  | 3150  |       |
| 10/8/2019  |       | 3120  |
| 4/7/2020   |       | 2820  |
| 7/14/2020  |       | 3160  |
| 2/23/2021  |       | 3020  |
|            |       |       |

|            | MW-15 | MW-15 |
|------------|-------|-------|
| 4/26/2016  | 2540  |       |
| 6/22/2016  | 2520  |       |
| 10/12/2017 | 2660  |       |
| 10/13/2017 | 2680  |       |
| 10/14/2017 | 2530  |       |
| 10/15/2017 | 2640  |       |
| 10/16/2017 | 2550  |       |
| 10/17/2017 | 2600  |       |
| 11/15/2017 | 2620  |       |
| 5/21/2018  | 2510  |       |
| 11/19/2018 | 2630  |       |
| 5/14/2019  | 2520  |       |
| 10/8/2019  |       | 2640  |
| 4/7/2020   |       | 2760  |
| 7/14/2020  |       | 2750  |
| 2/23/2021  |       | 2890  |

| MW-16 MW-16  4/27/2016 2130  6/22/2016 2270  10/12/2017 2380  10/13/2017 2340  10/14/2017 2340  10/15/2017 2440  10/16/2017 2330  10/17/2017 2380  11/15/2017 2400  5/21/2018 2340  11/19/2018 2420  5/14/2019 2350  10/8/2019 2460  4/6/2020 2360  7/14/2020 2360  2/23/2021 2480 |            |       |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|-------|
| 6/22/2016 2270  10/12/2017 2380  10/13/2017 2340  10/14/2017 2340  10/15/2017 2440  10/16/2017 2330  10/17/2017 2380  11/15/2017 2400  5/21/2018 2340  11/19/2018 2420  5/14/2019 2350  10/8/2019 2460  4/6/2020 2360  7/14/2020 2360                                              |            | MW-16 | MW-16 |
| 10/12/2017 2380<br>10/13/2017 2340<br>10/14/2017 2340<br>10/15/2017 2440<br>10/16/2017 2330<br>10/17/2017 2380<br>11/15/2017 2400<br>5/21/2018 2340<br>11/19/2018 2420<br>5/14/2019 2350<br>10/8/2019 2460<br>4/6/2020 2360<br>7/14/2020 2360                                      | 4/27/2016  | 2130  |       |
| 10/13/2017 2340<br>10/14/2017 2340<br>10/15/2017 2440<br>10/16/2017 2330<br>10/17/2017 2380<br>11/15/2017 2400<br>5/21/2018 2340<br>11/19/2018 2420<br>5/14/2019 2350<br>10/8/2019 2460<br>4/6/2020 2360<br>7/14/2020 2360                                                         | 6/22/2016  | 2270  |       |
| 10/14/2017 2340<br>10/15/2017 2440<br>10/16/2017 2330<br>10/17/2017 2380<br>11/15/2017 2400<br>5/21/2018 2340<br>11/19/2018 2420<br>5/14/2019 2350<br>10/8/2019 2460<br>4/6/2020 2360<br>7/14/2020 2360                                                                            | 10/12/2017 | 2380  |       |
| 10/15/2017 2440<br>10/16/2017 2330<br>10/17/2017 2380<br>11/15/2017 2400<br>5/21/2018 2340<br>11/19/2018 2420<br>5/14/2019 2350<br>10/8/2019 2460<br>4/6/2020 2360<br>7/14/2020 2360                                                                                               | 10/13/2017 | 2340  |       |
| 10/16/2017 2330<br>10/17/2017 2380<br>11/15/2017 2400<br>5/21/2018 2340<br>11/19/2018 2420<br>5/14/2019 2350<br>10/8/2019 2460<br>4/6/2020 2360<br>7/14/2020 2360                                                                                                                  | 10/14/2017 | 2340  |       |
| 10/17/2017 2380<br>11/15/2017 2400<br>5/21/2018 2340<br>11/19/2018 2420<br>5/14/2019 2350<br>10/8/2019 2460<br>4/6/2020 2360<br>7/14/2020 2360                                                                                                                                     | 10/15/2017 | 2440  |       |
| 11/15/2017     2400       5/21/2018     2340       11/19/2018     2420       5/14/2019     2350       10/8/2019     2460       4/6/2020     2360       7/14/2020     2360                                                                                                          | 10/16/2017 | 2330  |       |
| 11/15/2017     2400       5/21/2018     2340       11/19/2018     2420       5/14/2019     2350       10/8/2019     2460       4/6/2020     2360       7/14/2020     2360                                                                                                          | 10/17/2017 | 2380  |       |
| 5/21/2018 2340<br>11/19/2018 2420<br>5/14/2019 2350<br>10/8/2019 2460<br>4/6/2020 2360<br>7/14/2020 2360                                                                                                                                                                           |            |       |       |
| 11/19/2018     2420       5/14/2019     2350       10/8/2019     2460       4/6/2020     2360       7/14/2020     2360                                                                                                                                                             |            |       |       |
| 5/14/2019 2350<br>10/8/2019 2460<br>4/6/2020 2360<br>7/14/2020 2360                                                                                                                                                                                                                |            |       |       |
| 10/8/2019     2460       4/6/2020     2360       7/14/2020     2360                                                                                                                                                                                                                |            |       |       |
| 4/6/2020     2360       7/14/2020     2360                                                                                                                                                                                                                                         |            |       | 2460  |
| 7/14/2020 2360                                                                                                                                                                                                                                                                     |            |       |       |
|                                                                                                                                                                                                                                                                                    |            |       |       |
| 2/23/2021 2480                                                                                                                                                                                                                                                                     |            |       |       |
|                                                                                                                                                                                                                                                                                    | 212312021  |       | 2460  |

|            | MW-18 | MW-18 |
|------------|-------|-------|
| 4/26/2016  | 3130  |       |
| 6/22/2016  | 3120  |       |
| 10/12/2017 | 3290  |       |
| 10/13/2017 | 3140  |       |
| 10/14/2017 | 3150  |       |
| 10/15/2017 | 3210  |       |
| 10/16/2017 | 2610  |       |
| 10/17/2017 | 3180  |       |
| 11/15/2017 | 3170  |       |
| 5/22/2018  | 2960  |       |
| 11/19/2018 | 3260  |       |
| 5/15/2019  | 2860  |       |
| 10/8/2019  |       | 2860  |
| 4/8/2020   |       | 2670  |
| 7/14/2020  |       | 2890  |
| 2/23/2021  |       | 2570  |

|            | MW-19 | MW-19 |
|------------|-------|-------|
| 4/26/2016  | 3350  |       |
| 6/22/2016  | 3090  |       |
| 10/12/2017 | 3720  |       |
| 10/13/2017 | 3890  |       |
| 10/14/2017 | 3800  |       |
| 10/15/2017 | 3800  |       |
| 10/16/2017 | 3770  |       |
| 10/17/2017 | 3780  |       |
| 11/15/2017 | 3710  |       |
| 5/22/2018  | 2700  |       |
| 11/20/2018 | 2580  |       |
| 5/15/2019  | 2990  |       |
| 10/8/2019  |       | 3300  |
| 4/8/2020   |       | 2710  |
| 7/15/2020  |       | 3030  |
| 2/24/2021  |       | 3070  |

|            | MW-2     | MW-2 |
|------------|----------|------|
| 4/25/2016  | 1260 (D) |      |
| 6/20/2016  | 1620 (D) |      |
| 8/8/2016   | 1740 (D) |      |
| 8/24/2016  | 1720     |      |
| 10/3/2016  | 1800 (D) |      |
| 10/26/2016 | 1800     |      |
| 11/21/2016 | 1740 (D) |      |
| 1/17/2017  | 1960 (D) |      |
| 3/22/2017  | 1510 (D) |      |
| 4/18/2017  | 1580     |      |
| 5/31/2017  | 1730 (D) |      |
| 8/23/2017  | 1550 (D) |      |
| 5/22/2018  | 1500 (D) |      |
| 6/12/2018  | 1550     |      |
| 10/17/2018 | 1740     |      |
| 11/19/2018 | 1990     |      |
| 4/10/2019  | 1250     |      |
| 5/14/2019  | 1480     |      |
| 10/8/2019  |          | 1840 |
| 10/16/2019 |          | 1830 |
| 4/6/2020   |          | 1440 |
| 7/13/2020  |          | 1540 |
| 2/22/2021  |          | 1620 |
|            |          |      |

|            | MW-20 | MW-20 |
|------------|-------|-------|
| 4/26/2016  | 2690  |       |
| 6/22/2016  | 2500  |       |
| 10/12/2017 | 2670  |       |
| 10/13/2017 | 2640  |       |
| 10/14/2017 | 2590  |       |
| 10/15/2017 | 2700  |       |
| 10/16/2017 | 2670  |       |
| 10/17/2017 | 2570  |       |
| 11/15/2017 | 2600  |       |
| 5/22/2018  | 2540  |       |
| 11/20/2018 | 2420  |       |
| 5/15/2019  | 2600  |       |
| 10/10/2019 |       | 2580  |
| 4/8/2020   |       | 2480  |
| 7/15/2020  |       | 2480  |
| 2/23/2021  |       | 2460  |

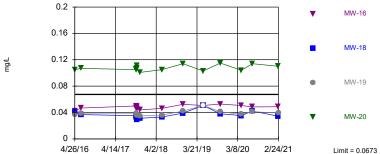
|            | MW-3     | MW-3 |
|------------|----------|------|
| 4/25/2016  | 2720 (D) |      |
| 6/22/2016  | 3250 (D) |      |
| 8/9/2016   | 3050 (D) |      |
| 8/24/2016  | 3080     |      |
| 10/4/2016  | 2900 (D) |      |
| 10/26/2016 | 2940     |      |
| 11/21/2016 | 3090 (D) |      |
| 1/18/2017  | 4020 (D) |      |
| 3/22/2017  | 4180 (D) |      |
| 4/18/2017  | 4440     |      |
| 5/31/2017  | 3970 (D) |      |
| 8/23/2017  | 4050 (D) |      |
| 5/24/2018  | 3680 (D) |      |
| 6/12/2018  | 3820     |      |
| 10/17/2018 | 4730     |      |
| 11/19/2018 | 4710     |      |
| 4/10/2019  | 3680     |      |
| 5/14/2019  | 3580 (D) |      |
| 10/8/2019  |          | 4720 |
| 10/16/2019 |          | 4210 |
| 4/6/2020   |          | 2630 |
| 7/13/2020  |          | 3650 |
| 2/22/2021  |          | 4670 |
|            |          |      |

|            | MW-4     | MW-4 |
|------------|----------|------|
| 4/25/2016  | 3300 (D) |      |
| 6/20/2016  | 3870 (D) |      |
| 8/9/2016   | 4140 (D) |      |
| 8/24/2016  | 4190     |      |
| 10/3/2016  | 4190 (D) |      |
| 10/26/2016 | 4400     |      |
| 11/21/2016 | 4230 (D) |      |
| 1/18/2017  | 4120 (D) |      |
| 3/22/2017  | 3980 (D) |      |
| 4/18/2017  | 3880     |      |
| 5/31/2017  | 4210 (D) |      |
| 8/23/2017  | 3990 (D) |      |
| 5/23/2018  | 3740 (D) |      |
| 6/12/2018  | 4080     |      |
| 10/17/2018 | 4250     |      |
| 11/19/2018 | 3920     |      |
| 4/10/2019  | 3280     |      |
| 5/14/2019  | 3130 (D) |      |
| 10/10/2019 |          | 4000 |
| 10/16/2019 |          | 4060 |
| 4/6/2020   |          | 2820 |
| 7/14/2020  |          | 3310 |
| 2/22/2021  |          | 3190 |
|            |          |      |

# FIGURE E.

## Appendix III - Interwell Prediction Limits - Significant Results


Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 5/20/2021, 9:55 PM

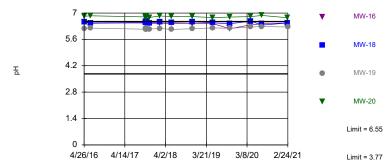

| Constituent         | Well  | Upper Lim. | Lower Lim. | <u>Date</u> | Observ. | Sig. | Bg N | Bg Mean | Std. Dev. | %NDs  | ND Adj. | Transform | <u>Alpha</u> | Method                      |
|---------------------|-------|------------|------------|-------------|---------|------|------|---------|-----------|-------|---------|-----------|--------------|-----------------------------|
| Boron, total (mg/L) | MW-20 | 0.0673     | n/a        | 2/23/2021   | 0.11    | Yes  | 140  | n/a     | n/a       | 14.29 | n/a     | n/a       | 0.00009972   | NP Inter (normality) 1 of 2 |
| pH (pH)             | MW-20 | 6.55       | 3.77       | 2/23/2021   | 6.75    | Yes  | 145  | n/a     | n/a       | 0     | n/a     | n/a       | 0.0001879    | NP Inter (normality) 1 of 2 |

### Appendix III - Interwell Prediction Limits - All Results

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 5/20/2021, 9:55 PM Upper Lim. Lower Lim. Date Bg Mean Std. Dev. %NDs ND Adj. Constituent Well Observ. Sig. <u>Bg N</u> <u>Transform</u> <u>Alpha</u> Method Boron, total (mg/L) MW-16 0.0673 2/23/2021 0.0487J 140 14.29 n/a 0.00009972 NP Inter (normality) 1 of 2 n/a n/a No n/a n/a Boron, total (mg/L) MW-18 0.0673 2/23/2021 0.0343J 140 14.29 n/a 0.00009972 NP Inter (normality) 1 of 2 14.29 n/a Boron, total (mg/L) MW-19 0.0673 n/a 2/24/2021 0.0393J No 140 n/a n/a n/a 0.00009972 NP Inter (normality) 1 of 2 Boron, total (mg/L) MW-20 0.0673 2/23/2021 0.11 Yes 140 14.29 n/a 0.00009972 NP Inter (normality) 1 of 2 n/a n/a n/a n/a MW-16 6.55 3.77 2/23/2021 6.47 No 145 n/a 0 0.0001879 NP Inter (normality) 1 of 2 MW-18 6.55 3.77 145 0.0001879 NP Inter (normality) 1 of 2 pH (pH) 2/23/2021 6.47 No n/a n/a 0 n/a n/a pH (pH) MW-19 6.55 3.77 2/24/2021 6.26 145 n/a 0.0001879 NP Inter (normality) 1 of 2 No n/a n/a 0 n/a pH (pH) MW-20 2/23/2021 6.75 Yes 145 n/a 0.0001879 NP Inter (normality) 1 of 2 Sanitas™ v.9.6.28 . UG Hollow symbols indicate censored values

Exceeds Limit: MW-20 Prediction Limit






Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 140 background values. 14.29% NDs. Annual perconstituent alpha = 0.0007975. Individual comparison alpha = 0.00009972 (1 of 2). Comparing 4 points to limit.

Constituent: Boron, total Analysis Run 5/20/2021 7:42 PM View: Appendix III - Interwell Parameters
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG

Exceeds Limits: MW-20 Prediction Limit
Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 145 background values. Annual perconstituent alpha = 0.001503. Individual comparison alpha = 0.0001879 (1 of 2). Comparing 4 points to limit.

Constituent: pH Analysis Run 5/20/2021 7:42 PM View: Appendix III - Interwell Parameters

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Constituent: Boron, total (mg/L) Analysis Run 5/20/2021 7:44 PM View: Appendix III - Interwell Parameters

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-4 (bg)   | MW-2 (bg)  | MW-3 (bg)   | MW-1 (bg)  | MW-15 (bg) | MW-13 (bg)  | MW-18      | MW-19       | MW-20     |
|------------|-------------|------------|-------------|------------|------------|-------------|------------|-------------|-----------|
| 4/25/2016  | 0.0414 (J)  | 0.0241 (J) | 0.028 (J)   |            |            |             |            |             |           |
| 4/26/2016  |             |            |             | 0.0231 (J) | 0.0476 (J) | 0.0585 (J)  | 0.0408 (J) | 0.0367 (J)  | 0.105     |
| 4/27/2016  |             |            |             |            |            |             |            |             |           |
| 6/20/2016  | 0.0434 (J)  | 0.0284 (J) |             | 0.0227 (J) |            |             |            |             |           |
| 6/22/2016  |             |            | 0.0433 (J)  |            | 0.0472 (J) | 0.0581 (J)  | 0.0369 (J) | 0.039 (J)   | 0.107     |
| 8/8/2016   |             | 0.034 (J)  |             | 0.0278 (J) |            |             |            |             |           |
| 8/9/2016   | 0.0453 (J)  |            | 0.0429 (J)  |            |            |             |            |             |           |
| 8/24/2016  | 0.0451 (J)  | 0.0316 (J) | 0.0431 (J)  | 0.0247 (J) |            |             |            |             |           |
| 10/3/2016  | 0.0511 (J)  | 0.0367 (J) |             | 0.0307 (J) |            |             |            |             |           |
| 10/4/2016  |             |            | 0.04 (J)    |            |            |             |            |             |           |
| 10/26/2016 | 0.0507 (J)  | 0.0331 (J) | 0.0375 (J)  | 0.0241 (J) |            |             |            |             |           |
| 11/21/2016 | 0.0458 (J)  | 0.035 (J)  | 0.0406 (J)  | 0.0202 (J) |            |             |            |             |           |
| 1/17/2017  |             | 0.0259 (J) |             | 0.0201 (J) |            |             |            |             |           |
| 1/18/2017  | 0.0445 (J)  |            | 0.0548 (J)  |            |            |             |            |             |           |
| 3/22/2017  | 0.0432 (J)  | 0.0243 (J) | 0.0344 (J)  | 0.0224 (J) |            |             |            |             |           |
| 4/18/2017  | 0.0409 (J)  | 0.0206 (J) | <0.1015     | <0.1015    |            |             |            |             |           |
| 5/30/2017  |             |            |             | <0.1015    |            |             |            |             |           |
| 5/31/2017  | 0.0392 (J)  | 0.0234 (J) | 0.0454 (J)  |            |            |             |            |             |           |
| 8/23/2017  | 0.042 (J)   | 0.0267 (J) | 0.0425 (J)  | 0.0253 (J) |            |             |            |             |           |
| 10/12/2017 |             |            |             |            | 0.054 (J)  | 0.0673 (J)  | 0.0351 (J) | 0.039 (J)   | 0.105     |
| 10/13/2017 |             |            |             |            | 0.0535 (J) | 0.06 (J)    | 0.0357 (J) | 0.0384 (J)  | 0.106     |
| 10/14/2017 |             |            |             |            | 0.0533 (J) | 0.0555 (J)  | 0.0333 (J) | 0.0372 (J)  | 0.106     |
| 10/15/2017 |             |            |             |            | 0.0592 (J) | 0.0567 (J)  | 0.0325 (J) | 0.0354 (J)  | 0.107     |
| 10/16/2017 |             |            |             |            | 0.0608 (J) | 0.0576 (J)  | 0.0295 (J) | 0.0373 (J)  | 0.111     |
| 10/17/2017 |             |            |             |            | 0.0641 (J) | 0.0561 (J)  | 0.033 (J)  | 0.0367 (J)  | 0.107     |
| 11/15/2017 |             |            |             |            | 0.0483 (J) |             | 0.0313 (J) | 0.0348 (J)  | 0.101     |
| 11/16/2017 |             |            |             |            |            | 0.0554 (J)  |            |             |           |
| 5/21/2018  |             |            |             |            | 0.0478 (J) | 0.0651 (J)  |            |             |           |
| 5/22/2018  |             | 0.0251 (J) |             | 0.0224 (J) |            |             | 0.0331 (J) | 0.0362 (J)  | 0.105     |
| 5/23/2018  | 0.0433 (J)  |            |             |            |            |             |            |             |           |
| 5/24/2018  |             |            | 0.0339 (J)  |            |            |             |            |             |           |
| 6/12/2018  | 0.0478 (J)  | 0.0275 (J) | 0.0371 (J)  | 0.0214 (J) |            |             |            |             |           |
| 10/17/2018 | 0.0468 (J)  | 0.0321 (J) | 0.0596 (J)  | 0.0216 (J) |            |             |            |             |           |
| 11/19/2018 | 0.0526 (J)  | 0.0324 (J) | 0.0514 (J)  | 0.0237 (J) | 0.0615 (J) | 0.0624 (J)  | 0.039 (J)  |             |           |
| 11/20/2018 |             |            |             |            |            |             |            | 0.0421 (J)  | 0.114     |
| 4/10/2019  | 0.0438 (J)  | <0.1015    | <0.1015     | 0.0304 (J) |            |             |            |             |           |
| 5/14/2019  | <0.1015     | <0.1015    | <0.1015     | <0.1015    | <0.1015    | <0.1015     |            |             |           |
| 5/15/2019  |             |            |             |            |            |             | <0.1015    | <0.1015     | 0.103 (J) |
| 10/8/2019  |             | 0.0371 (J) | 0.0537 (J)  | <0.1015    | 0.0644 (J) | 0.0616 (J)  | 0.038 (J)  | 0.0413 (J)  |           |
| 10/10/2019 | 0.0487 (J)  |            |             |            |            |             |            |             | 0.115     |
| 10/16/2019 | 0.0505 (J)  | 0.0419 (J) | 0.05 (J)    | 0.0385 (J) |            |             |            |             |           |
| 4/6/2020   | 0.0428 (J)  | <0.1015    | <0.1015     | <0.1015    | 0.0540 (1) | 0.0577 (1)  |            |             |           |
| 4/7/2020   |             |            |             |            | 0.0542 (J) | 0.0577 (J)  | 0.0050 (1) | 0.0070 (1)  | 0.101     |
| 4/8/2020   |             | -0.101F    | 0.0200 ( 1) | <0.101F    |            |             | 0.0353 (J) | 0.0373 (J)  | 0.104     |
| 7/13/2020  | 0.0444 ( )) | <0.1015    | 0.0366 (J)  | <0.1015    | 0.0557 (1) | 0.0570 ( )) | 0.0404 (1) |             |           |
| 7/14/2020  | 0.0441 (J)  |            |             |            | 0.0557 (J) | 0.0573 (J)  | 0.0421 (J) | 0.0440.415  | 0.444     |
| 7/15/2020  | 0.0007 ( 1) | -0.4045    | -0.4045     | 0.0207.413 |            |             |            | 0.0412 (J)  | 0.114     |
| 2/22/2021  | 0.0397 (J)  | <0.1015    | <0.1015     | 0.0307 (J) | 0.052475   | 0.065 (1)   | 0.024273   |             | 0.11      |
| 2/23/2021  |             |            |             |            | 0.0534 (J) | 0.065 (J)   | 0.0343 (J) | 0.0202 ( 1) | 0.11      |
| 2/24/2021  |             |            |             |            |            |             |            | 0.0393 (J)  |           |

Constituent: Boron, total (mg/L) Analysis Run 5/20/2021 7:44 PM View: Appendix III - Interwell Parameters

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-14 (bg)  | MW-16      |  |  |  |
|------------|-------------|------------|--|--|--|
| 4/25/2016  | ,           |            |  |  |  |
| 4/26/2016  | 0.0491 (J)  |            |  |  |  |
| 4/27/2016  |             | 0.0425 (J) |  |  |  |
| 6/20/2016  |             | •          |  |  |  |
| 6/22/2016  | 0.0504 (J)  | 0.0469 (J) |  |  |  |
| 8/8/2016   | . ,         | ( )        |  |  |  |
| 8/9/2016   |             |            |  |  |  |
| 8/24/2016  |             |            |  |  |  |
| 10/3/2016  |             |            |  |  |  |
| 10/4/2016  |             |            |  |  |  |
| 10/26/2016 |             |            |  |  |  |
| 11/21/2016 |             |            |  |  |  |
| 1/17/2017  |             |            |  |  |  |
| 1/18/2017  |             |            |  |  |  |
| 3/22/2017  |             |            |  |  |  |
| 4/18/2017  |             |            |  |  |  |
| 5/30/2017  |             |            |  |  |  |
| 5/31/2017  |             |            |  |  |  |
| 8/23/2017  |             |            |  |  |  |
| 10/12/2017 | 0.0493 ( 1) | 0.05 (1)   |  |  |  |
|            | 0.0493 (J)  | 0.05 (J)   |  |  |  |
| 10/13/2017 | 0.0464 (J)  | 0.0468 (J) |  |  |  |
| 10/14/2017 | 0.0458 (J)  | 0.0471 (J) |  |  |  |
| 10/15/2017 | 0.046 (J)   | 0.0456 (J) |  |  |  |
| 10/16/2017 | 0.0438 (J)  | 0.0486 (J) |  |  |  |
| 10/17/2017 | 0.046 (J)   | 0.0452 (J) |  |  |  |
| 11/15/2017 |             | 0.044 (J)  |  |  |  |
| 11/16/2017 | 0.0568 (J)  |            |  |  |  |
| 5/21/2018  | 0.0478 (J)  | 0.0463 (J) |  |  |  |
| 5/22/2018  |             |            |  |  |  |
| 5/23/2018  |             |            |  |  |  |
| 5/24/2018  |             |            |  |  |  |
| 6/12/2018  |             |            |  |  |  |
| 10/17/2018 |             |            |  |  |  |
| 11/19/2018 | 0.0518 (J)  | 0.0524 (J) |  |  |  |
| 11/20/2018 |             |            |  |  |  |
| 4/10/2019  |             |            |  |  |  |
| 5/14/2019  | <0.1015     | <0.1015    |  |  |  |
| 5/15/2019  |             |            |  |  |  |
| 10/8/2019  | 0.0522 (J)  | 0.0528 (J) |  |  |  |
| 10/10/2019 |             |            |  |  |  |
| 10/16/2019 |             |            |  |  |  |
| 4/6/2020   |             | 0.0507 (J) |  |  |  |
| 4/7/2020   | 0.0477 (J)  |            |  |  |  |
| 4/8/2020   |             |            |  |  |  |
| 7/13/2020  |             |            |  |  |  |
| 7/14/2020  | 0.0492 (J)  | 0.0484 (J) |  |  |  |
| 7/15/2020  | ` '         | • •        |  |  |  |
| 2/22/2021  |             |            |  |  |  |
| 2/23/2021  | 0.0516 (J)  | 0.0487 (J) |  |  |  |
| 2/24/2021  | (-)         | \-/-       |  |  |  |
| 2.2 202 1  |             |            |  |  |  |
|            |             |            |  |  |  |

Constituent: pH (pH) Analysis Run 5/20/2021 7:44 PM View: Appendix III - Interwell Parameters

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

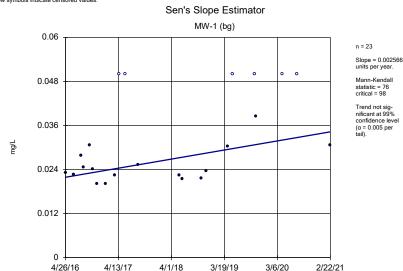
|                        | MM 4 (ha) | MMA( 2 (ha) | MMA( 2 (b =) | MANA/ 1 /h-a)  | MM 15 (ba) | MANA/ 12 /h> | MM 10 | MM/ 10 | MW 20 |
|------------------------|-----------|-------------|--------------|----------------|------------|--------------|-------|--------|-------|
| 4/05/0010              | MW-4 (bg) | MW-2 (bg)   | MW-3 (bg)    | MW-1 (bg)      | MW-15 (bg) | MW-13 (bg)   | MW-18 | MW-19  | MW-20 |
| 4/25/2016<br>4/26/2016 |           | 5.94        | 5.56         | 5.2            | 6.08       | 6.35         | 6.54  | 6.16   | 6.83  |
| 4/27/2016              |           |             |              | 5.2            | 0.06       | 0.33         | 0.54  | 0.10   | 0.03  |
| 6/20/2016              |           | 5.96        |              | 5.18           |            |              |       |        |       |
|                        |           | 5.90        | E            | 5.16           | C 11       | 6.22         | 6.45  | 6.0    | C 0F  |
| 6/22/2016              |           | F 99        | 5.57         | F 10           | 6.11       | 6.33         | 6.45  | 6.2    | 6.85  |
| 8/8/2016               |           | 5.88        | F 67         | 5.12           |            |              |       |        |       |
| 8/9/2016               |           |             | 5.67         |                |            |              |       |        |       |
| 8/24/2016              |           | F 04 (D)    | 5.63         | E 04 (D)       |            |              |       |        |       |
| 10/3/2016              |           | 5.91 (D)    | E 60 (D)     | 5.21 (D)       |            |              |       |        |       |
| 10/4/2016<br>10/26/201 |           | E 94        | 5.69 (D)     | F 2            |            |              |       |        |       |
|                        |           | 5.84        | 5.56         | 5.2            |            |              |       |        |       |
| 11/21/201              |           | 5.82 (D)    | 5.42 (D)     | 5.19 (D)       |            |              |       |        |       |
| 1/17/2017              |           | 5.87 (D)    | E 11 (D)     | 5.17 (D)       |            |              |       |        |       |
| 1/18/2017              |           | 6.01 (D)    | 5.11 (D)     | F 2 (D)        |            |              |       |        |       |
| 3/22/2017              |           | 6.01 (D)    | 4.52 (D)     | 5.2 (D)<br>5.2 |            |              |       |        |       |
| 4/18/2017<br>5/30/2017 |           | 6.02        | 5.84         |                |            |              |       |        |       |
|                        |           | E 9E (D)    | 4 EG (D)     | 5.14 (D)       |            |              |       |        |       |
| 5/31/2017              |           | 5.85 (D)    | 4.56 (D)     | F 10 (D)       |            |              |       |        |       |
| 8/23/2017<br>10/12/201 |           | 5.89 (D)    | 4.77 (D)     | 5.12 (D)       | 6.06       | 6.29         | 6.5   | C 14   | 6.70  |
|                        |           |             |              |                | 6.06       | 6.38         | 6.5   | 6.14   | 6.79  |
| 10/13/201              |           |             |              |                | 6.06       | 6.37         | 6.49  | 6.18   | 6.75  |
| 10/14/201<br>10/15/201 |           |             |              |                | 6.12       | 6.4          | 6.54  | 6.21   | 6.82  |
|                        |           |             |              |                | 6.05       | 6.35         | 6.55  | 6.14   | 6.8   |
| 10/16/201              |           |             |              |                | 6.05       | 6.37<br>6.44 | 6.55  | 6.16   | 6.83  |
| 10/17/201              |           |             |              |                | 6.12       | 0.44         | 6.55  | 6.15   | 6.82  |
| 11/15/201<br>11/16/201 |           |             |              |                | 6.06       | 6.31         | 6.46  | 6.15   | 6.77  |
| 2/13/2018              |           | 6.21        | 5.67         | 5.18           |            | 6.5          |       |        |       |
| 2/14/2018              |           | 0.21        | 5.07         | 5.16           | 6.1        | 0.5          | 6.53  | 6.18   | 6.84  |
| 5/21/2018              |           |             |              |                | 6.06       | 6.41         | 0.33  | 0.16   | 0.04  |
| 5/22/2018              |           | 6.04        |              | 5.2            | 0.00       | 0.41         | 6.5   | 6.13   | 6.81  |
| 5/23/2018              |           | 0.04        |              | 5.2            |            |              | 0.5   | 0.13   | 0.01  |
| 5/24/2018              |           |             | 5.19         |                |            |              |       |        |       |
| 6/12/2018              |           | 5.95        | 4.79         | 5.15           |            |              |       |        |       |
| 10/17/201              |           | 5.9         | 4.75         | 5.12           |            |              |       |        |       |
| 11/19/201              |           | 6.03        | 3.77 (E)     | 5.09           | 6.08       | 6.38         | 6.54  |        |       |
| 11/20/201              |           | 0.00        | 0.77 (2)     | 0.00           | 0.00       | 0.00         | 0.0 . | 6.16   | 6.81  |
| 4/10/2019              |           | 6.1         | 5.54         | 5.11           |            |              |       | 0.10   | 0.01  |
| 5/14/2019              |           | 6.07        | 5.71         | 5.19           | 6.1        | 6.41         |       |        |       |
| 5/15/2019              |           | 2.2.        |              | 5.15           |            |              | 6.48  | 6.21   | 6.76  |
| 10/8/2019              |           | 5.96        | 4.98         | 5.12           | 5.99       | 6.34         | 6.43  | 6.19   | 0.70  |
| 10/10/201              |           | 0.00        |              | 52             | 0.00       | 0.0 .        | 0.10  | 0.10   | 6.78  |
| 10/16/201              |           | 5.98        | 4.51         | 5.16           |            |              |       |        |       |
| 4/6/2020               |           | 6.21        | 5.91         | 5.21           |            |              |       |        |       |
| 4/7/2020               |           | 0.2.        | 0.0 .        | 0.2.           | 6.1        | 6.53         |       |        |       |
| 4/8/2020               |           |             |              |                |            |              | 6.57  | 6.26   | 6.81  |
| 7/13/2020              |           | 5.84        | 5.16         | 5.14           |            |              |       | -      |       |
| 7/14/2020              |           |             |              | -              | 6.05       | 6.33         | 6.36  |        |       |
| 7/15/2020              |           |             |              |                |            |              |       | 6.28   | 6.87  |
| 2/22/2021              |           | 6.1         | 5.59         | 5.06           |            |              |       |        |       |
| 2/23/2021              |           |             |              |                | 6.07       | 6.55         | 6.47  |        | 6.75  |
| 2/24/2021              |           |             |              |                |            |              |       | 6.26   |       |
|                        |           |             |              |                |            |              |       |        |       |

Constituent: pH (pH) Analysis Run 5/20/2021 7:44 PM View: Appendix III - Interwell Parameters

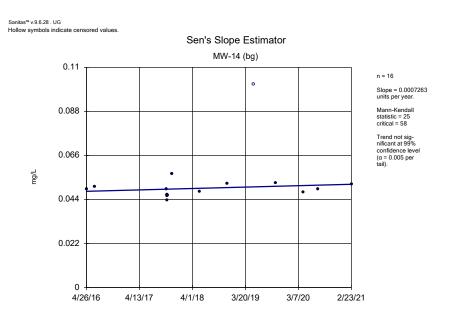
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-14 (bg) | MW-16    |
|------------|------------|----------|
| 4/25/2016  | WW-14 (bg) | 14144-10 |
| 4/26/2016  | 6.41       |          |
|            | 0.41       | 6.5      |
| 4/27/2016  |            | 6.5      |
| 6/20/2016  |            |          |
| 6/22/2016  | 6.39       | 6.47     |
| 8/8/2016   |            |          |
| 8/9/2016   |            |          |
| 8/24/2016  |            |          |
| 10/3/2016  |            |          |
| 10/4/2016  |            |          |
| 10/26/2016 |            |          |
| 11/21/2016 |            |          |
| 1/17/2017  |            |          |
| 1/18/2017  |            |          |
| 3/22/2017  |            |          |
| 4/18/2017  |            |          |
| 5/30/2017  |            |          |
| 5/31/2017  |            |          |
| 8/23/2017  |            |          |
| 10/12/2017 | 6.35       | 6.47     |
| 10/13/2017 | 6.34       | 6.45     |
| 10/14/2017 | 6.38       | 6.48     |
| 10/15/2017 | 6.32       | 6.43     |
| 10/16/2017 | 6.33       | 6.42     |
| 10/17/2017 | 6.4        | 6.48     |
| 11/15/2017 |            | 6.44     |
| 11/16/2017 | 6.28       |          |
| 2/13/2018  | 6.36       |          |
| 2/14/2018  |            | 6.45     |
| 5/21/2018  | 6.38       | 6.45     |
| 5/22/2018  | 0.00       | 0.40     |
| 5/23/2018  |            |          |
|            |            |          |
| 5/24/2018  |            |          |
| 6/12/2018  |            |          |
| 10/17/2018 | 6.25       | C 11     |
| 11/19/2018 | 6.35       | 6.44     |
| 11/20/2018 |            |          |
| 4/10/2019  | 0.00       | 0.4.     |
| 5/14/2019  | 6.39       | 6.44     |
| 5/15/2019  |            |          |
| 10/8/2019  | 6.32       | 6.16     |
| 10/10/2019 |            |          |
| 10/16/2019 |            |          |
| 4/6/2020   |            | 6.37     |
| 4/7/2020   | 6.42       |          |
| 4/8/2020   |            |          |
| 7/13/2020  |            |          |
| 7/14/2020  | 6.37       | 6.43     |
| 7/15/2020  |            |          |
| 2/22/2021  |            |          |
| 2/23/2021  | 6.38       | 6.47     |
| 2/24/2021  |            |          |
|            |            |          |
|            |            |          |

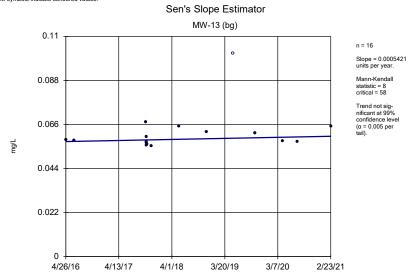
# FIGURE F.


## Appendix III - Trend Test - Significant Results

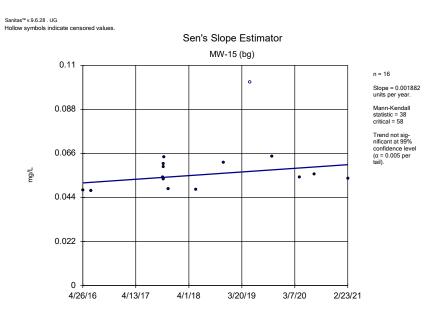
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 5/20/2021, 8:11 PM


| Constituent            | Well      | Slope    | Calc. | Critical | Sig. | <u>N</u> | %NDs  | Normality | <u>Xform</u> | <u>Alpha</u> | Method |
|------------------------|-----------|----------|-------|----------|------|----------|-------|-----------|--------------|--------------|--------|
| Boron, total (mg/L)    | MW-2 (bg) | 0.004693 | 109   | 98       | Yes  | 23       | 21.74 | n/a       | n/a          | 0.01         | NP     |
| Chloride, Total (mg/L) | MW-20     | 23.25    | 102   | 58       | Yes  | 16       | 0     | n/a       | n/a          | 0.01         | NP     |

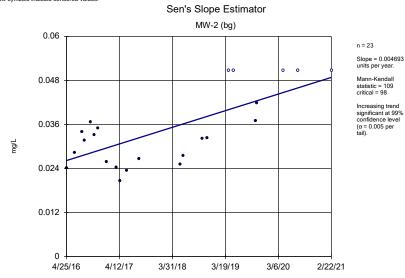
### Appendix III - Trend Test - All Results


Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Constituent Well Slope Calc. Critical Sig. <u>N</u> <u>%NDs</u> <u>Normality</u> <u>Xform</u> <u>Alpha</u> Method 0.002566 98 23 NP Boron, total (mg/L) MW-1 (bg) 76 No 26.09 n/a n/a 0.01 0.0005421 Boron, total (mg/L) MW-13 (bg) 8 58 No 16 6.25 n/a n/a 0.01 NP Boron, total (mg/L) MW-14 (bg) 0.0007263 25 58 16 6.25 0.01 NP No n/a n/a Boron, total (mg/L) MW-15 (bg) 0.001882 38 58 No 16 6.25 n/a 0.01 ΝP Boron, total (mg/L) MW-2 (bg) 0.004693 98 23 21.74 NP 109 Yes n/a 0.01 n/a Boron, total (mg/L) MW-20 0.001118 24 58 No 16 0 n/a n/a 0.01 NP 0.002522 NP Boron, total (mg/L) MW-3 (bg) 98 No 23 21.74 n/a 59 n/a 0.01 Boron, total (mg/L) MW-4 (bg) 0.0002715 98 No 23 4.348 0.01 ΝP Chloride, Total (mg/L) -0.01333 -98 23 0 NP MW-1 (bg) -10 Nο n/a n/a 0.01 Chloride, Total (mg/L) MW-13 (bg) -0.03281 -58 No 16 0 0.01 ΝP Chloride, Total (mg/L) MW-14 (bg) -0.01136 -58 16 6.25 NP -2 No n/a n/a 0.01 Chloride, Total (mg/L) MW-15 (bg) 0.05119 22 58 No 16 6.25 0.01 ΝP 0.01347 Chloride, Total (mg/L) 23 0 NP MW-2 (bg) 98 No n/a 0.01 n/a Chloride, Total (mg/L) MW-20 23.25 58 Yes 16 0 n/a 0.01 ΝP Chloride, Total (mg/L) 0.04257 MW-3 (bg) 44 98 No 23 8.696 n/a n/a 0.01 NP Chloride, Total (mg/L) MW-4 (bg) -0.06663 -59 No 23 4.348 0.01 NP -0.01537 23 0 NP pH (pH) MW-1 (bg) -79 -98 No n/a n/a 0.01 0.02062 0 NP pH (pH) MW-13 (bg) 37 63 No 17 n/a n/a 0.01 pH (pH) MW-14 (bg) 0 0 63 No 17 0 n/a n/a 0.01 NP pH (pH) MW-15 (bg) -0.002352 -16 -63 No 17 0 n/a n/a 0.01 NΡ pH (pH) MW-2 (bg) 0.03796 83 98 No 23 0 n/a n/a 0.01 NP pH (pH) MW-20 -0.006728 -22 -63 No 17 0 n/a 0.01 NP n/a pH (pH) MW-3 (bg) -0.06383 -38 -105 No 24 0 n/a n/a 0.01 NP MW-4 (bg) 0.0165 24 0 NP pH (pH) 81 105 No n/a 0.01 n/a

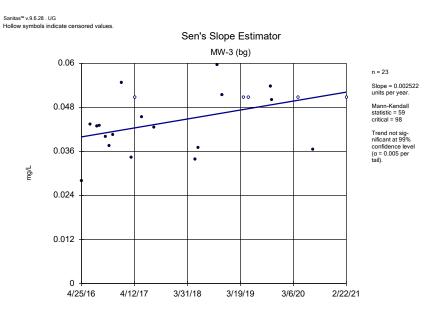



Constituent: Boron, total Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

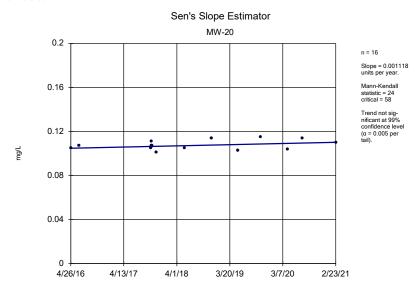



Constituent: Boron, total Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

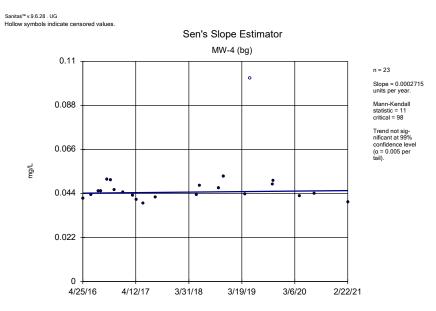



Constituent: Boron, total Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

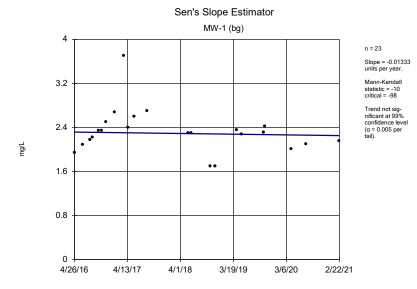



Constituent: Boron, total Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

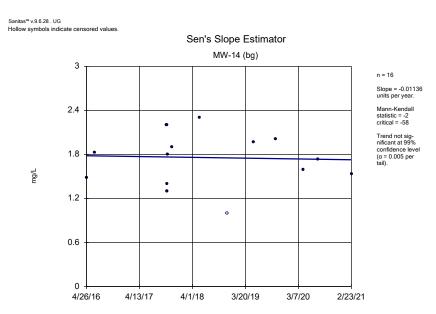



Constituent: Boron, total Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

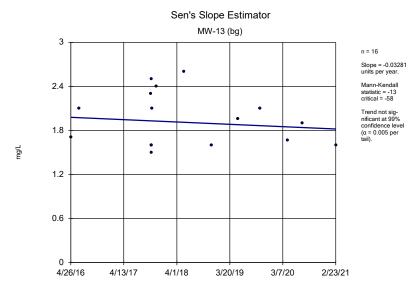



Constituent: Boron, total Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

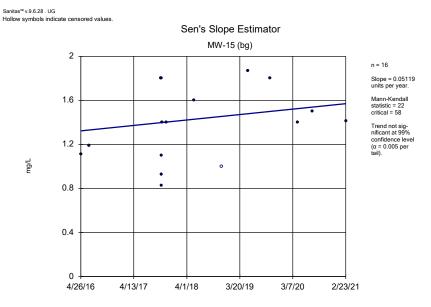



Constituent: Boron, total Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

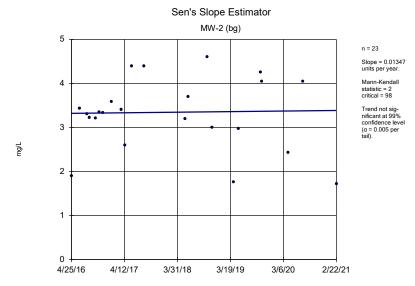



Constituent: Boron, total Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

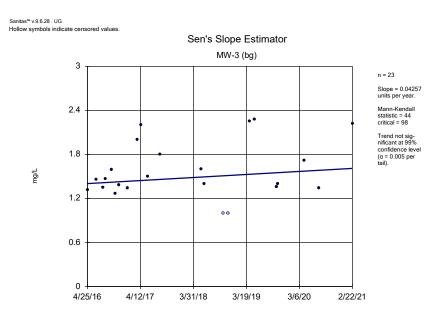



Constituent: Chloride, Total Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



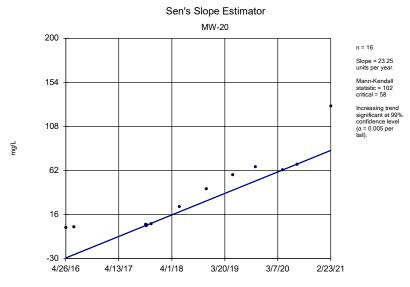

Constituent: Chloride, Total Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: Chloride, Total Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

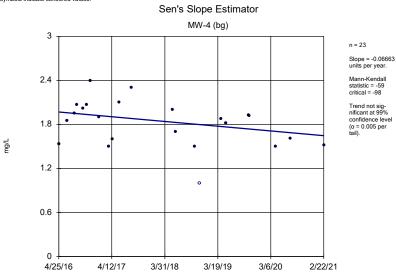


Constituent: Chloride, Total Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



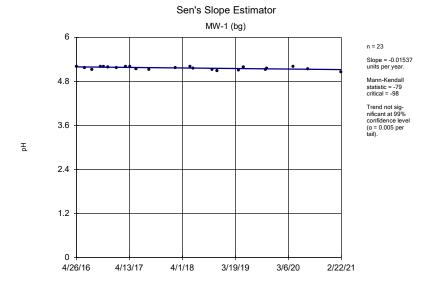

Constituent: Chloride, Total Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: Chloride, Total Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill





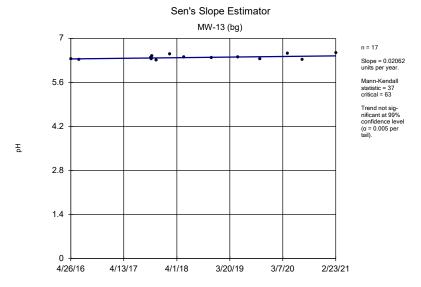

Constituent: Chloride, Total Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill





Constituent: Chloride, Total Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG




Constituent: pH Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### Sen's Slope Estimator MW-14 (bg) n = 17 Slope = 0 units per year. Mann-Kendall 5.6 critical = 63 Trend not sig-nificant at 99% confidence level 4.2 (α = 0.005 per tail). 표 2.8 1.4 4/26/16 4/13/17 4/1/18 3/20/19 3/7/20 2/23/21

Sanitas™ v.9.6.28 . UG

Constituent: pH Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



Constituent: pH Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

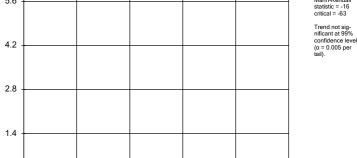
Sen's Slope Estimator

n = 17

Slope = -0.002352

units per year.

Mann-Kendall




Sanitas™ v.9.6.28 . UG

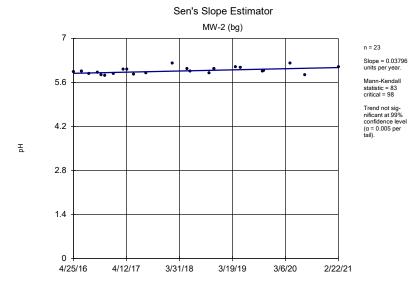
Ħ

4/26/16

4/13/17



Constituent: pH Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


3/20/19

3/7/20

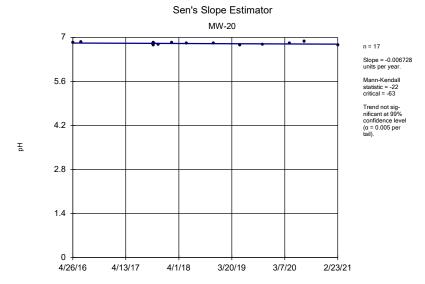
2/23/21

4/1/18

Sanitas™ v.9.6.28 . UG

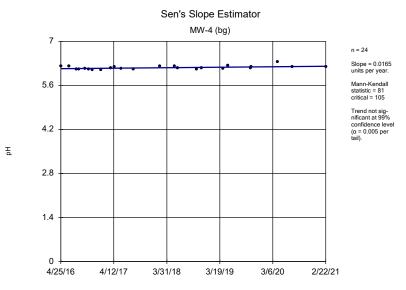


Constituent: pH Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


#### Sen's Slope Estimator MW-3 (bg) n = 24 Slope = -0.06383 units per year. Mann-Kendall 4.8 critical = -105 Trend not sig-nificant at 99% confidence level 3.6 (α = 0.005 per tail). 표 2.4 1.2 4/25/16 4/12/17 3/31/18 3/19/19 3/6/20 2/22/21

Constituent: pH Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.28 . UG

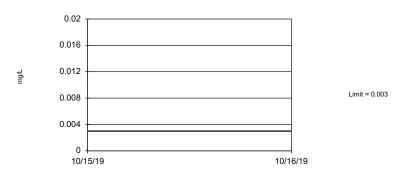
ıs™ v.9.6.28 . UG



Constituent: pH Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG



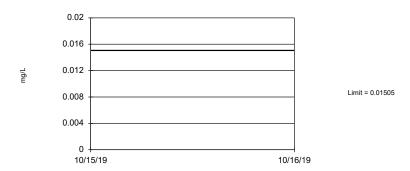

Constituent: pH Analysis Run 5/20/2021 8:09 PM View: Appendix III - Trend Test
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

# FIGURE G.

### Upper Tolerance Limits - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 7/22/2020, 1:53 PM Upper Lim. Std. Dev. %NDs Constituent Lower Lim. Bg N Bg Mean ND Adj. <u>Transform</u> <u>Alpha</u> Method 0.003 94.96 0.002234 NP Inter(NDs) Antimony (mg/L) 119 n/a n/a n/a n/a n/a Arsenic (mg/L) 0.005 119 n/a 0.002234 NP Inter(NDs) Barium (mg/L) 0.01505 n/a 119 0.01147 0.001886 0 None No 0.05 Inter Beryllium (mg/L) 0.0121 0.002475 NP Inter(NDs) 117 88.03 n/a n/a n/a n/a n/a Cadmium (mg/L) 0.00598 n/a 117 66.67 0.002475 NP Inter(NDs) 0.0105 96.64 0.002234 NP Inter(NDs) Chromium (mg/L) n/a 119 n/a n/a n/a n/a 1.07 16.81 0.002234 NP Inter(normal... Cobalt (mg/L) n/a 119 n/a n/a n/a n/a Combined Radium 226 + 228 (pCi/L) 114 0.4828 None 0.05 Fluoride (mg/L) 0.63 126 n/a n/a 0 n/a n/a 0.00156 NP Inter(normal... 0.00692 97.48 0.002234 NP Inter(NDs) Lead (mg/L) n/a 119 n/a n/a n/a n/a Lithium (mg/L) 0.419 119 0.8403 0.002234 NP Inter(normal... 0.0005 0.002234 NP Inter(NDs) Mercury (mg/L) n/a 119 n/a n/a 100 n/a n/a 0.01 100 0.002234 NP Inter(NDs) Molybdenum (mg/L) 119 n/a n/a n/a n/a n/a Selenium (mg/L) 0.0158 118 n/a 74.58 0.002352 NP Inter(NDs) Thallium (mg/L) 0.001 n/a 119 n/a n/a 97.48 n/a 0.002234 NP Inter(NDs)

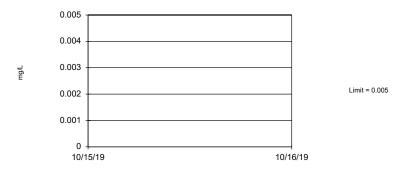
## Tolerance Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 119 background values. 94.96% NDs. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.002234.

Constituent: Antimony Analysis Run 7/22/2020 1:51 PM View: UTL's - App IV
Plant William C Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG


## Tolerance Limit Interwell Parametric

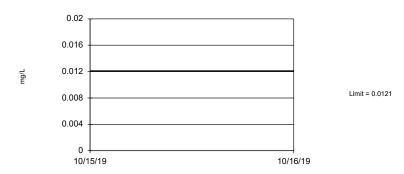


95% coverage. Background Data Summary: Mean=0.01147, Std. Dev.=0.001886, n=119. Normality test: Chi Squared @alpha = 0.01, calculated = 12.85, critical = 14.07. Report alpha = 0.05.

Constituent: Barium Analysis Run 7/22/2020 1:51 PM View: UTL's - App IV
Plant William C Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

## Tolerance Limit Interwell Non-parametric

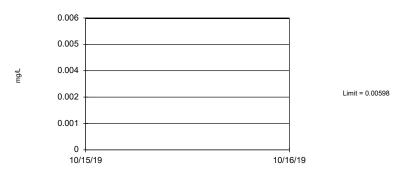



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 119 background values. 82.35% NDs. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.002234.

Constituent: Arsenic Analysis Run 7/22/2020 1:51 PM View: UTL's - App IV

Plant William C Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG


## Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 117 background values. 88.03% NDs. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.002475.

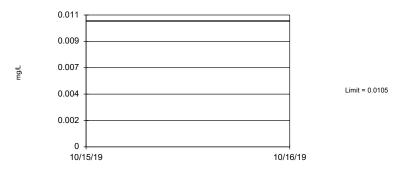
Constituent: Beryllium Analysis Run 7/22/2020 1:51 PM View: UTL's - App IV
Plant William C Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

## Tolerance Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 117 background values. 66.67% NDs. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.002475.

Constituent: Cadmium Analysis Run 7/22/2020 1:51 PM View: UTL's - App IV
Plant William C Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

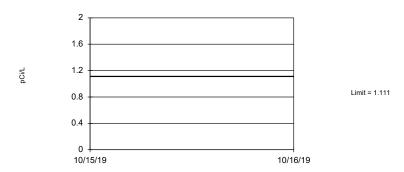

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

## Tolerance Limit Interwell Non-parametric



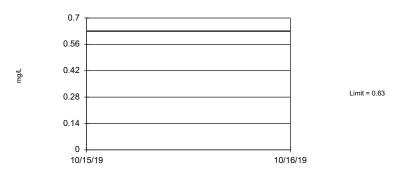
Non-parametric test used in lieu of parametric tolerance limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 119 background values. 16.81% NDs. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.002234.

## Tolerance Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 119 background values. 96.64% NDs. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha=0.002234.

Constituent: Chromium Analysis Run 7/22/2020 1:51 PM View: UTL's - App IV
Plant William C Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

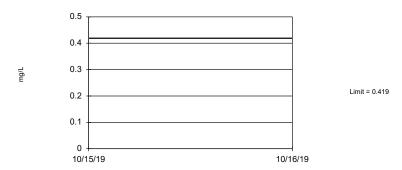

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

## Tolerance Limit Interwell Parametric



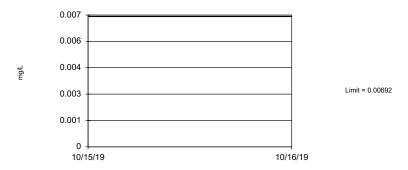
95% coverage. Background Data Summary: Mean=0.4828, Std. Dev.=0.3296, n=114. Normality test: Chi Squared @alpha = 0.01, calculated = 10.21, critical = 14.07. Report alpha = 0.05.

## Tolerance Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric tolerance limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 126 background values. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.5. Report alpha=0.00156.

Constituent: Fluoride Analysis Run 7/22/2020 1:51 PM View: UTL's - App IV
Plant William C Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

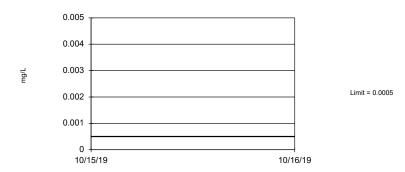
## Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 119 background values. 0.8403% NDs. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.002234.

Tolerance Limit
Interwell Non-parametric

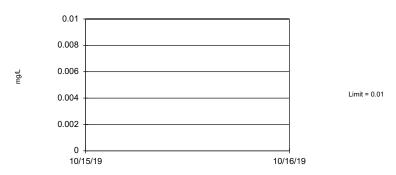



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 119 background values. 97.48% NDs. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.002234.

Constituent: Lead Analysis Run 7/22/2020 1:51 PM View: UTL's - App IV

Plant William C Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

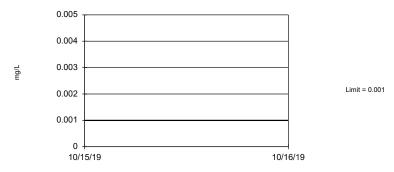

## Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. All background values were censored; limit is most recent reporting limit. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha=0.002234.

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

# Tolerance Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. All background values were censored; limit is most recent reporting limit. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.5. Report alpha = 0.002234.

Constituent: Molybdenum Analysis Run 7/22/2020 1:51 PM View: UTL's - App IV
Plant William C Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

# Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 119 background values. 97.48% NDs. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.002234.

Constituent: Thallium Analysis Run 7/22/2020 1:52 PM View: UTL's - App IV
Plant William C Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

# Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 118 background values. 74.58% NDs. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.5. Report alpha = 0.002352.

Constituent: Selenium Analysis Run 7/22/2020 1:51 PM View: UTL's - App IV
Plant William C Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

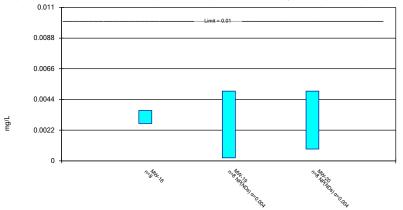
# FIGURE H.

| GORGAS GYPSUM LANDFILL GWPS |       |            |       |  |  |  |  |  |  |  |  |
|-----------------------------|-------|------------|-------|--|--|--|--|--|--|--|--|
| Analyte                     | Units | Background | GWPS  |  |  |  |  |  |  |  |  |
| Antimony                    | mg/L  | 0.003      | 0.006 |  |  |  |  |  |  |  |  |
| Arsenic                     | mg/L  | 0.005      | 0.01  |  |  |  |  |  |  |  |  |
| Barium                      | mg/L  | 0.01505    | 2     |  |  |  |  |  |  |  |  |
| Beryllium                   | mg/L  | 0.0121     | 0.004 |  |  |  |  |  |  |  |  |
| Cadmium                     | mg/L  | 0.00598    | 0.005 |  |  |  |  |  |  |  |  |
| Chromium                    | mg/L  | 0.0105     | 0.1   |  |  |  |  |  |  |  |  |
| Cobalt                      | mg/L  | 1.07       | 1.07  |  |  |  |  |  |  |  |  |
| Combined Radium-226 + 228   | pCi/L | 1.111      | 5     |  |  |  |  |  |  |  |  |
| Fluoride                    | mg/L  | 0.63       | 4     |  |  |  |  |  |  |  |  |
| Lead                        | mg/L  | 0.00692    | 0.015 |  |  |  |  |  |  |  |  |
| Lithium                     | mg/L  | 0.419      | 0.419 |  |  |  |  |  |  |  |  |
| Mercury                     | mg/L  | 0.0005     | 0.002 |  |  |  |  |  |  |  |  |
| Molybdenum                  | mg/L  | 0.01       | 0.1   |  |  |  |  |  |  |  |  |
| Selenium                    | mg/L  | 0.0158     | 0.05  |  |  |  |  |  |  |  |  |
| Thallium                    | mg/L  | 0.001      | 0.002 |  |  |  |  |  |  |  |  |

#### Notes:

- 1. mg/L Milligrams per liter
- 2. pCi/L Picocuries per liter
- 3. The background limits were used as the groundwater protection standard (GWPS) when appropriate under 40 CFR §257.95(h), ADEM Rule 335-13-15-.06(h), and the ADEM Variance.
- 4. GWPS established during second semi-annual sampling event in 2019.

# FIGURE I.


# Appendix IV - Confidence Intervals - All Results (No Significant) Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 5/20/2021, 10:17 PM

|                                   |       | Plant Gorga | s Client: So | outhern Compa | any [ | Data: Go | orgas Gypsum | Landfill Prir | nted 5/20/ | 2021, 10: | 17 PM     |              |                |
|-----------------------------------|-------|-------------|--------------|---------------|-------|----------|--------------|---------------|------------|-----------|-----------|--------------|----------------|
| Constituent                       | Well  | Upper Lim.  | Lower Lim.   | Compliance    | Sig.  | <u>N</u> | <u>Mean</u>  | Std. Dev.     | %NDs       | ND Adj.   | Transform | <u>Alpha</u> | Method         |
| Arsenic (mg/L)                    | MW-16 | 0.00361     | 0.002685     | 0.01          | No    | 8        | 0.003148     | 0.0004363     | 0          | None      | No        | 0.01         | Param.         |
| Arsenic (mg/L)                    | MW-19 | 0.005       | 0.000212     | 0.01          | No    | 8        | 0.004401     | 0.001693      | 87.5       | None      | No        | 0.004        | NP (NDs)       |
| Arsenic (mg/L)                    | MW-20 | 0.005       | 0.000849     | 0.01          | No    | 8        | 0.004017     | 0.001823      | 75         | None      | No        | 0.004        | NP (NDs)       |
| Barium (mg/L)                     | MW-16 | 0.01395     | 0.01198      | 2             | No    | 8        | 0.01296      | 0.0009273     | 0          | None      | No        | 0.01         | Param.         |
| Barium (mg/L)                     | MW-18 | 0.0161      | 0.00875      | 2             | No    | 8        | 0.01082      | 0.002255      | 0          | None      | No        | 0.004        | NP (normality) |
| Barium (mg/L)                     | MW-19 | 0.01097     | 0.009209     | 2             | No    | 8        | 0.01009      | 0.0008299     | 0          | None      | No        | 0.01         | Param.         |
| Barium (mg/L)                     | MW-20 | 0.01805     | 0.01462      | 2             | No    | 8        | 0.01634      | 0.001619      | 0          | None      | No        | 0.01         | Param.         |
| Chromium (mg/L)                   | MW-20 | 0.00312     | 0.001015     | 0.1           | No    | 8        | 0.001278     | 0.0007442     | 87.5       | None      | No        | 0.004        | NP (NDs)       |
| Cobalt (mg/L)                     | MW-16 | 0.01101     | 0.008859     | 1.07          | No    | 8        | 0.009933     | 0.001013      | 0          | None      | No        | 0.01         | Param.         |
| Cobalt (mg/L)                     | MW-18 | 0.00286     | 0.000203     | 1.07          | No    | 8        | 0.0005351    | 0.0009394     | 87.5       | None      | No        | 0.004        | NP (NDs)       |
| Cobalt (mg/L)                     | MW-19 | 0.07353     | 0.03042      | 1.07          | No    | 8        | 0.05198      | 0.02034       | 0          | None      | No        | 0.01         | Param.         |
| Cobalt (mg/L)                     | MW-20 | 0.000234    | 0.000203     | 1.07          | No    | 8        | 0.0002069    | 0.00001096    | 87.5       | None      | No        | 0.004        | NP (NDs)       |
| Combined Radium 226 + 228 (pCi/L) | MW-16 | 1.127       | 0.3271       | 5             | No    | 8        | 0.7279       | 0.5831        | 0          | None      | ln(x)     | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | MW-18 | 0.8277      | -0.00491     | 5             | No    | 8        | 0.4114       | 0.3927        | 0          | None      | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | MW-19 | 0.8425      | 0.2477       | 5             | No    | 8        | 0.5451       | 0.2806        | 0          | None      | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | MW-20 | 1.279       | 0.5079       | 5             | No    | 8        | 0.8936       | 0.364         | 0          | None      | No        | 0.01         | Param.         |
| Fluoride, total (mg/L)            | MW-16 | 0.1745      | 0.1495       | 4             | No    | 8        | 0.162        | 0.01183       | 0          | None      | No        | 0.01         | Param.         |
| Fluoride, total (mg/L)            | MW-18 | 0.3069      | 0.2778       | 4             | No    | 8        | 0.2924       | 0.01371       | 0          | None      | No        | 0.01         | Param.         |
| Fluoride, total (mg/L)            | MW-19 | 0.345       | 0.277        | 4             | No    | 8        | 0.3076       | 0.03075       | 0          | None      | No        | 0.004        | NP (normality) |
| Fluoride, total (mg/L)            | MW-20 | 0.1251      | 0.1066       | 4             | No    | 8        | 0.1159       | 0.008709      | 0          | None      | No        | 0.01         | Param.         |
| Lead (mg/L)                       | MW-20 | 0.00686     | 0.000203     | 0.015         | No    | 8        | 0.001035     | 0.002354      | 87.5       | None      | No        | 0.004        | NP (NDs)       |
| Lithium (mg/L)                    | MW-16 | 0.01995     | 0.0171       | 0.419         | No    | 8        | 0.01853      | 0.001347      | 12.5       | None      | No        | 0.01         | Param.         |
| Lithium (mg/L)                    | MW-18 | 0.06628     | 0.05715      | 0.419         | No    | 8        | 0.06171      | 0.004308      | 0          | None      | No        | 0.01         | Param.         |
| Lithium (mg/L)                    | MW-19 | 0.07173     | 0.05417      | 0.419         | No    | 8        | 0.06295      | 0.00828       | 0          | None      | No        | 0.01         | Param.         |
| Lithium (mg/L)                    | MW-20 | 0.2667      | 0.2433       | 0.419         | No    | 8        | 0.255        | 0.01099       | 0          | None      | No        | 0.01         | Param.         |
| Molybdenum (mg/L)                 | MW-16 | 0.01        | 0.000486     | 0.1           | No    | 8        | 0.008811     | 0.003364      | 87.5       | None      | No        | 0.004        | NP (NDs)       |
| Molybdenum (mg/L)                 | MW-18 | 0.01        | 0.00012      | 0.1           | No    | 8        | 0.008765     | 0.003493      | 87.5       | None      | No        | 0.004        | NP (NDs)       |
| Molybdenum (mg/L)                 | MW-19 | 0.01        | 0.000197     | 0.1           | No    | 8        | 0.008775     | 0.003466      | 87.5       | None      | No        | 0.004        | NP (NDs)       |
| Molybdenum (mg/L)                 | MW-20 | 0.01        | 0.00108      | 0.1           | No    | 8        | 0.008885     | 0.003154      | 87.5       | None      | No        | 0.004        | NP (NDs)       |
| Selenium (mg/L)                   | MW-18 | 0.01        | 0.00243      | 0.05          | No    | 8        | 0.004721     | 0.003285      | 25         | None      | No        | 0.004        | NP (normality) |

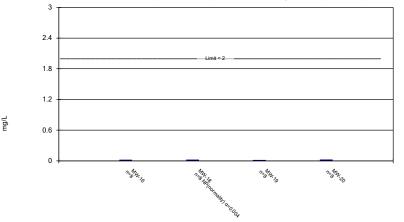
#### Sanitas™ v.9.6.28 . UG

#### Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Arsenic Analysis Run 5/20/2021 8:57 PM View: Appendix IV - Confidence Intervals
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

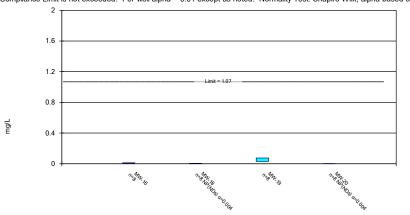

#### Sanitas™ v.9.6.28 . UG

## Non-Parametric Confidence Interval



#### Parametric and Non-Parametric (NP) Confidence Interval

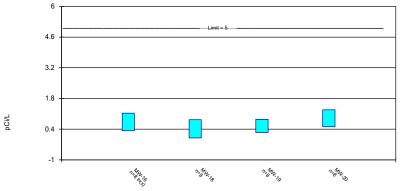
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.




Constituent: Barium Analysis Run 5/20/2021 8:57 PM View: Appendix IV - Confidence Intervals
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### Sanitas™ v.9.6.28 . UG

#### Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

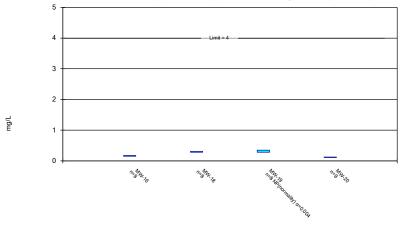


#### Sanitas™ v.9.6.28 . UG

#### Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



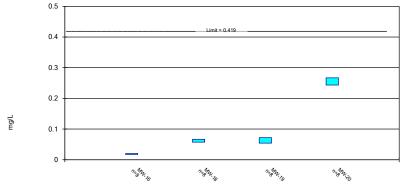

Constituent: Combined Radium 226 + 228 Analysis Run 5/20/2021 8:57 PM View: Appendix IV - Confiden
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### Sanitas™ v.9.6.28 . UG

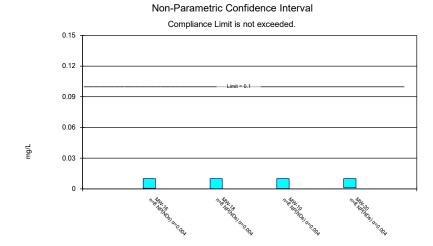
# Non-Parametric Confidence Interval Compliance Limit is not exceeded. 0.02 0.016 0.012 0.008 0.004 0.004

#### Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

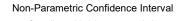


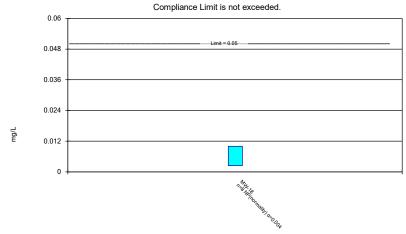

Constituent: Fluoride, total Analysis Run 5/20/2021 8:57 PM View: Appendix IV - Confidence Intervals
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


#### Sanitas™ v.9.6.28 . UG

#### Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.





Sanitas™ v.9.6.28 . UG



Constituent: Molybdenum Analysis Run 5/20/2021 8:57 PM View: Appendix IV - Confidence Intervals
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.28 . UG





Constituent: Selenium Analysis Run 5/20/2021 8:57 PM View: Appendix IV - Confidence Intervals
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

# 2nd Semi-Annual Monitoring Event

# GROUNDWATER STATS CONSULTING

SWFPR= 1 - (1 - alpha)PEPL = X +k × L C = (x (n) - x (n-2))/(x (n))To (x (n) - x (n-2))/(x (n))

November 18, 2021

Southern Company Services Attn: Mr. Greg Dyer 3535 Colonnade Parkway Birmingham, AL 35243

Re: Plant Gorgas Gypsum Landfill

Background Update & July 2021 Statistical Analysis

Dear Mr. Dyer,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the background update and statistical analysis of groundwater data for the July 2021 2<sup>nd</sup> semi-annual sample event for Alabama Power Company's Plant Gorgas Gypsum Landfill. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals (CCR) from Electric Utilities (CCR Rule, 2015) as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began at this site for the CCR program in 2016. The monitoring well network, as provided by Southern Company Services, consists of the following:

- Upgradient wells: MW-1, MW-2, MW-3, MW-4, MW-13, MW-14, and MW-15
- o Downgradient wells: MW-16, MW-17R, MW-18, MW-19, and MW-20

Note that downgradient well MW-17R was first sampled in February 2021 and currently only has two samples. This well is included on the time series graphs and box plots only.

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was prepared according to the Statistical Analysis Plan approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to Groundwater Stats Consulting. The analysis was reviewed by Dr. Jim

Loftis, Civil & Environmental Engineering professor emeritus at Colorado State University and senior advisor to Groundwater Stats Consulting.

The CCR program consists of the following constituents:

**Appendix III** (Detection Monitoring) - boron, calcium, chloride, fluoride, pH, sulfate, and TDS

**Appendix IV** (Assessment Monitoring) - antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A summary of Appendix IV downgradient well/constituent pairs containing 100% non-detects follows this letter.

Time series plots for Appendix III and IV parameters at all wells are provided for the purpose of screening data at these wells (Figure A). A substitution of the most recent reporting limit is used for non-detect data. Additionally, a separate section of box plots is included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells.

In earlier analyses, data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on analysis of the spatial variability of groundwater quality data among wells upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves are provided in this report to demonstrate that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance. The EPA suggests that the selected statistical method should provide at least 55% power at 3 standard deviations or at least 80% power at 4 standard deviations. Power curves are based on the following statistical methods and site/data characteristics:

- Semi-Annual Sampling
- Intrawell Prediction Limits with 1-of-2 resample plan
- Interwell Prediction Limits with 1-of-2 resample plan
- # Background Samples (Intrawell): 8
- # Background Samples (Interwell): 147
- # Constituents: 7
- # Downgradient wells: 4

#### **Summary of Statistical Methods – Appendix III Parameters**

Based on the earlier evaluation described above, the following statistical methods were selected:

- Intrawell prediction limits, combined with a 1-of-2 resample plan for calcium, chloride, fluoride, sulfate, and TDS
- Interwell prediction limits, combined with a 1-of-2 resample plan for boron and pH

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the annual false positive rate associated with parametric limits is fixed at 10% as recommended by the EPA Unified Guidance (2009), the false positive rate associated with nonparametric limits is not fixed and depends upon the available background sample size, number of future comparisons, and verification resample plan. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits as appropriate.

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.</li>
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the intrawell case, data for all wells and constituents may be re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. In the interwell case, prediction limits are updated with upgradient well data

following each sampling event after careful screening for any new outliers. While not required for this report, in some cases, deselecting the earlier portion of data may be necessary prior to construction of limits so that resulting statistical limits are conservative (lower) from a regulatory perspective and capable of rapidly detecting changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

#### **Background Update Summary – Conducted in September 2019**

Intrawell prediction limits, which compare the most recent compliance sample from a given well to historical data from the same well, are updated by testing for the appropriateness of consolidating new sampling observations with the screened background data. The previous background update was performed in 2019 and another background update is performed during this analysis. This process is described below and requires a minimum of four new data points. Historical data were evaluated for updating with newer data through May 2019 through the use of time series graphs to identify potential outliers when necessary, as well as the Mann Whitney test for equality of medians. As discussed in the Statistical Analysis Plan (August 2020), intrawell prediction limits are used to evaluate calcium, chloride, fluoride, sulfate, and TDS at all wells due to natural spatial variation for these parameters. During the update, the record for chloride in downgradient well MW-20 was not updated due to a statistically significant increasing trend which has continued since 2018. Therefore, this record continued to use background data through October 2017.

Interwell prediction limits, which compare the most recent sample from each downgradient well to statistical limits constructed from pooled upgradient well data, are updated during each sample event. Data from upgradient wells are periodically re-screened for newly developing trends, which may require adjustment of the background period to eliminate the trend, as well as for outliers over the entire record. Interwell prediction limits are used to evaluate boron and pH. No adjustments were required in upgradient wells for constituents evaluated using interwell prediction limits.

#### **Background Update - Fall 2021**

#### Outlier Analysis

Prior to performing prediction limits, proposed background data through February 2021 were reviewed to identify any newly suspected outliers since the last background update performed in May 2019 at all wells for calcium, chloride, fluoride, sulfate, and TDS and at upgradient wells for boron and pH. Visual screening was used to identify potential new

outliers. When identified as outliers, values were flagged with "o" and excluded to reduce variation, better represent background conditions, and provide limits that are conservative from a regulatory perspective. During this analysis, a low detected value of pH in upgradient well MW-3, high detected values of sulfate and TDS at upgradient well MW-1 were flagged as outliers. As mentioned above, flagged data are displayed in a lighter font and as a disconnected symbol on the time series reports, as well as in a lighter font on the accompanying data pages. A list of flagged outliers follows this report (Figure C).

#### <u>Intrawell – Mann-Whitney Test</u>

For constituents requiring intrawell prediction limits, the Mann Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through May 2019 to compliance data through February 2021 (Figure D). When no statistically significant difference between the two groups data is found at a 99% confidence level, background data may be updated with compliance data. Statistically significant differences (either an increase or decrease in median concentrations) were found between the two groups for the following well/constituent pairs:

#### Increase

Chloride: MW-20

#### Decrease

• Calcium: MW-18

• Fluoride: MW-14 (upgradient), MW-16, and MW-20

Typically, when the test concludes that the medians of the two groups are statistically significantly different, particularly in the downgradient wells, the background data are not updated to include the newer data unless it can be reasonably justified that the change in concentrations reflects a naturally occurring shift unrelated to practices at the site. In studies such as the current one, in which at least one of the segments being compared is of short duration, the comparison is complicated by the fact that normal short-term variation may be mistaken for long-term change in medians.

For well/constituent pairs with statistically significant decreases in medians, the background datasets were updated with new measurements at lower concentrations in order to construct statistical limits that are representative of present-day groundwater quality.

For chloride at downgradient well MW-20 which exhibits a statistically significant increasing trend, concentrations have continued to increase since May 2018; therefore, this record was not updated. Further research would be needed to determine the cause of the trend, which is beyond the scope of this analysis. If it is determined that increased concentrations are not resulting from practices at the facility, this record will be reevaluated for updating background. A summary of the Mann-Whitney results follows this letter, and the test results are included with the Mann Whitney test section.

A list of well/constituent pairs with a truncated portion of their record follows this letter. Background data sets for all other well/constituent pairs were updated with data through February 2021 for construction of intrawell prediction limits. All records will be reevaluated during the next background update.

#### <u>Interwell – Trend Test Evaluation</u>

The Sen's Slope/Mann Kendall trend test was used to evaluate the entire record of data from upgradient wells for parameters utilizing interwell prediction limits. When statistically significant increasing trends are identified in upgradient wells, the earlier portion of data may require deselection prior to construction of interwell statistical limits if the trending data would result in statistical limits that are not conservative from a regulatory perspective. No statistically significant trends were noted in upgradient wells except for an increasing trend for boron in upgradient well MW-2; however, the increasing trend is a result of historic trace values earlier in the record with non-detect values, censored at a higher concentration, for more recent observations. Therefore, no adjustments were made at this time. A summary of the trend test results follows this letter (Figure E).

#### **Evaluation of Appendix III Parameters – July 2021**

#### **Prediction Limits**

Intrawell prediction limits, combined with a 1-of-2 resample plan, were constructed for calcium, chloride, fluoride, sulfate, and TDS at each well using screened background data through February 2021 (Figure F).. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. The July 2021 observation is compared to its respective background from the same well to determine whether an initial exceedance is present.

Intrawell limits constructed from carefully screened background data from within each well serve to provide statistical limits that are representative of the background data

population, and that will rapidly identify a change in more recent compliance data from within a given well. This statistical method removes the element of variation from across wells and eliminates the chance of mistaking natural spatial variation for a release from the facility. Background data for these limits were updated during this analysis and will be re-evaluated when a minimum of 4 compliance samples are available.

Interwell prediction limits combined with a 1-of-2 verification strategy were constructed for boron, and pH (Figure G). Interwell prediction limits pool upgradient well data through July 2021 to establish a background limit for an individual constituent. The July 2021 sample from each downgradient well is compared to the background limit to determine whether an initial exceedance is present.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified, and further research is required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If a resample falls within the statistical limit, the initial exceedance is considered to be a false positive result; therefore, no further action is necessary.

Complete prediction limits results and a summary of exceedances follow this letter Exceedances for both interwell and intrawell prediction limits were identified for the following well/constituent pairs:

#### Intrawell:

• Chloride: MW-14 (upgradient), MW-15 (upgradient), MW-20

• Fluoride: MW-13 (upgradient), MW-16, MW-18, MW-19, and MW-20

Interwell

Boron: MW-20pH: MW-20

The Sanitas software did not identify an exceedance of boron at well MW-20 due to the July 2021 measurement reported as a trace value (i.e. below the reporting limit). However, the measurement exceeded its respective interwell prediction limit.

#### <u>Trend Test Evaluation – Appendix III Constituents</u>

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable (Figure H). Upgradient

wells are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells to identify whether similar patterns exist upgradient of the site. The existence of similar trends in both upgradient and downgradient wells is an indication of natural variability in groundwater that is unrelated to practices at the site. A summary of the trend test results follows this letter. The following statistically significant trends were identified:

#### **Increasing:**

• Boron: MW-2 (upgradient)

• Chloride: MW-20

• Fluoride: MW-2 (upgradient)

#### <u>Decreasing:</u>

• Fluoride: MW-14 and MW-15 (both upgradient)

The trend for boron is largely the result of trace values early in the record, followed by nondetects, censored at a higher level, in the latter part of the record.

#### **Evaluation of Appendix IV Parameters – July 2021**

Data from upgradient wells for Appendix IV parameters were reassessed for outliers during previous analyses. A previously flagged value of selenium in well MW-3 was unflagged since that value is similar to recent selenium concentrations in the same well. The highest value of lead was flagged in well MW-3. A summary of flagged outliers follows this report (Figure C).

In accordance with Alabama Department of Environmental Management, the Groundwater Protections Standards (GWPS) were updated during this 2021 2<sup>nd</sup> semi-annual statistical analysis. The GWPS will be updated again during the 2023 2<sup>nd</sup> semi-annual statistical analysis. The methodology used to create these GWPS is described below.

#### **Interwell Upper Tolerance Limits**

First, background limits were calculated using tolerance limits using data through July 2021 constructed from pooled upgradient well data. The tolerance limits contain a known fraction (coverage) of the background population with a known level of confidence. As requested by ADEM to eliminate variation among upgradient well data, nonparametric tolerance limits, which use the highest value in background as the statistical limit, were constructed (Figure I). The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples.

#### **Groundwater Protection Standards**

These background limits were then compared to the Maximum Contaminant Levels (MCLs) for each parameter, and the higher of the two was used as the GWPS (Figure J) in the confidence interval comparisons described below.

#### Confidence Intervals

Confidence intervals were then constructed on downgradient wells using a maximum of the most recent 8 samples through July 2021 for each of the Appendix IV parameters (Figure K). These intervals were constructed as either parametric or nonparametric confidence intervals depending on the data distribution and percentage of non-detects. When data followed a normal or transformed-normal distribution, parametric confidence intervals were used for Appendix IV parameters. Nonparametric confidence intervals, which use the highest and lowest values in background as interval limits, were constructed when data did not follow a normal or transformed-normal distribution or when there were greater than 50% non-detects.

As mentioned above, well/constituent pairs containing 100% non-detects in the 8 most recent samples did not require statistics; therefore, they were deselected prior to construction of confidence intervals. A list of deselected well/constituent pairs follows this report. Each confidence interval was compared with the corresponding GWPS. Only when the entire confidence interval is above the GWPS is the well/constituent pair considered to exceed its respective standard. Both a tabular summary and graphical presentation of the confidence interval results follow this letter (Figure K). No exceedances were noted for any of the well/constituent pairs.

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Gorgas Gypsum Landfill. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Kristina Rayner

Kristina Rayner

**Groundwater Statistician** 

Andrew T. Collins
Project Manager

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

#### 100% Non-Detects: Appendix IV Downgradient

Analysis Run 11/12/2021 10:46 AM View: Confidence Intervals
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Antimony (mg/L) MW-16, MW-18, MW-19, MW-20

Arsenic (mg/L) MW-18

Beryllium (mg/L) MW-16, MW-18, MW-19, MW-20

Cadmium (mg/L) MW-16, MW-18, MW-19, MW-20

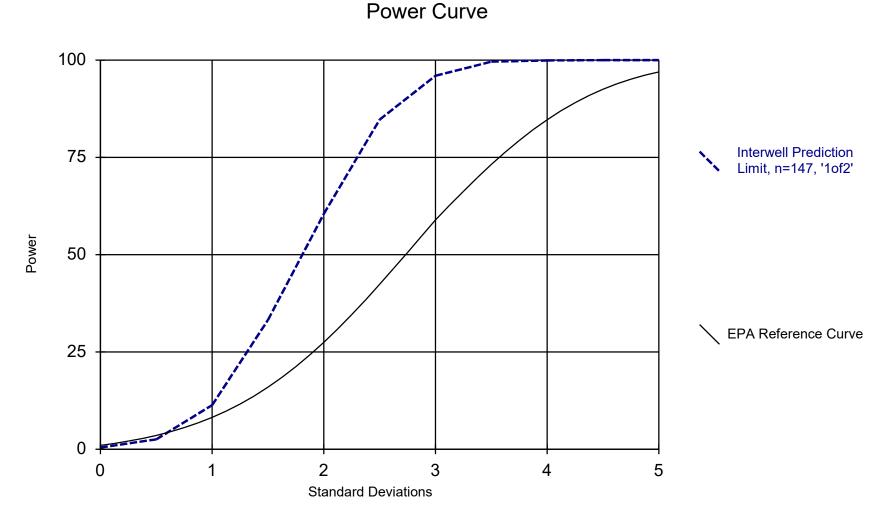
Chromium (mg/L) MW-16, MW-18, MW-19

Lead (mg/L) MW-16, MW-18, MW-19

Mercury (mg/L) MW-16, MW-18, MW-19, MW-20

Selenium (mg/L) MW-16, MW-19, MW-20

Thallium (mg/L) MW-16, MW-18, MW-19, MW-20 Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. I

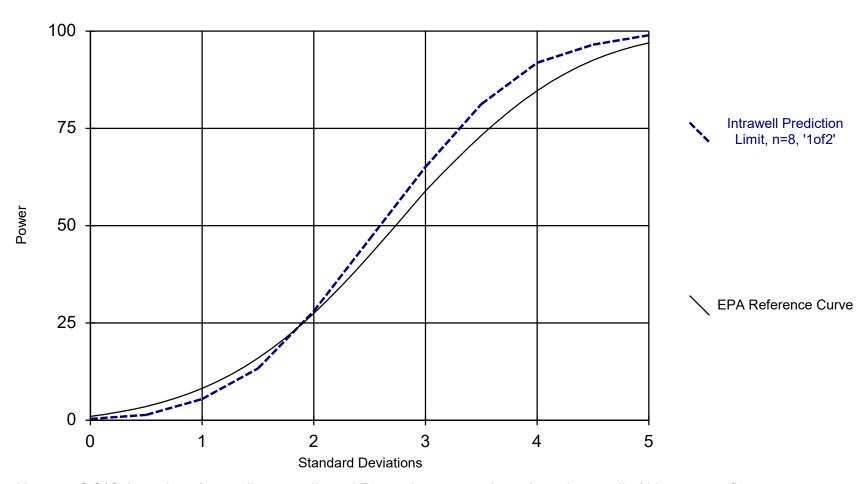

Page 1

### **Date Ranges**

Date: 11/17/2021 5:06 PM

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Chloride (mg/L) MW-20 background:4/25/2016-10/17/2017




Kappa = 1.729, based on 4 compliance wells and 7 constituents, evaluated semi-annually (this report reflects annual total).

Analysis Run 11/12/2021 10:49 AM View: Confidence Intervals

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### **Power Curve**



Kappa = 2.616, based on 4 compliance wells and 7 constituents, evaluated semi-annually (this report reflects annual total).

Analysis Run 11/12/2021 10:48 AM View: Confidence Intervals

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

# Mann-Whitney Summary - Significant Results

|                 | Plant Gorgas | Client: Southern Company | Data: Gorgas Gypsum Landfill | Printed 11/12/2021, 9:4- | 4 AM |        |
|-----------------|--------------|--------------------------|------------------------------|--------------------------|------|--------|
| Constituent     |              | Well                     | Calc.                        | <u>0.01</u>              | Sig. | Method |
| Calcium (mg/L)  |              | MW-18                    | -2.971                       | Yes                      | Yes  | Mann-W |
| Chloride (mg/L) |              | MW-20                    | 3.308                        | Yes                      | Yes  | Mann-W |
| Fluoride (mg/L) |              | MW-14 (bg)               | -2.97                        | Yes                      | Yes  | Mann-W |
| Fluoride (mg/L) |              | MW-16                    | -2.73                        | Yes                      | Yes  | Mann-W |
| Fluoride (mg/L) |              | MW-20                    | -2.97                        | Yes                      | Yes  | Mann-W |

# Mann-Whitney Summary - All Results

|                                                              | Plant Gorgas | Client: Southern Company | Data: Gorgas Gypsum Landfill | Printed 11/12/2021, | 9:44 AM  |        |
|--------------------------------------------------------------|--------------|--------------------------|------------------------------|---------------------|----------|--------|
| Constituent                                                  |              | <u>Well</u>              | Calc.                        | <u>0.01</u>         | Sig.     | Method |
| Calcium (mg/L)                                               |              | MW-1 (bg)                | 0.485                        | No                  | No       | Mann-W |
| Calcium (mg/L)                                               |              | MW-13 (bg)               | -1.764                       | No                  | No       | Mann-W |
| Calcium (mg/L)                                               |              | MW-14 (bg)               | -0.7888                      | No No               | No       | Mann-W |
| Calcium (mg/L)                                               |              | MW-15 (bg)               | 2.243                        | No                  | No       | Mann-W |
| Calcium (mg/L)                                               |              | MW-16                    | 1.154                        | No                  | No       | Mann-W |
| Calcium (mg/L)                                               |              | MW-18                    | -2.971                       | Yes                 | Yes      | Mann-W |
| Calcium (mg/L)                                               |              | MW-19                    | -2.368                       | No                  | No       | Mann-W |
| Calcium (mg/L)                                               |              | MW-2 (bg)                | 0.0373                       | 1 No                | No       | Mann-W |
| Calcium (mg/L)                                               |              | MW-20                    | -0.7888                      | No No               | No       | Mann-W |
| Calcium (mg/L)                                               |              | MW-3 (bg)                | 0.1119                       | No                  | No       | Mann-W |
| Calcium (mg/L)                                               |              | MW-4 (bg)                | -1.23                        | No                  | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-1 (bg)                | -0.9324                      | No                  | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-13 (bg)               | -0.7352                      | ! No                | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-14 (bg)               | -0.0607                      | '2 No               | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-15 (bg)               | 1.037                        | No                  | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-16                    | -1.336                       | No                  | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-18                    | -0.7912                      | . No                | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-19                    | -2.008                       | No                  | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-2 (bg)                | 0.1118                       | No                  | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-20                    | 3.308                        | Yes                 | Yes      | Mann-W |
| Chloride (mg/L)                                              |              | MW-3 (bg)                | 0.1119                       | No                  | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-4 (bg)                | -1.157                       | No                  | No       | Mann-W |
| Fluoride (mg/L)                                              |              | MW-1 (bg)                | -2.562                       | No                  | No       | Mann-W |
| Fluoride (mg/L)                                              |              | MW-13 (bg)               | -1.662                       | No                  | No       | Mann-W |
| Fluoride (mg/L)                                              |              | MW-14 (bg)               | -2.97                        | Yes                 | Yes      | Mann-W |
| Fluoride (mg/L)                                              |              | MW-15 (bg)               | -1.551                       | No                  | No       | Mann-W |
| Fluoride (mg/L)                                              |              | MW-16                    | -2.73                        | Yes                 | Yes      | Mann-W |
| Fluoride (mg/L)                                              |              | MW-18                    | -2.243                       | No                  | No       | Mann-W |
| Fluoride (mg/L)                                              |              | MW-19                    | 1.549                        | No                  | No       | Mann-W |
| Fluoride (mg/L)                                              |              | MW-2 (bg)                | 0.7841                       | No                  | No       | Mann-W |
| Fluoride (mg/L)                                              |              | MW-20                    | -2.97                        | Yes                 | Yes      | Mann-W |
| Fluoride (mg/L)                                              |              | MW-3 (bg)                | -2.56                        | No                  | No       | Mann-W |
| Fluoride (mg/L)                                              |              | MW-4 (bg)                | -0.6406                      |                     | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-1 (bg)                | 1.047                        | No                  | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-13 (bg)               | -1.785                       | No                  | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-14 (bg)               | -0.4273                      |                     | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-15 (bg)               | 1.409                        | No                  | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-16                    | 1.237                        | No                  | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-18                    | -2.234                       | No                  | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-19                    | -1.042                       | No                  | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-2 (bg)                | -0.485                       | No                  | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-20                    | -0.6775                      |                     | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-3 (bg)                | 0.7086                       | No                  | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-4 (bg)                | -1.308                       | No                  | No       | Mann-W |
| Total Dissolved Solids (mg/L)                                |              | MW-1 (bg)                | 1.68                         | No                  | No       | Mann-W |
| Total Dissolved Solids (mg/L)                                |              | MW-13 (bg)               | -2.124                       | No                  | No       | Mann-W |
| Total Dissolved Solids (mg/L)  Total Dissolved Solids (mg/L) |              | MW-13 (bg)               | -2.124<br>-1.458             | No                  | No       | Mann-W |
| Total Dissolved Solids (mg/L)  Total Dissolved Solids (mg/L) |              | MW-14 (bg)<br>MW-15 (bg) | 2.55                         | No                  | No       | Mann-W |
| Total Dissolved Solids (mg/L)                                |              | MW-16                    | 1.644                        | No                  | No       | Mann-W |
| Total Dissolved Solids (mg/L)  Total Dissolved Solids (mg/L) |              | MW-18                    |                              |                     |          | Mann-W |
| , - ,                                                        |              | MW-19                    | -2.427<br>-1.517             | No<br>No            | No<br>No |        |
| Total Dissolved Solids (mg/L)                                |              |                          | -1.517                       | No<br>No            | No<br>No | Mann-W |
| Total Dissolved Solids (mg/L)                                |              | MW-2 (bg)                | 0.1493                       | No<br>No            | No<br>No | Mann-W |
| Total Dissolved Solids (mg/L)                                |              | MW-20                    | -2.127                       | No<br>No            | No<br>No | Mann-W |
| Total Dissolved Solids (mg/L)                                |              | MW-3 (bg)                | 0.7828                       | No<br>No            | No<br>No | Mann-W |
| Total Dissolved Solids (mg/L)                                |              | MW-4 (bg)                | -1.752                       | No                  | No       | Mann-W |

## Appendix III Trend Test Summary - Significant Results

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 11/12/2021, 11:08 AM

 Constituent
 Well
 Slope
 Calc.
 Critical
 Sig.
 N
 %NDs
 Normality
 Xform
 Alpha
 Method

 Boron (mg/L)
 MW-2 (bg)
 0.00734
 127
 105
 Yes
 24
 25
 n/a
 n/a
 0.01
 NP

# Appendix III Trend Test Summary - All Results

|              | Plant Gorgas | Client: Souther | n Company D | )ata: ( | Gorgas Gy | psum Landfil | l Prir | nted 11/1 | 12/2021, | 11:08 AM  |              |              |        |
|--------------|--------------|-----------------|-------------|---------|-----------|--------------|--------|-----------|----------|-----------|--------------|--------------|--------|
| Constituent  | Well         |                 | Slope       |         | Calc.     | Critical     | Sig.   | <u>N</u>  | %NDs     | Normality | <u>Xform</u> | <u>Alpha</u> | Method |
| Boron (mg/L) | MW-1 (       | bg)             | 0.003051    |         | 93        | 105          | No     | 24        | 29.17    | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L) | MW-13        | (bg)            | 0.0004143   |         | 10        | 63           | No     | 17        | 5.882    | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L) | MW-14        | (bg)            | 0.0006368   |         | 23        | 63           | No     | 17        | 5.882    | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L) | MW-15        | (bg)            | 0.0008575   |         | 30        | 63           | No     | 17        | 5.882    | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L) | MW-2 (       | bg)             | 0.00734     |         | 127       | 105          | Yes    | 24        | 25       | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L) | MW-3 (       | bg)             | 0.006876    |         | 97        | 105          | No     | 24        | 25       | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L) | MW-4 (       | bg)             | -0.00009099 |         | -6        | -105         | No     | 24        | 4.167    | n/a       | n/a          | 0.01         | NP     |
| pH (pH)      | MW-1 (       | bg)             | -0.01437    |         | -88       | -105         | No     | 24        | 0        | n/a       | n/a          | 0.01         | NP     |
| pH (pH)      | MW-13        | (bg)            | 0.03035     |         | 54        | 68           | No     | 18        | 0        | n/a       | n/a          | 0.01         | NP     |
| pH (pH)      | MW-14        | (bg)            | 0           |         | 4         | 68           | No     | 18        | 0        | n/a       | n/a          | 0.01         | NP     |
| pH (pH)      | MW-15        | (bg)            | -0.005313   |         | -31       | -68          | No     | 18        | 0        | n/a       | n/a          | 0.01         | NP     |
| pH (pH)      | MW-2 (       | bg)             | 0.04162     |         | 102       | 105          | No     | 24        | 0        | n/a       | n/a          | 0.01         | NP     |
| pH (pH)      | MW-3 (       | bg)             | -0.01603    |         | -16       | -111         | No     | 25        | 0        | n/a       | n/a          | 0.01         | NP     |
| pH (pH)      | MW-4 (       | bg)             | 0.01244     |         | 57        | 111          | No     | 25        | 0        | n/a       | n/a          | 0.01         | NP     |

# Intrawell Prediction Limits - Significant Results Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 11/12/2021, 10:06 AM

|                 | F     | Plant Gorgas | Client: So | uthern Comp | oany Data | : Gorga | as Gy | psum Landfil | I Printed 11 | /12/2021, | 10:06 AM |           |          |                             |
|-----------------|-------|--------------|------------|-------------|-----------|---------|-------|--------------|--------------|-----------|----------|-----------|----------|-----------------------------|
| Constituent     | Well  | Upper Lim.   | Lower Lim. | <u>Date</u> | Observ.   | Sig.    | Bg N  | Bg Mean      | Std. Dev.    | %NDs      | ND Adj.  | Transform | n Alpha  | Method                      |
| Chloride (mg/L) | MW-14 | 2.494        | n/a        | 7/20/2021   | 3.65      | Yes     | 16    | 1.721        | 0.3723       | 6.25      | None     | No        | 0.00188  | Param Intra 1 of 2          |
| Chloride (mg/L) | MW-15 | 2.077        | n/a        | 7/20/2021   | 3.16      | Yes     | 16    | 1.384        | 0.3337       | 6.25      | None     | No        | 0.00188  | Param Intra 1 of 2          |
| Chloride (mg/L) | MW-20 | 7.306        | n/a        | 7/21/2021   | 67.9      | Yes     | 8     | 4.393        | 1.114        | 0         | None     | No        | 0.00188  | Param Intra 1 of 2          |
| Fluoride (mg/L) | MW-13 | 0.2401       | n/a        | 7/20/2021   | 0.323     | Yes     | 17    | 0.206        | 0.01659      | 0         | None     | No        | 0.00188  | Param Intra 1 of 2          |
| Fluoride (mg/L) | MW-16 | 0.1913       | n/a        | 7/21/2021   | 0.201     | Yes     | 17    | 0.1688       | 0.01092      | 0         | None     | No        | 0.00188  | Param Intra 1 of 2          |
| Fluoride (mg/L) | MW-18 | 0.3364       | n/a        | 7/21/2021   | 0.348     | Yes     | 17    | 0.3042       | 0.01568      | 0         | None     | No        | 0.00188  | Param Intra 1 of 2          |
| Fluoride (mg/L) | MW-19 | 0.35         | n/a        | 7/21/2021   | 0.429     | Yes     | 17    | n/a          | n/a          | 0         | n/a      | n/a       | 0.005914 | NP Intra (normality) 1 of 2 |
| Fluoride (mg/L) | MW-20 | 0 1424       | n/a        | 7/21/2021   | 0 143     | Yes     | 17    | 0 1222       | 0.00982      | 0         | None     | No        | 0.00188  | Param Intra 1 of 2          |

#### Intrawell Prediction Limits - All Results

Client: Southern Company Data: Gorgas Gypsum Landfill Constituent Well Std. Dev. <u>%NDs</u> ND Adj. Transform Alpha Lower Lim. Date Sig. Method Calcium (mg/L) MW-1 243 n/a 7/12/2021 149 Nο 23 n/a n/a 0 n/a n/a 0.003415 NP Intra (normality) 1 of 2 Calcium (mg/L) MW-13 359.5 n/a 7/20/2021 262 Nο 16 296 1 30.55 0 None Nο 0.00188 Param Intra 1 of 2 Calcium (mg/L) MW-14 361.2 n/a 7/20/2021 316 No 16 325.4 17.27 0 None No 0.00188 Param Intra 1 of 2 n Calcium (mg/L) MW-15 306.6 n/a 7/20/2021 274 Nο 16 274 15 71 None Nο 0.00188 Param Intra 1 of 2 Calcium (mg/L) MW-16 337.7 n/a 7/21/2021 295 No 16 306.4 15.11 0 None No 0.00188 Param Intra 1 of 2 Calcium (mg/L) MW-18 375.9 n/a 7/21/2021 289 No 16 327.9 23.09 0 None No 0.00188 Param Intra 1 of 2 MW-19 7/21/2021 0.00188 Calcium (mg/L) 419.3 n/a 332 No 16 355.4 30.77 0 None No Param Intra 1 of 2 MW-2 159 23 174.2 0 0.00188 Calcium (mg/L) 214.8 n/a 7/12/2021 No 20.8 None No Param Intra 1 of 2 7/21/2021 16 358.9 0 0.00188 Calcium (mg/L) MW-20 405.3 n/a 336 No 22.33 None No Param Intra 1 of 2 252 0 Calcium (mg/L) MW-3 416 7/12/2021 23 300 59.54 0.00188 Param Intra 1 of 2 n/a No None No 0.00188 Calcium (mg/L) MW-4 386.1 n/a 7/12/2021 242 No 23 304.8 41.68 0 None No Param Intra 1 of 2 MW-1 2.19 23 0 Chloride (ma/L) 3.101 n/a 7/12/2021 1.518 0.1248 sart(x) 0.00188 Param Intra 1 of 2 No None 7/20/2021 1.953 0 0.00188 Chloride (mg/L) MW-13 2.701 n/a 1.7 No 16 0.3604 None No Param Intra 1 of 2 Chloride (ma/L) MW-14 2.494 7/20/2021 3.65 1.721 0.3723 0.00188 Param Intra 1 of 2 n/a Yes 16 6.25 None No 7/20/2021 Chloride (mg/L) MW-15 2.077 3.16 1.384 0.3337 0.00188 Param Intra 1 of 2 n/a Yes 16 6.25 None No MW-16 4.72 7/21/2021 2.97 0.4887 0 0.00188 Chloride (mg/L) n/a 16 3.706 No Param Intra 1 of 2 No None MW-18 3.031 7/21/2021 16 1.269 0.00188 Chloride (mg/L) n/a 1.4 No 0.2275 6.25 sqrt(x) Param Intra 1 of 2 None MW-19 3.131 7/21/2021 1.74 16 2.216 0.4406 0 0.00188 Param Intra 1 of 2 Chloride (mg/L) n/a No No None Chloride (mg/L) MW-2 4.893 n/a 7/12/2021 2.36 No 23 3.3 0.8175 0 No 0.00188 Param Intra 1 of 2 None Chloride (mg/L) MW-20 7.306 7/21/2021 67.9 Yes 1.114 0 None No 0.00188 Param Intra 1 of 2 n/a Chloride (mg/L) MW-3 2.316 7/12/2021 2.13 No 23 1.576 0.3795 8.696 None No 0.00188 Param Intra 1 of 2 n/a Chloride (mg/L) MW-4 2.419 n/a 7/12/2021 1.56 No 1.811 0.3119 None No 0.00188 Param Intra 1 of 2 Fluoride (mg/L) MW-1 0.1878 7/12/2021 0.125 No 24 0.03644 0 No 0.00188 None Fluoride (mg/L) MW-13 0.2401 n/a 7/20/2021 0.323 17 0.206 0.01659 0 None No 0.00188 Param Intra 1 of 2 0.2455 Fluoride (mg/L) MW-14 0.2847 7/20/2021 0.276 No 17 0.01912 0 None No 0.00188 Param Intra 1 of 2 MW-15 0.4037 7/20/2021 0.288 0.3459 0.02812 0 0.00188 Fluoride (mg/L) n/a No 17 None No Param Intra 1 of 2 7/21/2021 0.201 Fluoride (mg/L) MW-16 0.1913 n/a 17 0.1688 0.01092 0 No 0.00188 Param Intra 1 of 2 Fluoride (mg/L) MW-18 0.3364 7/21/2021 0.348 0.3042 0.01568 0 No 0.00188 n/a 17 None Param Intra 1 of 2 7/21/2021 Fluoride (mg/L) MW-19 0.35 0.429 0 n/a 0.005914 NP Intra (normality) 1 of 2 n/a 17 n/a Fluoride (mg/L) MW-2 0.2528 n/a 7/12/2021 0.196 24 0.1456 0.05538 0 None No 0.00188 Param Intra 1 of 2 No 0.1424 n/a Fluoride (mg/L) MW-20 7/21/2021 0.143 17 0.1222 0.00982 0 No 0.00188 Param Intra 1 of 2 Yes None Fluoride (mg/L) Param Intra 1 of 2 MW-3 0.5886 n/a 7/12/2021 0.287 No 24 0.3299 0.1336 0 None No 0.00188 0.03425 Fluoride (mg/L) MW-4 0.4215 n/a 7/12/2021 0.35 No 24 0.1114 0 None x^2 0.00188 Param Intra 1 of 2 Sulfate (mg/L) MW-1 1665 n/a 7/12/2021 1560 No 22 1461 104.1 0 None No 0.00188 Param Intra 1 of 2 Sulfate (mg/L) MW-13 2396 n/a 7/20/2021 1560 No 16 1849 263.6 0 None Nο 0.00188 Param Intra 1 of 2 Sulfate (mg/L) MW-14 2339 n/a 7/20/2021 1830 No 16 1919 201.9 0 None Nο 0.00188 Param Intra 1 of 2 MW-15 1700 16 175.1 0 Sulfate (mg/L) 2007 n/a 7/20/2021 No 1643 None No 0.00188 Param Intra 1 of 2 MW-16 1370 0 0.006456 Sulfate (mg/L) 1700 n/a 7/21/2021 Nο 16 n/a n/a n/a n/a NP Intra (normality) 1 of 2 Sulfate (mg/L) MW-18 2089 n/a 7/21/2021 1650 No 16 1844 118 0 None No 0.00188 Param Intra 1 of 2 Sulfate (mg/L) MW-19 7/21/2021 1990 16 2109 0 0.00188 Param Intra 1 of 2 2546 n/a No 210.4 None No MW-2 1274 0 Sulfate (mg/L) 7/12/2021 763 23 997.8 141.7 0.00188 Param Intra 1 of 2 n/a No None No 7/21/2021 0 0.00188 Sulfate (mg/L) MW-20 1868 n/a 1480 No 16 39.59 1.75 None sart(x) Param Intra 1 of 2 MW-3 0 3272 7/12/2021 2380 23 2451 421.1 0.00188 Param Intra 1 of 2 Sulfate (mg/L) n/a No No None Sulfate (mg/L) MW-4 7/12/2021 1930 23 0 0.00188 3143 2511 Param Intra 1 of 2 n/a No 324 None No MW-1 2210 0 Total Dissolved Solids (mg/L) 2519 n/a 7/12/2021 No 22 2197 164 None No 0.00188 Param Intra 1 of 2 Total Dissolved Solids (mg/L) MW-13 3738 7/20/2021 2520 16 2974 0 No 0.00188 Param Intra 1 of 2 n/a No 367.6 None Total Dissolved Solids (mg/L) MW-14 3436 7/20/2021 2990 16 3139 143.4 0 0.00188 n/a No Param Intra 1 of 2 No None Total Dissolved Solids (mg/L) MW-15 2846 7/20/2021 2600 16 2628 105.4 0 No 0.00188 Param Intra 1 of 2 n/a No None Total Dissolved Solids (mg/L) MW-16 2531 7/21/2021 2290 16 2361 81.64 0 No 0.00188 Param Intra 1 of 2 n/a None No Total Dissolved Solids (mg/L) MW-18 3492 n/a 7/21/2021 2620 16 3004 235.1 0 No 0.00188 Param Intra 1 of 2 No None

### Intrawell Prediction Limits - All Results

|                               | F     | Plant Gorgas | Client: So | uthern Comp | oany Data | : Gorg | as Gy | psum Landfi | II Printed 11 | /12/2021, | 10:06 AM |           |                |                    |
|-------------------------------|-------|--------------|------------|-------------|-----------|--------|-------|-------------|---------------|-----------|----------|-----------|----------------|--------------------|
| Constituent                   | Well  | Upper Lim.   | Lower Lim. | <u>Date</u> | Observ.   | Sig.   | Bg N  | N Bg Mean   | Std. Dev.     | %NDs      | ND Adj.  | Transforn | n <u>Alpha</u> | Method             |
| Total Dissolved Solids (mg/L) | MW-19 | 4278         | n/a        | 7/21/2021   | 3130      | No     | 16    | 3331        | 456.4         | 0         | None     | No        | 0.00188        | Param Intra 1 of 2 |
| Total Dissolved Solids (mg/L) | MW-2  | 2021         | n/a        | 7/12/2021   | 1390      | No     | 23    | 1643        | 193.7         | 0         | None     | No        | 0.00188        | Param Intra 1 of 2 |
| Total Dissolved Solids (mg/L) | MW-20 | 2756         | n/a        | 7/21/2021   | 2320      | No     | 16    | 2574        | 87.48         | 0         | None     | No        | 0.00188        | Param Intra 1 of 2 |
| Total Dissolved Solids (mg/L) | MW-3  | 5051         | n/a        | 7/12/2021   | 3510      | No     | 23    | 3729        | 678.1         | 0         | None     | No        | 0.00188        | Param Intra 1 of 2 |
| Total Dissolved Solids (mg/L) | MW-4  | 4600         | n/a        | 7/12/2021   | 3000      | No     | 23    | 1.5e7       | 3201096       | 0         | None     | x^2       | 0.00188        | Param Intra 1 of 2 |

## Interwell Prediction Limit - Significant Results

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 11/12/2021, 10:15 AM

| Constituent | Well  | Upper Lin | n. Lower Lim | n. Date   | Observ. | Sig. | Bg N Bg Mean | Std. Dev. | <u>%NDs</u> | ND Adj. | Transfo | rm Alpha  | Method                |
|-------------|-------|-----------|--------------|-----------|---------|------|--------------|-----------|-------------|---------|---------|-----------|-----------------------|
| pH (pH)     | MW-20 | 6.59      | 3.77         | 7/21/2021 | 6.6     | Yes  | 152 n/a      | n/a       | 0           | n/a     | n/a     | 0.0001717 | NP (normality) 1 of 2 |

#### Interwell Prediction Limit - All Results

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 11/12/2021, 10:15 AM Well Sig. Bg N Bg Mean Std. Dev. %NDs ND Adj. Constituent Upper Lim. Lower Lim. Date Observ. Transform Alpha Method MW-16 Boron (mg/L) 0.0673 n/a 7/21/2021 0.0437J No 147 n/a n/a 15.65 n/a n/a 0.00009162 NP (normality) 1 of 2 Boron (mg/L) MW-18 0.0673 n/a 7/21/2021 0.0318J No 147 n/a n/a 15.65 n/a 0.00009162 NP (normality) 1 of 2 n/a NP (normality) 1 of 2 Boron (mg/L) MW-19 7/21/2021 0.035J 0.0673 n/a 147 n/a n/a 15.65 n/a 0.00009162 n/a Boron (mg/L) MW-20 0.0673 n/a 7/21/2021 0.0999J No 147 n/a n/a 15.65 n/a n/a 0.00009162 NP (normality) 1 of 2 NP (normality) 1 of 2 pH (pH) MW-16 7/21/2021 6.24 No 152 n/a 0 0.0001717 6.59 3.77 n/a n/a n/a pH (pH) MW-18 6.59 3.77 7/21/2021 6.33 No 152 n/a 0 0.0001717 NP (normality) 1 of 2 n/a n/a n/a MW-19 6.59 3.77 7/21/2021 6.23 0 0.0001717 NP (normality) 1 of 2 pH (pH) No 152 n/a n/a n/a n/a MW-20 NP (normality) 1 of 2 pH (pH) 6.59 3.77 7/21/2021 6.6 Yes 152 n/a 0 n/a n/a 0.0001717 n/a

# Trend Test Summary - Prediction Limit Exceedances - Significant Results

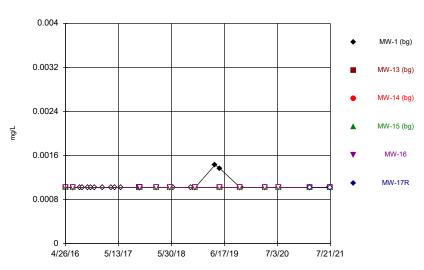
|                 | Plant Gorgas Client: South | nern Company | Data: Goro | as Gypsum       | n Landfill | Print       | ted 11/1 | 17/2021, | 5:16 PM   |              |              |        |
|-----------------|----------------------------|--------------|------------|-----------------|------------|-------------|----------|----------|-----------|--------------|--------------|--------|
| Constituent     | Well                       | Slope        | Cal        | c. <u>Criti</u> | ical Sig   | <u>g. 1</u> | N        | %NDs     | Normality | <u>Xform</u> | <u>Alpha</u> | Method |
| Boron (mg/L)    | MW-2 (bg)                  | 0.004722     | 127        | 105             | Ye         | es 2        | 24       | 25       | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | MW-20                      | 22.22        | 114        | 63              | Ye         | s 1         | 17       | 0        | n/a       | n/a          | 0.01         | NP     |
| Fluoride (mg/L) | MW-14 (bg)                 | -0.009622    | -76        | -68             | Ye         | s 1         | 18       | 0        | n/a       | n/a          | 0.01         | NP     |
| Fluoride (mg/L) | MW-15 (bg)                 | -0.01808     | -88        | -68             | Ye         | s 1         | 18       | 0        | n/a       | n/a          | 0.01         | NP     |
| Fluoride (mg/L) | MW-2 (bg)                  | 0.01443      | 123        | 111             | Ye         | es 2        | 25       | 0        | n/a       | n/a          | 0.01         | NP     |

# Trend Test Summary - Prediction Limit Exceedances - All Results

|                 | Plant Gorgas | Client: Souther | n Company | Data: | Gorgas Gy | psum Landf | ill Pri | nted 11/ | 17/2021, | 5:16 PM   |       |              |        |
|-----------------|--------------|-----------------|-----------|-------|-----------|------------|---------|----------|----------|-----------|-------|--------------|--------|
| Constituent     | Well         |                 | Slope     |       | Calc.     | Critical   | Sig.    | <u>N</u> | %NDs     | Normality | Xform | <u>Alpha</u> | Method |
| Boron (mg/L)    | MW-1 (bg     | 3)              | 0.003051  |       | 93        | 105        | No      | 24       | 29.17    | n/a       | n/a   | 0.01         | NP     |
| Boron (mg/L)    | MW-13 (b     | og)             | 0.0004143 |       | 10        | 63         | No      | 17       | 5.882    | n/a       | n/a   | 0.01         | NP     |
| Boron (mg/L)    | MW-14 (b     | og)             | 0.0006368 |       | 23        | 63         | No      | 17       | 5.882    | n/a       | n/a   | 0.01         | NP     |
| Boron (mg/L)    | MW-15 (b     | og)             | 0.0008575 |       | 30        | 63         | No      | 17       | 5.882    | n/a       | n/a   | 0.01         | NP     |
| Boron (mg/L)    | MW-2 (bg     | 3)              | 0.004722  |       | 127       | 105        | Yes     | 24       | 25       | n/a       | n/a   | 0.01         | NP     |
| Boron (mg/L)    | MW-20        |                 | 0.0003207 |       | 8         | 63         | No      | 17       | 0        | n/a       | n/a   | 0.01         | NP     |
| Boron (mg/L)    | MW-3 (bg     | g)              | 0.002231  |       | 69        | 105        | No      | 24       | 25       | n/a       | n/a   | 0.01         | NP     |
| Boron (mg/L)    | MW-4 (bg     | g)              | -0.000257 |       | -17       | -98        | No      | 23       | 0        | n/a       | n/a   | 0.01         | NP     |
| Chloride (mg/L) | MW-1 (bg     | <b>j</b> )      | -0.0204   |       | -17       | -105       | No      | 24       | 0        | n/a       | n/a   | 0.01         | NP     |
| Chloride (mg/L) | MW-13 (b     | og)             | -0.04562  |       | -17       | -63        | No      | 17       | 0        | n/a       | n/a   | 0.01         | NP     |
| Chloride (mg/L) | MW-14 (b     | og)             | 0.05226   |       | 14        | 63         | No      | 17       | 5.882    | n/a       | n/a   | 0.01         | NP     |
| Chloride (mg/L) | MW-15 (b     | og)             | 0.1318    |       | 38        | 63         | No      | 17       | 5.882    | n/a       | n/a   | 0.01         | NP     |
| Chloride (mg/L) | MW-2 (bg     | 3)              | -0.05131  |       | -15       | -105       | No      | 24       | 0        | n/a       | n/a   | 0.01         | NP     |
| Chloride (mg/L) | MW-20        |                 | 22.22     |       | 114       | 63         | Yes     | 17       | 0        | n/a       | n/a   | 0.01         | NP     |
| Chloride (mg/L) | MW-3 (bg     | 3)              | 0.06882   |       | 59        | 105        | No      | 24       | 8.333    | n/a       | n/a   | 0.01         | NP     |
| Chloride (mg/L) | MW-4 (bg     | 3)              | -0.06862  |       | -70       | -105       | No      | 24       | 4.167    | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-1 (bg     | 3)              | -0.006304 |       | -46       | -111       | No      | 25       | 0        | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-13 (b     | og)             | 0         |       | -9        | -68        | No      | 18       | 0        | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-14 (b     | og)             | -0.009622 |       | -76       | -68        | Yes     | 18       | 0        | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-15 (b     | og)             | -0.01808  |       | -88       | -68        | Yes     | 18       | 0        | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-16        |                 | -0.003207 |       | -40       | -68        | No      | 18       | 0        | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-18        |                 | -0.00614  |       | -61       | -68        | No      | 18       | 0        | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-19        |                 | 0.0007264 |       | 16        | 68         | No      | 18       | 0        | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-2 (bg     | <b>j</b> )      | 0.01443   |       | 123       | 111        | Yes     | 25       | 0        | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-20        |                 | -0.001184 |       | -26       | -68        | No      | 18       | 0        | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-3 (bg     | g)              | -0.007263 |       | -15       | -111       | No      | 25       | 0        | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-4 (bg     | g)              | 0.005907  |       | 41        | 111        | No      | 25       | 0        | n/a       | n/a   | 0.01         | NP     |
| pH (pH)         | MW-1 (bg     | g)              | -0.01437  |       | -88       | -105       | No      | 24       | 0        | n/a       | n/a   | 0.01         | NP     |
| pH (pH)         | MW-13 (b     | og)             | 0.03035   |       | 54        | 68         | No      | 18       | 0        | n/a       | n/a   | 0.01         | NP     |
| pH (pH)         | MW-14 (b     | og)             | 0         |       | 4         | 68         | No      | 18       | 0        | n/a       | n/a   | 0.01         | NP     |
| pH (pH)         | MW-15 (b     | og)             | -0.005313 |       | -31       | -68        | No      | 18       | 0        | n/a       | n/a   | 0.01         | NP     |
| pH (pH)         | MW-2 (bg     | <b>j</b> )      | 0.04162   |       | 102       | 105        | No      | 24       | 0        | n/a       | n/a   | 0.01         | NP     |
| pH (pH)         | MW-20        |                 | -0.01053  |       | -39       | -68        | No      | 18       | 0        | n/a       | n/a   | 0.01         | NP     |
| pH (pH)         | MW-3 (bg     | g)              | -0.008517 |       | -8        | -105       | No      | 24       | 0        | n/a       | n/a   | 0.01         | NP     |
| pH (pH)         | MW-4 (bg     | 3)              | 0.01244   |       | 57        | 111        | No      | 25       | 0        | n/a       | n/a   | 0.01         | NP     |

# Upper Tolerance Limits Summary Table

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 11/18/2021, 9:51 AM Upper Lim. Bg N Bg Mean Std. Dev. %NDs ND Adj. Transform Method Constituent <u>Alpha</u> 0.00143 147 n/a 95.92 n/a 0.0005313 NP Inter Antimony (mg/L) n/a n/a 0.0005313 0.005 147 n/a 74.83 NP Inter Arsenic (mg/L) n/a n/a n/a Barium (mg/L) 0.0165 147 n/a 0 n/a 0.0005313 NP Inter n/a n/a 0.0005887 Beryllium (mg/L) 0.0121 145 n/a 89.66 n/a n/a NP Inter Cadmium (mg/L) 0.00598 0.0005887 NP Inter 145 n/a n/a 64.14 n/a n/a 0.0105 91.84 0.0005313 NP Inter Chromium (mg/L) 147 n/a n/a n/a Cobalt (mg/L) 0.49 17.24 0.0005887 NP Inter 145 n/a n/a n/a n/a Combined Radium 226 + 228 (pCi/L) 1.91 142 0 n/a 0.0006867 NP Inter 0.63 Fluoride (mg/L) n/a 0 n/a 0.0003711 NP Inter 154 n/a n/a Lead (mg/L) 0.00692 147 n/a 95.92 n/a 0.0005313 NP Inter NP Inter Lithium (mg/L) 0.419 0.6803 0.0005313 147 n/a n/a n/a n/a Mercury (mg/L) 0.0005 147 100 n/a 0.0005313 NP Inter 0.000933 94.56 0.0005313 NP Inter Molybdenum (mg/L) 147 n/a n/a n/a n/a Selenium (mg/L) 0.0209 147 n/a 70.07 n/a 0.0005313 NP Inter Thallium (mg/L) 0.000226 147 n/a 97.96 0.0005313 NP Inter n/a n/a n/a


| GORGAS GYPSUM LANDFILL GWPS    |       |           |            |       |  |  |  |  |  |  |  |
|--------------------------------|-------|-----------|------------|-------|--|--|--|--|--|--|--|
|                                |       | Federally |            |       |  |  |  |  |  |  |  |
| Constituent Name               | MCL   | Derived   | Background | GWPS  |  |  |  |  |  |  |  |
| Antimony, Total (mg/L)         | 0.006 |           | 0.00143    | 0.006 |  |  |  |  |  |  |  |
| Arsenic, Total (mg/L)          | 0.01  |           | 0.005      | 0.01  |  |  |  |  |  |  |  |
| Barium, Total (mg/L)           | 2     |           | 0.0165     | 2     |  |  |  |  |  |  |  |
| Beryllium, Total (mg/L)        | 0.004 |           | 0.0121     | 0.004 |  |  |  |  |  |  |  |
| Cadmium, Total (mg/L)          | 0.005 |           | 0.00598    | 0.005 |  |  |  |  |  |  |  |
| Chromium, Total (mg/L)         | 0.1   |           | 0.0105     | 0.1   |  |  |  |  |  |  |  |
| Cobalt, Total (mg/L)           | n/a   | 0.006     | 0.49       | 0.49  |  |  |  |  |  |  |  |
| Combined Radium, Total (pCi/L) | 5     |           | 1.91       | 5     |  |  |  |  |  |  |  |
| Fluoride, Total (mg/L)         | 4     |           | 0.63       | 4     |  |  |  |  |  |  |  |
| Lead, Total (mg/L)             | 0.015 |           | 0.00692    | 0.015 |  |  |  |  |  |  |  |
| Lithium, Total (mg/L)          | n/a   | 0.04      | 0.419      | 0.419 |  |  |  |  |  |  |  |
| Mercury, Total (mg/L)          | 0.002 |           | 0.0005     | 0.002 |  |  |  |  |  |  |  |
| Molybdenum, Total (mg/L)       | n/a   | 0.1       | 0.000933   | 0.1   |  |  |  |  |  |  |  |
| Selenium, Total (mg/L)         | 0.05  |           | 0.0209     | 0.05  |  |  |  |  |  |  |  |
| Thallium, Total (mg/L)         | 0.002 |           | 0.000226   | 0.002 |  |  |  |  |  |  |  |

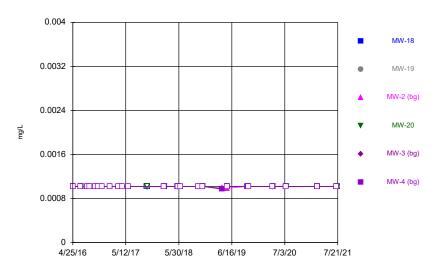
#### Appendix IV Confidence Intervals - All Results (No Significant)

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 11/12/2021, 11:37 AM Constituent Well Upper Lim. Compliance Sig. N <u>Mean</u> Std. Dev. %NDs ND Adj. Transform Alpha Method MW-16 0.003611 0.002669 0.01 No 8 0.00314 0.0004446 0 No 0.01 Param. Arsenic (mg/L) None 0.002224 Arsenic (mg/L) MW-19 0.005 0.00018 0.01 No 8 0.003799 75 None No 0.004 NP (normality) MW-20 0.005 0.00084 0.01 0.003497 0.002078 0.004 NP (normality) Arsenic (ma/L) No 8 62.5 No None Barium (mg/L) MW-16 0.01384 0.01196 2 No 8 0.0129 0.0008864 0 No 0.01 Param. Barium (mg/L) MW-18 0.0109 0.009331 2 No 8 0.01012 0.0007395 0 No 0.01 Param. None Barium (mg/L) MW-19 0.01097 0.009209 No 8 0.01009 0.0008299 None No 0.01 Param. Barium (mg/L) MW-20 0.01809 0.01474 2 No 8 0.01641 0.001582 0 0.01 Param. None No Chromium (mg/L) MW-20 0.00312 0.00102 0.1 No 8 0.001282 0.0007425 87.5 None 0.004 NP (NDs) 0.008691 8 0.009835 0.001079 Cobalt (mg/L) MW-16 0.01098 0.49 Nο 0 None No 0.01 Param Cobalt (mg/L) MW-18 0.0002 0.0002 0.49 No 0.0002 None 0.004 NP (NDs) Cobalt (mg/L) MW-19 0.06707 0.02568 0.49 Nο 8 0.04638 0.01 Param. 0.01952 0 None No Cobalt (mg/L) MW-20 0.000234 0.0002 0.49 No 8 0.000208 0.00001485 75 0.004 NP (normality) Combined Radium 226 + 228 (pCi/L) MW-16 8 0.7109 0.5886 0.004 NP (normality) 2.13 0.292 No 0 None No Combined Radium 226 + 228 (pCi/L) 0.5886 0.04386 No 0.3163 0.257 Combined Radium 226 + 228 (pCi/L) MW-19 0.6877 0.2898 Nο 8 0.4888 0 1877 0 None Nο 0.01 Param Combined Radium 226 + 228 (pCi/L) 1.283 0.5067 No 0.8949 0.3662 0 0.01 None Fluoride (mg/L) MW-16 0.1852 0.1466 No 8 0.1659 0.01819 0 None No 0.01 Param. Fluoride (mg/L) MW-18 0.3239 0.2728 No 8 0.2984 0.02409 No 0.01 Param. None Fluoride (mg/L) MW-19 0.3797 0.2728 4 No 8 0.3263 0.05044 0 None No 0.01 Param. Fluoride (mg/L) MW-20 0.1325 0.105 No 8 0.1188 0.013 0 None No 0.01 Param. Lead (mg/L) MW-20 0.00686 0.0002 0.015 No 8 0.001032 0.002355 87.5 None No 0.004 NP (NDs) Lithium (mg/L) MW-16 0.01993 0.0174 0.419 8 0.01866 0.001193 Param. No 12.5 None No 0.01 Lithium (mg/L) MW-18 0.06607 0.05795 0.419 No 8 0.06201 0.003831 0 No 0.01 Param. Lithium (mg/L) MW-19 0.07197 0.05513 0.419 No 8 0.06355 0.007946 0 None No 0.01 Param. Lithium (mg/L) MW-20 0.2659 0.2398 0.419 No 8 0.2529 0.01233 None No 0.01 Param. Molybdenum (mg/L) MW-16 0.01 0.00043 0.1 Nο 8 0.007614 0.004417 None No 0.004 NP (normality) 75 Molybdenum (mg/L) MW-18 0.01 0.0001 0.1 No 8 0.007527 0.004578 75 No 0.004 NP (normality) 0.007551 0.004535 0.004 NP (normality) Molybdenum (mg/L) MW-19 0.01 0.000197 No 8 75 0.1 No None Molybdenum (mg/L) MW-20 0.01 0.00101 0.1 No 8 0.007761 0.004145 75 No 0.004 NP (normality) 8 0.004 NP (normality) Selenium (mg/L) MW-18 0.01 0.00243 No 0.003839 0.002524 0.05 12.5 None No

# FIGURE A.






Constituent: Antimony Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

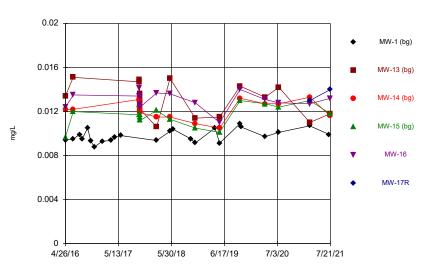
## Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

#### Time Series 0.005 MW-1 (bg) 0.004 MW-13 (bg) MW-14 (bg) 0.003 MW-15 (bg) mg/L 0.002 MW-16 MW-17R 0.001 <del>™</del>∞∞∞∞ 4/26/16 5/13/17 5/30/18 6/17/19 7/3/20 7/21/21

Constituent: Arsenic Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### Time Series




Constituent: Antimony Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

## Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

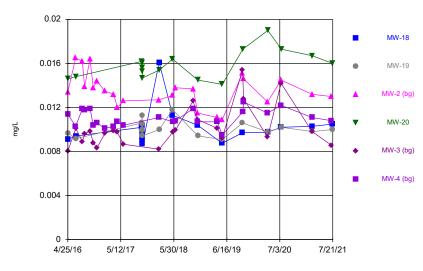
#### Time Series 0.005 MW-18 0.004 MW-19 MW-2 (bg) 0.003 MW-20 mg/L 0.002 MW-3 (bg) MW-4 (bg) 0.001 0 4/25/16 5/12/17 5/30/18 6/16/19 7/3/20 7/21/21

Constituent: Arsenic Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill





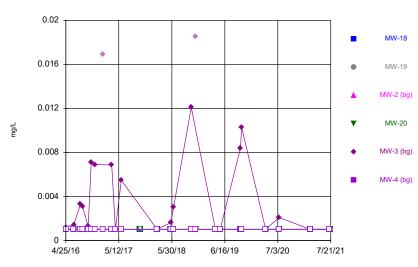
Constituent: Barium Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Time Series

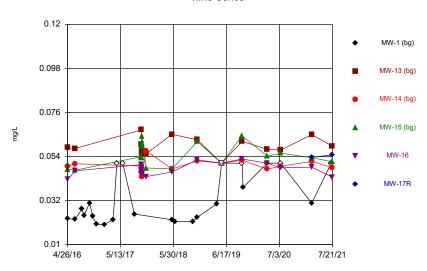
## Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

#### 0.02 MW-1 (bg) 0.016 MW-13 (bg) MW-14 (bg) 0.012 MW-15 (bg) mg/L 0.008 MW-16 MW-17R 0.004 0 4/26/16 5/13/17 5/30/18 6/17/19 7/3/20 7/21/21

Constituent: Beryllium Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


#### Time Series




Constituent: Barium Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

## Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

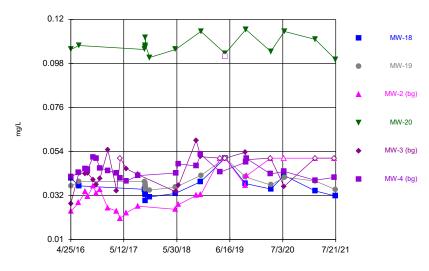
#### Time Series



Constituent: Beryllium Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



Constituent: Boron Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Time Series

## Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

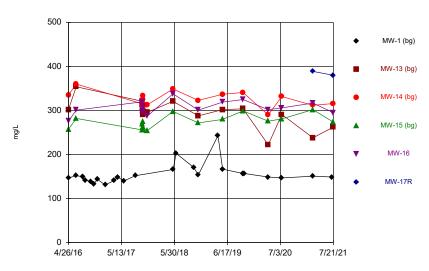
#### 0.02 MW-1 (bg) 0.016 MW-13 (bg) MW-14 (bg) 0.012 MW-15 (bg) mg/L 0.008 MW-16 MW-17R 0.004 4/26/16 5/13/17 5/30/18 6/17/19 7/3/20 7/21/21

Constituent: Cadmium Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### Time Series

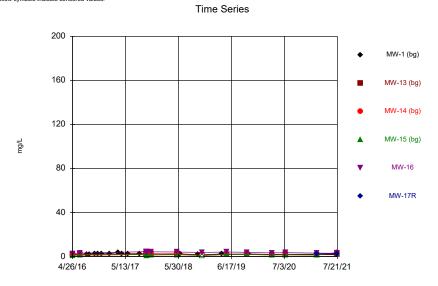


Constituent: Boron Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Time Series

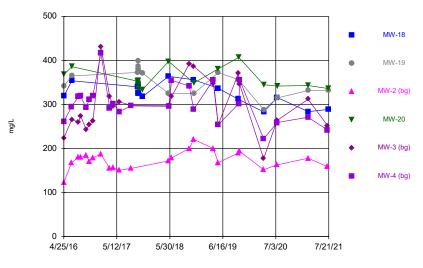
## Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

#### 0.02 MW-18 0.016 MW-19 MW-2 (bg) 0.012 MW-20 mg/L 0.008 MW-3 (bg) MW-4 (bg) 0.004 5/30/18 4/25/16 5/12/17 6/16/19 7/3/20 7/21/21


Constituent: Cadmium Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



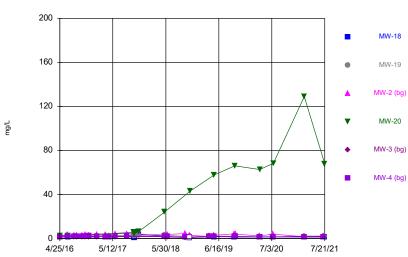



Constituent: Calcium Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

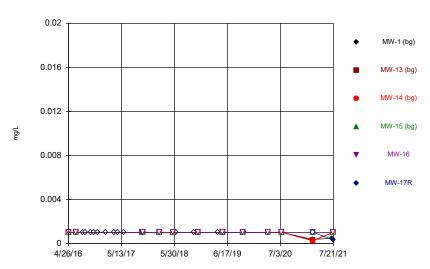
## Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Chloride Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


#### Time Series

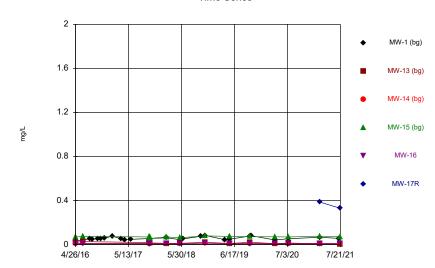



Constituent: Calcium Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

## Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

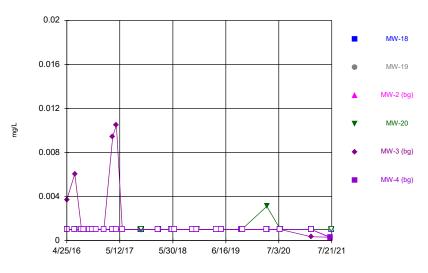
## Time Series




Constituent: Chloride Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



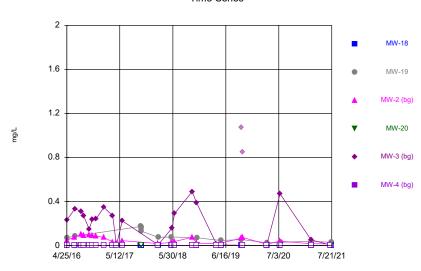
Constituent: Chromium Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


#### ${\sf Sanitas^{\sf TM}} \ v. 9. 6.30 f \ {\sf Sanitas} \ {\sf software} \ {\sf utilized} \ {\sf by} \ {\sf Groundwater} \ {\sf Stats} \ {\sf Consulting}. \ {\sf UG}$

#### Time Series

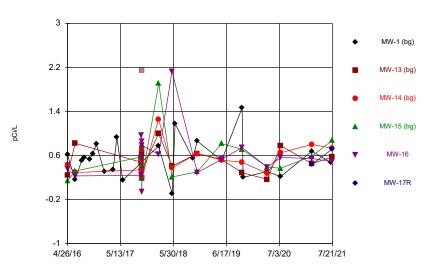


Constituent: Cobalt Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


#### Time Series



Constituent: Chromium Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


## Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

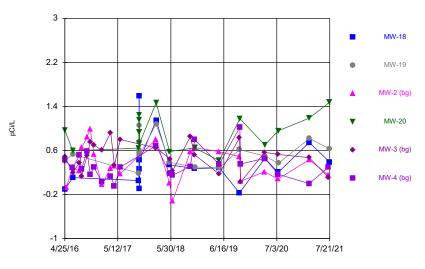
#### Time Series



Constituent: Cobalt Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



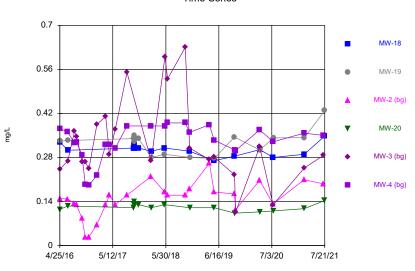



Constituent: Combined Radium 226 + 228 Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

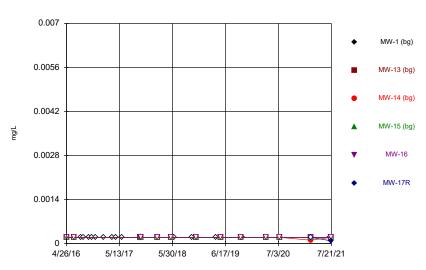
#### 0.7 MW-1 (bg) 0.56 MW-13 (bg) MW-14 (bg) 0.42 MW-15 (bg) mg/L 0.28 MW-16 MW-17R 0.14 4/26/16 5/13/17 5/30/18 6/17/19 7/3/20 7/21/21

Constituent: Fluoride Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


#### Time Series



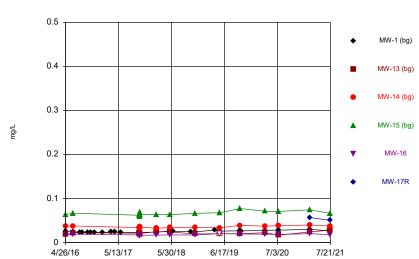
Constituent: Combined Radium 226 + 228 Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


#### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

#### Time Series



Constituent: Fluoride Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill





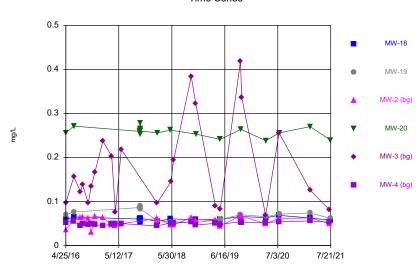

Constituent: Lead Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

#### Time Series



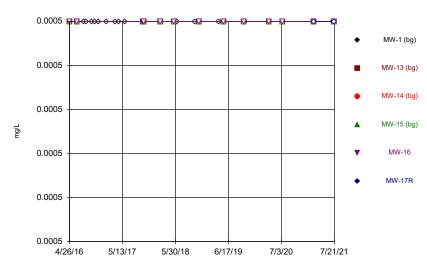
Constituent: Lithium Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG


#### Time Series

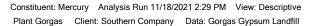


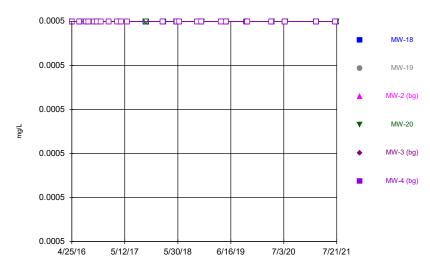
Constituent: Lead Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG


#### Time Series

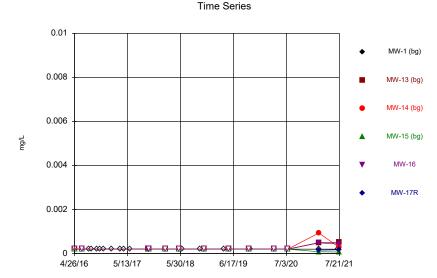



Constituent: Lithium Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


#### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

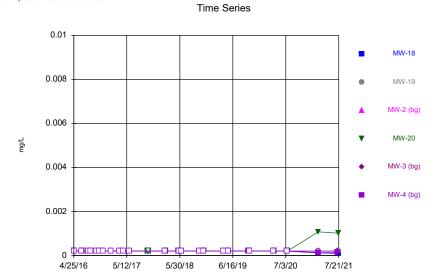
#### Time Series




Time Series



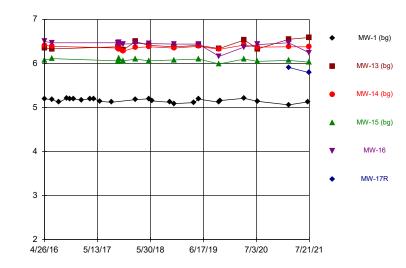



Constituent: Mercury Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

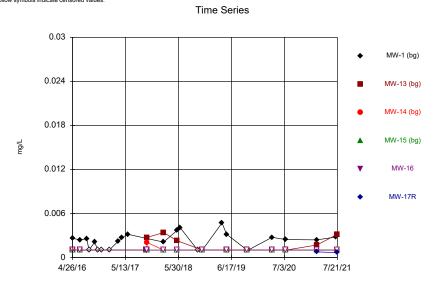


Constituent: Molybdenum Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

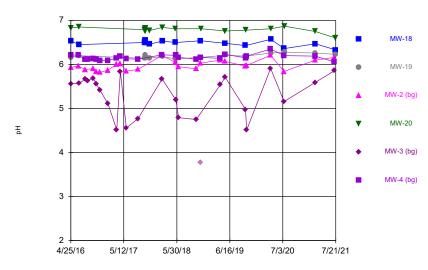


Constituent: Molybdenum Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Ħ

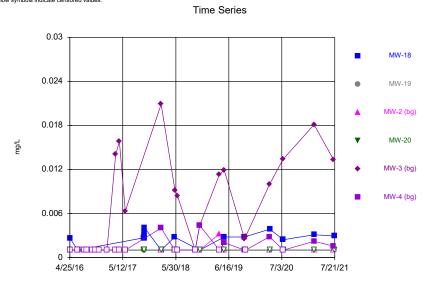
#### Time Series




Constituent: pH Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

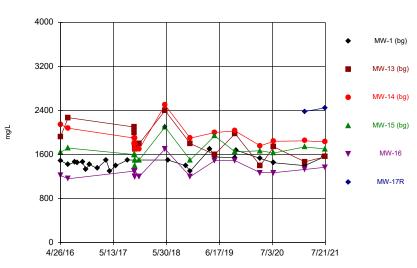
## Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.




Constituent: Selenium Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

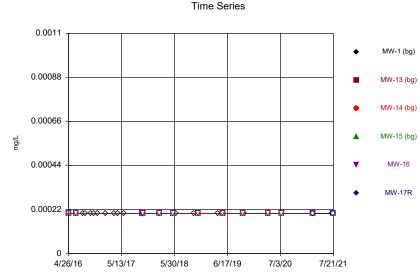
#### Time Series




Constituent: pH Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

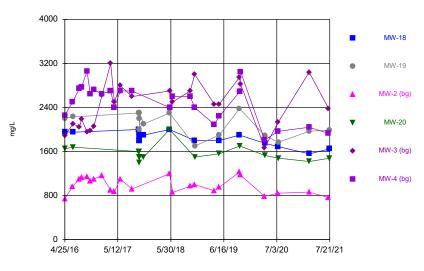
## Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.




Constituent: Selenium Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



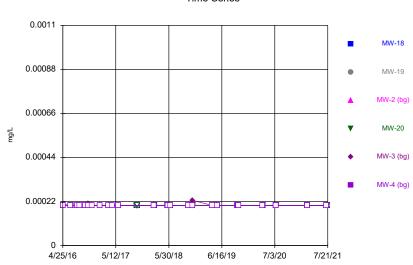



Constituent: Sulfate Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

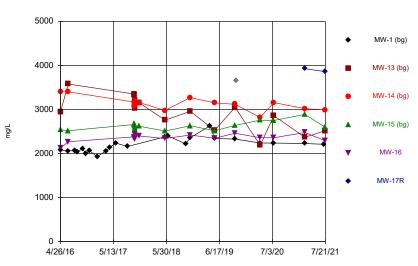


Constituent: Thallium Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

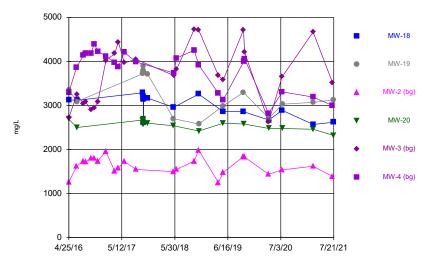

#### Time Series



Constituent: Sulfate Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


#### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

#### Time Series




Constituent: Thallium Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill





Constituent: Total Dissolved Solids Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



Constituent: Total Dissolved Solids Analysis Run 11/18/2021 2:29 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Constituent: Antimony (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg)   | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16    | MW-17R   | MW-18    | MW-19    | MW-2 (bg)    |
|------------|-------------|------------|------------|------------|----------|----------|----------|----------|--------------|
| 4/25/2016  |             |            |            |            |          |          |          |          | <0.00102     |
| 4/26/2016  | <0.00102    | <0.00102   | <0.00102   | <0.00102   |          |          | <0.00102 | <0.00102 |              |
| 4/27/2016  |             |            |            |            | <0.00102 |          |          |          |              |
| 6/20/2016  | <0.00102    |            |            |            |          |          |          |          | <0.00102     |
| 6/22/2016  |             | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 | <0.00102 |              |
| 8/8/2016   | <0.00102    |            |            |            |          |          |          |          | <0.00102     |
| 8/24/2016  | <0.00102    |            |            |            |          |          |          |          | <0.00102     |
| 10/3/2016  | <0.00102    |            |            |            |          |          |          |          | <0.00102     |
| 10/26/2016 | <0.00102    |            |            |            |          |          |          |          | <0.00102     |
| 11/21/2016 | <0.00102    |            |            |            |          |          |          |          | <0.00102     |
| 1/17/2017  | <0.00102    |            |            |            |          |          |          |          | <0.00102     |
| 3/22/2017  | <0.00102    |            |            |            |          |          |          |          | <0.00102     |
| 4/18/2017  | <0.00102    |            |            |            |          |          |          |          | <0.00102     |
| 5/30/2017  | <0.00102    |            |            |            |          |          |          |          |              |
| 5/31/2017  |             |            |            |            |          |          |          |          | <0.00102     |
| 10/12/2017 |             | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 | <0.00102 |              |
| 10/13/2017 |             | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 | <0.00102 |              |
| 10/14/2017 |             | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 | <0.00102 |              |
| 10/15/2017 |             | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 | <0.00102 |              |
| 10/16/2017 |             | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 | <0.00102 |              |
| 10/17/2017 |             | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 | <0.00102 |              |
| 2/13/2018  | <0.00102    | <0.00102   | <0.00102   |            |          |          |          |          | <0.00102     |
| 2/14/2018  |             |            |            | <0.00102   | <0.00102 |          | <0.00102 | <0.00102 |              |
| 5/21/2018  |             | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          |          |          |              |
| 5/22/2018  | <0.00102    |            |            |            |          |          | <0.00102 | <0.00102 | <0.00102     |
| 6/12/2018  | <0.00102    |            |            |            |          |          |          |          | <0.00102     |
| 10/17/2018 | <0.00102    |            |            |            |          |          |          |          | <0.00102     |
| 11/19/2018 | <0.00102    | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 |          | <0.00102     |
| 11/20/2018 |             |            |            |            |          |          |          | <0.00102 |              |
| 4/10/2019  | 0.00143 (J) |            |            |            |          |          |          |          | 0.000993 (J) |
| 5/14/2019  | 0.00137 (J) | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          |          |          | 0.000989 (J) |
| 5/15/2019  |             |            |            |            |          |          | <0.00102 | <0.00102 |              |
| 10/8/2019  | <0.00102    | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 | <0.00102 | <0.00102     |
| 10/16/2019 | <0.00102    |            |            |            |          |          |          |          | <0.00102     |
| 4/6/2020   | <0.00102    |            |            |            | <0.00102 |          |          |          | <0.00102     |
| 4/7/2020   |             | <0.00102   | <0.00102   | <0.00102   |          |          |          |          |              |
| 4/8/2020   |             |            |            |            |          |          | <0.00102 | <0.00102 |              |
| 7/13/2020  | <0.00102    |            |            |            |          |          |          |          | <0.00102     |
| 7/14/2020  |             | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 |          |              |
| 7/15/2020  |             |            |            |            |          |          |          | <0.00102 |              |
| 2/22/2021  | <0.00102    |            |            |            |          |          |          |          | <0.00102     |
| 2/23/2021  |             | <0.00102   | <0.00102   | <0.00102   | <0.00102 | <0.00102 | <0.00102 |          |              |
| 2/24/2021  |             |            |            |            |          |          |          | <0.00102 |              |
| 7/12/2021  | <0.00102    |            |            |            |          |          |          |          | <0.00102     |
| 7/20/2021  |             | <0.00102   | <0.00102   | <0.00102   |          |          |          |          |              |
| 7/21/2021  |             |            |            |            | <0.00102 | <0.00102 | <0.00102 | <0.00102 |              |

Constituent: Antimony (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |          |              | r iant do gao | Chom: Countries Company | Data. C |
|------------|----------|--------------|---------------|-------------------------|---------|
|            | MW-20    | MW-3 (bg)    | MW-4 (bg)     |                         |         |
| 4/25/2016  |          | <0.00102     | <0.00102      |                         |         |
| 4/26/2016  | <0.00102 |              |               |                         |         |
| 6/20/2016  |          |              | <0.00102      |                         |         |
| 6/22/2016  | <0.00102 | <0.00102     |               |                         |         |
| 8/9/2016   |          | <0.00102     | <0.00102      |                         |         |
| 8/24/2016  |          | <0.00102     | <0.00102      |                         |         |
| 10/3/2016  |          |              | <0.00102      |                         |         |
| 10/4/2016  |          | <0.00102     |               |                         |         |
| 10/26/2016 |          | <0.00102     | <0.00102      |                         |         |
| 11/21/2016 |          | <0.00102     | <0.00102      |                         |         |
| 1/18/2017  |          | <0.00102     | <0.00102      |                         |         |
| 3/22/2017  |          | <0.00102     | <0.00102      |                         |         |
| 4/18/2017  |          | <0.00102     | <0.00102      |                         |         |
| 5/31/2017  |          | <0.00102     | <0.00102      |                         |         |
| 10/12/2017 | <0.00102 |              |               |                         |         |
| 10/13/2017 | <0.00102 |              |               |                         |         |
| 10/14/2017 | <0.00102 |              |               |                         |         |
| 10/15/2017 | <0.00102 |              |               |                         |         |
| 10/16/2017 | <0.00102 |              |               |                         |         |
| 10/17/2017 | <0.00102 |              |               |                         |         |
| 2/13/2018  |          | <0.00102     | <0.00102      |                         |         |
| 2/14/2018  | <0.00102 |              |               |                         |         |
| 5/22/2018  | <0.00102 |              |               |                         |         |
| 5/23/2018  |          |              | <0.00102      |                         |         |
| 5/24/2018  |          | <0.00102     |               |                         |         |
| 6/12/2018  |          | <0.00102     | <0.00102      |                         |         |
| 10/17/2018 |          | <0.00102     | <0.00102      |                         |         |
| 11/19/2018 |          | <0.00102     | <0.00102      |                         |         |
| 11/20/2018 | <0.00102 |              |               |                         |         |
| 4/10/2019  |          | 0.000978 (J) | 0.00097 (J)   |                         |         |
| 5/14/2019  |          | <0.00102     | <0.00102      |                         |         |
| 5/15/2019  | <0.00102 |              |               |                         |         |
| 10/8/2019  |          | <0.00102     |               |                         |         |
| 10/10/2019 | <0.00102 |              | <0.00102      |                         |         |
| 10/16/2019 |          | <0.00102     | <0.00102      |                         |         |
| 4/6/2020   |          | <0.00102     | <0.00102      |                         |         |
| 4/8/2020   | <0.00102 |              |               |                         |         |
| 7/13/2020  |          | <0.00102     |               |                         |         |
| 7/14/2020  |          |              | <0.00102      |                         |         |
| 7/15/2020  | <0.00102 |              |               |                         |         |
| 2/22/2021  |          | <0.00102     | <0.00102      |                         |         |
| 2/23/2021  | <0.00102 |              |               |                         |         |
| 7/12/2021  |          | <0.00102     | <0.00102      |                         |         |
| 7/21/2021  | <0.00102 |              |               |                         |         |
|            |          |              |               |                         |         |

Constituent: Arsenic (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|       |        | MW-1 (bg) | MW-13 (bg)  | MW-14 (bg)  | MW-15 (bg) | MW-16       | MW-17R  | MW-18   | MW-19       | MW-2 (bg)   |
|-------|--------|-----------|-------------|-------------|------------|-------------|---------|---------|-------------|-------------|
| 4/25/ | /2016  |           |             |             |            |             |         |         |             | <0.0002     |
| 4/26/ | /2016  | <0.0002   | <0.0002     | 0.00106 (J) | <0.0002    |             |         | <0.0002 | <0.0002     |             |
| 4/27/ | /2016  |           |             |             |            | 0.00244 (J) |         |         |             |             |
| 6/20/ | /2016  | <0.0002   |             |             |            |             |         |         |             | <0.0002     |
|       | /2016  |           | <0.0002     | 0.00169 (J) | <0.0002    | 0.00422 (J) |         | <0.0002 | <0.0002     |             |
| 8/8/2 |        | <0.0002   |             |             |            |             |         |         |             | <0.0002     |
| 8/24/ | /2016  | <0.0002   |             |             |            |             |         |         |             | <0.0002     |
| 10/3/ | /2016  | <0.0002   |             |             |            |             |         |         |             | <0.0002     |
|       | 6/2016 | <0.0002   |             |             |            |             |         |         |             | <0.0002     |
|       | 1/2016 | <0.0002   |             |             |            |             |         |         |             | 0.00111 (J) |
|       | /2017  | <0.0002   |             |             |            |             |         |         |             | <0.0002     |
|       | /2017  | <0.0002   |             |             |            |             |         |         |             | <0.0002     |
|       | /2017  | <0.0002   |             |             |            |             |         |         |             | <0.0002     |
|       | /2017  | <0.0002   |             |             |            |             |         |         |             |             |
|       | /2017  |           |             |             |            |             |         |         |             | <0.0002     |
|       | 2/2017 |           | 0.0011 (J)  | 0.00149 (J) | <0.0002    | 0.00454 (J) |         | <0.0002 | <0.0002     |             |
|       | 3/2017 |           | <0.0002     | 0.00152 (J) | <0.0002    | 0.00399 (J) |         | <0.0002 | <0.0002     |             |
|       | 4/2017 |           | <0.0002     | 0.00145 (J) | <0.0002    | 0.00325 (J) |         | <0.0002 | <0.0002     |             |
|       | 5/2017 |           | <0.0002     | 0.00145 (J) | <0.0002    | 0.00323 (J) |         | <0.0002 | <0.0002     |             |
|       | 6/2017 |           | <0.0002     | 0.00135 (J) | <0.0002    | 0.00327 (J) |         | <0.0002 | <0.0002     |             |
|       | 7/2017 |           | <0.0002     | 0.00133 (J) | <0.0002    | 0.00315 (J) |         | <0.0002 | <0.0002     |             |
| 2/13/ |        | <0.0002   | <0.0002     | 0.00139 (J) |            |             |         |         |             | <0.0002     |
| 2/14/ |        |           |             |             | <0.0002    | 0.00275 (J) |         | <0.0002 | <0.0002     |             |
|       | /2018  |           | <0.0002     | 0.00125 (J) | <0.0002    | 0.00343 (J) |         |         |             |             |
|       | /2018  | <0.0002   |             |             |            |             |         | <0.0002 | <0.0002     | <0.0002     |
|       | /2018  | <0.0002   |             |             |            |             |         |         |             | <0.0002     |
|       | 7/2018 | <0.0002   |             |             |            |             |         |         |             | <0.0002     |
|       | 9/2018 | <0.0002   | <0.0002     | 0.00127 (J) | <0.0002    | 0.00301 (J) |         | <0.0002 |             | <0.0002     |
|       | 0/2018 |           |             |             |            |             |         |         | <0.0002     |             |
|       | /2019  | <0.0002   |             |             |            |             |         |         |             | <0.0002     |
| 5/14/ |        | <0.0002   | <0.0002     | 0.00114 (J) | <0.0002    | 0.00362 (J) |         |         |             | <0.0002     |
|       | /2019  |           |             |             |            |             |         | <0.0002 | <0.0002     |             |
|       | /2019  | <0.0002   | <0.0002     | 0.0012 (J)  | <0.0002    | 0.00372 (J) |         | <0.0002 | <0.0002     | <0.0002     |
|       | 6/2019 | <0.0002   |             |             |            |             |         |         |             | <0.0002     |
| 4/6/2 |        | <0.0002   |             |             |            | 0.00333 (J) |         |         |             | <0.0002     |
| 4/7/2 |        |           | <0.0002     | 0.00102 (J) | <0.0002    |             |         |         |             |             |
| 4/8/2 |        |           |             |             |            |             |         | <0.0002 | <0.0002     |             |
|       | /2020  | <0.0002   |             |             |            |             |         |         |             | <0.0002     |
|       | /2020  |           | <0.0002     | <0.0002     | <0.0002    | 0.00275 (J) |         | <0.0002 |             |             |
|       | /2020  |           |             |             |            |             |         |         | <0.0002     |             |
| 2/22/ |        | 0.000403  |             |             |            |             |         |         |             | 0.000295    |
| 2/23/ |        |           | 0.000293    | 0.000893    | 0.000217   | 0.00257     | 0.0019  | <0.0002 |             |             |
| 2/24/ |        |           |             |             |            |             |         |         | 0.000212    |             |
|       | /2021  | 0.00036   | 0.00045 ( " | 0.00070     | 0.0000     |             |         |         |             | 0.00036     |
|       | /2021  |           | 0.00015 (J) | 0.00078     | 0.00029    | 0.0000      | 0.00100 |         | 0.00040.75  |             |
| 7/21/ | /2021  |           |             |             |            | 0.00269     | 0.00196 | <0.0002 | 0.00018 (J) |             |

Constituent: Arsenic (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-20       | MW-3 (bg)   | MW-4 (bg)    |
|------------|-------------|-------------|--------------|
| 4/25/2016  |             | <0.0002     | <0.0002      |
| 4/26/2016  | <0.0002     |             |              |
| 6/20/2016  |             |             | <0.0002      |
| 6/22/2016  | <0.0002     | <0.0002     |              |
| 8/9/2016   |             | <0.0002     | <0.0002      |
| 8/24/2016  |             | <0.0002     | <0.0002      |
| 10/3/2016  |             |             | <0.0002      |
| 10/4/2016  |             | <0.0002     |              |
| 10/26/2016 |             | <0.0002     | <0.0002      |
| 11/21/2016 |             | <0.0002     | <0.0002      |
| 1/18/2017  |             | <0.0002     | <0.0002      |
| 3/22/2017  |             | 0.00122 (J) | <0.0002      |
| 4/18/2017  |             | <0.0002     | <0.0002      |
| 5/31/2017  |             | <0.0002     | <0.0002      |
| 10/12/2017 | <0.0002     |             |              |
| 10/13/2017 | <0.0002     |             |              |
| 10/14/2017 | <0.0002     |             |              |
| 10/15/2017 | <0.0002     |             |              |
| 10/16/2017 | <0.0002     |             |              |
| 10/17/2017 | <0.0002     |             |              |
| 2/13/2018  |             | <0.0002     | <0.0002      |
| 2/14/2018  | <0.0002     |             |              |
| 5/22/2018  | <0.0002     |             |              |
| 5/23/2018  |             |             | <0.0002      |
| 5/24/2018  |             | <0.0002     |              |
| 6/12/2018  |             | 0.00103 (J) | <0.0002      |
| 10/17/2018 |             | 0.00133 (J) | <0.0002      |
| 11/19/2018 |             | 0.0012 (J)  | <0.0002      |
| 11/20/2018 | <0.0002     |             |              |
| 4/10/2019  |             | <0.0002     | <0.0002      |
| 5/14/2019  |             | <0.0002     | <0.0002      |
| 5/15/2019  | <0.0002     |             |              |
| 10/8/2019  |             | 0.0048 (J)  |              |
| 10/10/2019 | <0.0002     |             | <0.0002      |
| 10/16/2019 |             | 0.00389 (J) | <0.0002      |
| 4/6/2020   |             | <0.0002     | <0.0002      |
| 4/8/2020   | 0.00129 (J) |             |              |
| 7/13/2020  |             | 0.00316 (J) |              |
| 7/14/2020  |             |             | <0.0002      |
| 7/15/2020  | <0.0002     |             |              |
| 2/22/2021  |             | 0.000789    | 0.000125 (J) |
| 2/23/2021  | 0.000849    |             |              |
|            |             | 0.00000     | 0.0001277    |
| 7/12/2021  |             | 0.00038     | 0.00012 (J)  |

Constituent: Barium (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|                          | MW-1 (bg)   | MW-13 (bg) | MW-14 (bg)      | MW-15 (bg)  | MW-16            | MW-17R | MW-18       | MW-19       | MW-2 (bg) |
|--------------------------|-------------|------------|-----------------|-------------|------------------|--------|-------------|-------------|-----------|
| 4/25/2016                |             |            |                 |             |                  |        |             |             | 0.0134    |
| 4/26/2016                | 0.00941 (J) | 0.0134     | 0.0122          | 0.00969 (J) |                  |        | 0.00912 (J) | 0.00969 (J) |           |
| 4/27/2016                |             |            |                 |             | 0.0124           |        |             |             |           |
| 6/20/2016                | 0.00951 (J) |            |                 |             |                  |        |             |             | 0.0165    |
| 6/22/2016                |             | 0.0151     | 0.0122          | 0.012       | 0.0135           |        | 0.00941 (J) | 0.00917 (J) |           |
| 8/8/2016                 | 0.00991 (J) |            |                 |             |                  |        |             |             | 0.0162    |
| 8/24/2016                | 0.00949 (J) |            |                 |             |                  |        |             |             | 0.0139    |
| 10/3/2016                | 0.0105      |            |                 |             |                  |        |             |             | 0.0164    |
| 10/26/2016               | 0.00931 (J) |            |                 |             |                  |        |             |             | 0.0138    |
| 11/21/2016               | 0.00879 (J) |            |                 |             |                  |        |             |             | 0.0144    |
| 1/17/2017                | 0.00929 (J) |            |                 |             |                  |        |             |             | 0.0135    |
| 3/22/2017                | 0.00938 (J) |            |                 |             |                  |        |             |             | 0.0132    |
| 4/18/2017                | 0.00964 (J) |            |                 |             |                  |        |             |             | 0.012     |
| 5/30/2017                | 0.00982 (J) |            |                 |             |                  |        |             |             | 0.012     |
| 5/31/2017                | 0.00002 (0) |            |                 |             |                  |        |             |             | 0.0126    |
|                          |             | 0.0147     | 0.0121          | 0.0117      | 0.0124           |        | 0.0102      | 0.0106      | 0.0120    |
| 10/12/2017<br>10/13/2017 |             | 0.0147     | 0.0131<br>0.013 | 0.0117      | 0.0134<br>0.0141 |        | 0.0102      |             |           |
|                          |             |            |                 | 0.0126      |                  |        |             | 0.0113      |           |
| 10/14/2017               |             | 0.0136     | 0.0124          | 0.0117      | 0.0126           |        | 0.00927 (J) | 0.01        |           |
| 10/15/2017               |             | 0.0128     | 0.0125          | 0.0112      | 0.0133           |        | 0.00964 (J) | 0.0105      |           |
| 10/16/2017               |             | 0.0131     | 0.0121          | 0.0115      | 0.0133           |        | 0.00907 (J) | 0.00993 (J) |           |
| 10/17/2017               |             | 0.0122     | 0.0119          | 0.0112      | 0.0124           |        | 0.0087 (J)  | 0.00943 (J) |           |
| 2/13/2018                | 0.00937 (J) | 0.0106     | 0.0115          |             |                  |        |             |             | 0.0127    |
| 2/14/2018                |             |            |                 | 0.0121      | 0.0137           |        | 0.0161      | 0.01        |           |
| 5/21/2018                |             | 0.015      | 0.0115          | 0.0113      | 0.0136           |        |             |             |           |
| 5/22/2018                | 0.0102      |            |                 |             |                  |        | 0.0113      | 0.0118      | 0.0131    |
| 6/12/2018                | 0.0104      |            |                 |             |                  |        |             |             | 0.0138    |
| 10/17/2018               | 0.00952 (J) |            |                 |             |                  |        |             |             | 0.0137    |
| 11/19/2018               | 0.00915 (J) | 0.0114     | 0.0109          | 0.0105      | 0.0128           |        | 0.0104      |             | 0.0115    |
| 11/20/2018               |             |            |                 |             |                  |        |             | 0.00942 (J) |           |
| 4/10/2019                | 0.0105      |            |                 |             |                  |        |             |             | 0.0111    |
| 5/14/2019                | 0.00913 (J) | 0.0115     | 0.0105          | 0.0101      | 0.011            |        |             |             | 0.0109    |
| 5/15/2019                |             |            |                 |             |                  |        | 0.00875 (J) | 0.00909 (J) |           |
| 10/8/2019                | 0.0109      | 0.0143     | 0.0132          | 0.013       | 0.014            |        | 0.00971 (J) | 0.0106      | 0.0151    |
| 10/16/2019               | 0.0106      |            |                 |             |                  |        |             |             | 0.0146    |
| 4/6/2020                 | 0.00971 (J) |            |                 |             | 0.0131           |        |             |             | 0.0125    |
| 4/7/2020                 |             | 0.0133     | 0.0127          | 0.0127      |                  |        |             |             |           |
| 4/8/2020                 |             |            |                 |             |                  |        | 0.00976 (J) | 0.00979 (J) |           |
| 7/13/2020                | 0.0101      |            |                 |             |                  |        |             |             | 0.0145    |
| 7/14/2020                |             | 0.0142     | 0.0127          | 0.0124      | 0.0128           |        | 0.0102      |             |           |
| 7/15/2020                |             |            |                 |             |                  |        |             | 0.0102      |           |
| 2/22/2021                | 0.0107      |            |                 |             |                  |        |             |             | 0.0132    |
| 2/23/2021                |             | 0.011      | 0.0133          | 0.013       | 0.0127           | 0.013  | 0.0103      |             |           |
| 2/24/2021                |             |            |                 |             |                  |        |             | 0.00981     |           |
| 7/12/2021                | 0.00991     |            |                 |             |                  |        |             |             | 0.013     |
| 7/20/2021                |             | 0.0118     | 0.0116          | 0.0118      |                  |        |             |             |           |
| 7/21/2021                |             |            |                 |             | 0.0132           | 0.014  | 0.0105      | 0.01        |           |
|                          |             |            |                 |             |                  |        |             |             |           |

Constituent: Barium (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

| MW-20  | MW-3 (bg)                                                                        | MW-4 (bg)                                                                                                                                                                                                                                                                                                      |
|--------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | 0.00803 (J)                                                                      | 0.0114                                                                                                                                                                                                                                                                                                         |
| 0.0146 |                                                                                  |                                                                                                                                                                                                                                                                                                                |
|        |                                                                                  | 0.0103                                                                                                                                                                                                                                                                                                         |
| 0.0148 | 0.0101                                                                           |                                                                                                                                                                                                                                                                                                                |
|        | 0.00889 (J)                                                                      | 0.0119                                                                                                                                                                                                                                                                                                         |
|        | 0.00962 (J)                                                                      | 0.0118                                                                                                                                                                                                                                                                                                         |
|        |                                                                                  | 0.0119                                                                                                                                                                                                                                                                                                         |
|        | 0.00984 (J)                                                                      |                                                                                                                                                                                                                                                                                                                |
|        | 0.00878 (J)                                                                      | 0.0104                                                                                                                                                                                                                                                                                                         |
|        | 0.00833 (J)                                                                      | 0.0106                                                                                                                                                                                                                                                                                                         |
|        | 0.00966 (J)                                                                      | 0.0101                                                                                                                                                                                                                                                                                                         |
|        | 0.00991 (J)                                                                      | 0.0103                                                                                                                                                                                                                                                                                                         |
|        | 0.00976 (J)                                                                      | 0.0107                                                                                                                                                                                                                                                                                                         |
|        | 0.00866 (J)                                                                      | 0.0104                                                                                                                                                                                                                                                                                                         |
| 0.0162 |                                                                                  |                                                                                                                                                                                                                                                                                                                |
| 0.0161 |                                                                                  |                                                                                                                                                                                                                                                                                                                |
| 0.0153 |                                                                                  |                                                                                                                                                                                                                                                                                                                |
| 0.0156 |                                                                                  |                                                                                                                                                                                                                                                                                                                |
| 0.0156 |                                                                                  |                                                                                                                                                                                                                                                                                                                |
| 0.0147 |                                                                                  |                                                                                                                                                                                                                                                                                                                |
|        | 0.00821 (J)                                                                      | 0.0111                                                                                                                                                                                                                                                                                                         |
| 0.0154 |                                                                                  |                                                                                                                                                                                                                                                                                                                |
| 0.0164 |                                                                                  |                                                                                                                                                                                                                                                                                                                |
|        |                                                                                  | 0.0107                                                                                                                                                                                                                                                                                                         |
|        | 0.00977 (J)                                                                      |                                                                                                                                                                                                                                                                                                                |
|        | 0.00997 (J)                                                                      | 0.0108                                                                                                                                                                                                                                                                                                         |
|        | 0.0126                                                                           | 0.0119                                                                                                                                                                                                                                                                                                         |
|        | 0.0109                                                                           | 0.0107                                                                                                                                                                                                                                                                                                         |
| 0.0145 |                                                                                  |                                                                                                                                                                                                                                                                                                                |
|        | 0.0101                                                                           | 0.0107                                                                                                                                                                                                                                                                                                         |
|        | 0.00922 (J)                                                                      | 0.00949 (J)                                                                                                                                                                                                                                                                                                    |
| 0.0141 |                                                                                  |                                                                                                                                                                                                                                                                                                                |
|        | 0.0154                                                                           |                                                                                                                                                                                                                                                                                                                |
| 0.0173 |                                                                                  | 0.0116                                                                                                                                                                                                                                                                                                         |
|        | 0.0128                                                                           | 0.0125                                                                                                                                                                                                                                                                                                         |
|        | 0.00931 (J)                                                                      | 0.0115                                                                                                                                                                                                                                                                                                         |
| 0.019  |                                                                                  |                                                                                                                                                                                                                                                                                                                |
|        | 0.0142                                                                           |                                                                                                                                                                                                                                                                                                                |
|        |                                                                                  | 0.0122                                                                                                                                                                                                                                                                                                         |
| 0.0173 |                                                                                  |                                                                                                                                                                                                                                                                                                                |
|        | 0.00981                                                                          | 0.0111                                                                                                                                                                                                                                                                                                         |
| υ.0167 |                                                                                  |                                                                                                                                                                                                                                                                                                                |
|        | 0.00857                                                                          | 0.0108                                                                                                                                                                                                                                                                                                         |
| 0.016  |                                                                                  |                                                                                                                                                                                                                                                                                                                |
|        | 0.0146 0.0148  0.0162 0.0161 0.0153 0.0156 0.0147  0.0154 0.0164  0.0145  0.0141 | 0.0146  0.0148  0.0101 0.00889 (J) 0.00962 (J)  0.00984 (J) 0.00878 (J) 0.00878 (J) 0.00966 (J) 0.00991 (J) 0.00976 (J) 0.00966 (J) 0.0153 0.0156 0.0156 0.0156 0.0154 0.0154 0.0164  0.00997 (J) 0.00997 (J) 0.0126 0.0109  0.0145  0.0101 0.00922 (J)  0.0141 0.0154 0.0173 0.0128 0.00931 (J) 0.019  0.0142 |

Constituent: Beryllium (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16    | MW-17R   | MW-18    | MW-19    | MW-2 (bg) |
|------------|-----------|------------|------------|------------|----------|----------|----------|----------|-----------|
| 4/25/2016  |           |            |            |            |          |          |          |          | <0.00102  |
| 4/26/2016  | <0.00102  | <0.00102   | <0.00102   | <0.00102   |          |          | <0.00102 | <0.00102 |           |
| 4/27/2016  |           |            |            |            | <0.00102 |          |          |          |           |
| 6/20/2016  | <0.00102  |            |            |            |          |          |          |          | <0.00102  |
| 6/22/2016  |           | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 | <0.00102 |           |
| 8/8/2016   | <0.00102  |            |            |            |          |          |          |          | <0.00102  |
| 8/24/2016  | <0.00102  |            |            |            |          |          |          |          | <0.00102  |
| 10/3/2016  | <0.00102  |            |            |            |          |          |          |          | <0.00102  |
| 10/26/2016 | <0.00102  |            |            |            |          |          |          |          | <0.00102  |
| 11/21/2016 | <0.00102  |            |            |            |          |          |          |          | <0.00102  |
| 1/17/2017  | <0.00102  |            |            |            |          |          |          |          | <0.00102  |
| 3/22/2017  | <0.00102  |            |            |            |          |          |          |          | <0.00102  |
| 4/18/2017  | <0.00102  |            |            |            |          |          |          |          | <0.00102  |
| 5/30/2017  | <0.00102  |            |            |            |          |          |          |          |           |
| 5/31/2017  |           |            |            |            |          |          |          |          | <0.00102  |
| 10/12/2017 |           | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 | <0.00102 |           |
| 10/13/2017 |           | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 | <0.00102 |           |
| 10/14/2017 |           | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 | <0.00102 |           |
| 10/15/2017 |           | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 | <0.00102 |           |
| 10/16/2017 |           | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 | <0.00102 |           |
| 10/17/2017 |           | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 | <0.00102 |           |
| 2/13/2018  | <0.00102  | <0.00102   | <0.00102   |            |          |          |          |          | <0.00102  |
| 2/14/2018  |           |            |            | <0.00102   | <0.00102 |          | <0.00102 | <0.00102 |           |
| 5/21/2018  |           | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          |          |          |           |
| 5/22/2018  | <0.00102  |            |            |            |          |          | <0.00102 | <0.00102 | <0.00102  |
| 6/12/2018  | <0.00102  |            |            |            |          |          |          |          | <0.00102  |
| 10/17/2018 | <0.00102  |            |            |            |          |          |          |          | <0.00102  |
| 11/19/2018 | <0.00102  | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 |          | <0.00102  |
| 11/20/2018 |           |            |            |            |          |          |          | <0.00102 |           |
| 4/10/2019  | <0.00102  |            |            |            |          |          |          |          | <0.00102  |
| 5/14/2019  | <0.00102  | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          |          |          | <0.00102  |
| 5/15/2019  |           |            |            |            |          |          | <0.00102 | <0.00102 |           |
| 10/8/2019  | <0.00102  | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 | <0.00102 | <0.00102  |
| 10/16/2019 | <0.00102  |            |            |            |          |          |          |          | <0.00102  |
| 4/6/2020   | <0.00102  |            |            |            | <0.00102 |          |          |          | <0.00102  |
| 4/7/2020   |           | <0.00102   | <0.00102   | <0.00102   |          |          |          |          |           |
| 4/8/2020   |           |            |            |            |          |          | <0.00102 | <0.00102 |           |
| 7/13/2020  | <0.00102  |            |            |            |          |          |          |          | <0.00102  |
| 7/14/2020  |           | <0.00102   | <0.00102   | <0.00102   | <0.00102 |          | <0.00102 |          |           |
| 7/15/2020  |           |            |            |            |          |          |          | <0.00102 |           |
| 2/22/2021  | <0.00102  |            |            |            |          |          |          |          | <0.00102  |
| 2/23/2021  |           | <0.00102   | <0.00102   | <0.00102   | <0.00102 | <0.00102 | <0.00102 |          |           |
| 2/24/2021  |           |            |            |            |          |          |          | <0.00102 |           |
| 7/12/2021  | <0.00102  |            |            |            |          |          |          |          | <0.00102  |
| 7/20/2021  |           | <0.00102   | <0.00102   | <0.00102   |          |          |          |          |           |
| 7/21/2021  |           |            |            |            | <0.00102 | <0.00102 | <0.00102 | <0.00102 |           |
|            |           |            |            |            |          |          |          |          |           |

Constituent: Beryllium (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |          |             | ·         |
|------------|----------|-------------|-----------|
|            | MW-20    | MW-3 (bg)   | MW-4 (bg) |
| 4/25/2016  |          | 0.00122 (J) | <0.00102  |
| 4/26/2016  | <0.00102 |             |           |
| 6/20/2016  |          |             | <0.00102  |
| 6/22/2016  | <0.00102 | 0.00144 (J) |           |
| 8/9/2016   |          | 0.00331     | <0.00102  |
| 8/24/2016  |          | 0.00308     | <0.00102  |
| 10/3/2016  |          |             | <0.00102  |
| 10/4/2016  |          | 0.00129 (J) |           |
| 10/26/2016 |          | 0.0071      | <0.00102  |
| 11/21/2016 |          | 0.00689     | <0.00102  |
| 1/18/2017  |          | 0.0169 (O)  | <0.00102  |
| 3/22/2017  |          | 0.00686     | <0.00102  |
| 4/18/2017  |          | <0.00102    | <0.00102  |
| 5/31/2017  |          | 0.00547     | <0.00102  |
| 10/12/2017 | <0.00102 |             |           |
| 10/13/2017 | <0.00102 |             |           |
| 10/14/2017 | <0.00102 |             |           |
| 10/15/2017 | <0.00102 |             |           |
| 10/16/2017 | <0.00102 |             |           |
| 10/17/2017 | <0.00102 |             |           |
| 2/13/2018  |          | <0.00102    | <0.00102  |
| 2/14/2018  | <0.00102 |             |           |
| 5/22/2018  | <0.00102 |             |           |
| 5/23/2018  |          |             | <0.00102  |
| 5/24/2018  |          | 0.00164 (J) |           |
| 6/12/2018  |          | 0.00306     | <0.00102  |
| 10/17/2018 |          | 0.0121      | <0.00102  |
| 11/19/2018 |          | 0.0185 (O)  | <0.00102  |
| 11/20/2018 | <0.00102 |             |           |
| 4/10/2019  |          | <0.00102    | <0.00102  |
| 5/14/2019  |          | <0.00102    | <0.00102  |
| 5/15/2019  | <0.00102 |             |           |
| 10/8/2019  |          | 0.0084      |           |
| 10/10/2019 | <0.00102 |             | <0.00102  |
| 10/16/2019 |          | 0.0103      | <0.00102  |
| 4/6/2020   |          | <0.00102    | <0.00102  |
| 4/8/2020   | <0.00102 |             |           |
| 7/13/2020  |          | 0.0021 (J)  |           |
| 7/14/2020  |          |             | <0.00102  |
| 7/15/2020  | <0.00102 |             |           |
| 2/22/2021  |          | <0.00102    | <0.00102  |
| 2/23/2021  | <0.00102 |             |           |
| 7/12/2021  |          | <0.00102    | <0.00102  |
| 7/21/2021  | <0.00102 |             |           |
|            |          |             |           |

Constituent: Boron (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

| 4/25/2016  | MW-1 (bg)  | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16      | MW-17R     | MW-18      | MW-19      | MW-2 (bg)  |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 4/26/2016  | 0.0231 (J) | 0.0585 (J) | 0.0491 (J) | 0.0476 (J) |            |            | 0.0408 (J) | 0.0367 (J) | 0.0241 (J) |
| 4/27/2016  | 0.0231 (3) | 0.0383 (3) | 0.0491 (3) | 0.0470 (3) | 0.0425 (J) |            | 0.0408 (3) | 0.0307 (3) |            |
| 6/20/2016  | 0.0227 (J) |            |            |            | 0.0423 (3) |            |            |            | 0.0284 (J) |
| 6/22/2016  | 0.0227 (0) | 0.0581 (J) | 0.0504 (J) | 0.0472 (J) | 0.0469 (J) |            | 0.0369 (J) | 0.039 (J)  | 0.0204 (0) |
| 8/8/2016   | 0.0278 (J) | 0.0001 (0) | 0.0004 (0) | 0.0472 (0) | 0.0400 (0) |            | 0.0000 (0) | 0.000 (0)  | 0.034 (J)  |
| 8/24/2016  | 0.0247 (J) |            |            |            |            |            |            |            | 0.0316 (J) |
| 10/3/2016  | 0.0307 (J) |            |            |            |            |            |            |            | 0.0367 (J) |
| 10/26/2016 | 0.0241 (J) |            |            |            |            |            |            |            | 0.0331 (J) |
| 11/21/2016 | 0.0202 (J) |            |            |            |            |            |            |            | 0.035 (J)  |
| 1/17/2017  | 0.0201 (J) |            |            |            |            |            |            |            | 0.0259 (J) |
| 3/22/2017  | 0.0224 (J) |            |            |            |            |            |            |            | 0.0243 (J) |
| 4/18/2017  | <0.1015    |            |            |            |            |            |            |            | 0.0206 (J) |
| 5/30/2017  | <0.1015    |            |            |            |            |            |            |            |            |
| 5/31/2017  |            |            |            |            |            |            |            |            | 0.0234 (J) |
| 8/23/2017  | 0.0253 (J) |            |            |            |            |            |            |            | 0.0267 (J) |
| 10/12/2017 |            | 0.0673 (J) | 0.0493 (J) | 0.054 (J)  | 0.05 (J)   |            | 0.0351 (J) | 0.039 (J)  |            |
| 10/13/2017 |            | 0.06 (J)   | 0.0464 (J) | 0.0535 (J) | 0.0468 (J) |            | 0.0357 (J) | 0.0384 (J) |            |
| 10/14/2017 |            | 0.0555 (J) | 0.0458 (J) | 0.0533 (J) | 0.0471 (J) |            | 0.0333 (J) | 0.0372 (J) |            |
| 10/15/2017 |            | 0.0567 (J) | 0.046 (J)  | 0.0592 (J) | 0.0456 (J) |            | 0.0325 (J) | 0.0354 (J) |            |
| 10/16/2017 |            | 0.0576 (J) | 0.0438 (J) | 0.0608 (J) | 0.0486 (J) |            | 0.0295 (J) | 0.0373 (J) |            |
| 10/17/2017 |            | 0.0561 (J) | 0.046 (J)  | 0.0641 (J) | 0.0452 (J) |            | 0.033 (J)  | 0.0367 (J) |            |
| 11/15/2017 |            |            |            | 0.0483 (J) | 0.044 (J)  |            | 0.0313 (J) | 0.0348 (J) |            |
| 11/16/2017 |            | 0.0554 (J) | 0.0568 (J) |            |            |            |            |            |            |
| 5/21/2018  |            | 0.0651 (J) | 0.0478 (J) | 0.0478 (J) | 0.0463 (J) |            |            |            |            |
| 5/22/2018  | 0.0224 (J) |            |            |            |            |            | 0.0331 (J) | 0.0362 (J) | 0.0251 (J) |
| 6/12/2018  | 0.0214 (J) |            |            |            |            |            |            |            | 0.0275 (J) |
| 10/17/2018 | 0.0216 (J) |            |            |            |            |            |            |            | 0.0321 (J) |
| 11/19/2018 | 0.0237 (J) | 0.0624 (J) | 0.0518 (J) | 0.0615 (J) | 0.0524 (J) |            | 0.039 (J)  |            | 0.0324 (J) |
| 11/20/2018 |            |            |            |            |            |            |            | 0.0421 (J) |            |
| 4/10/2019  | 0.0304 (J) |            |            |            |            |            |            |            | <0.1015    |
| 5/14/2019  | <0.1015    | <0.1015    | <0.1015    | <0.1015    | <0.1015    |            |            |            | <0.1015    |
| 5/15/2019  |            |            |            |            |            |            | <0.1015    | <0.1015    |            |
| 10/8/2019  | <0.1015    | 0.0616 (J) | 0.0522 (J) | 0.0644 (J) | 0.0528 (J) |            | 0.038 (J)  | 0.0413 (J) | 0.0371 (J) |
| 10/16/2019 | 0.0385 (J) |            |            |            |            |            |            |            | 0.0419 (J) |
| 4/6/2020   | <0.1015    |            |            |            | 0.0507 (J) |            |            |            | <0.1015    |
| 4/7/2020   |            | 0.0577 (J) | 0.0477 (J) | 0.0542 (J) |            |            |            |            |            |
| 4/8/2020   |            |            |            |            |            |            | 0.0353 (J) | 0.0373 (J) |            |
| 7/13/2020  | <0.1015    |            |            |            |            |            |            |            | <0.1015    |
| 7/14/2020  |            | 0.0573 (J) | 0.0492 (J) | 0.0557 (J) | 0.0484 (J) |            | 0.0421 (J) |            |            |
| 7/15/2020  |            |            |            |            |            |            |            | 0.0412 (J) |            |
| 2/22/2021  | 0.0307 (J) |            |            |            |            |            |            |            | <0.1015    |
| 2/23/2021  |            | 0.065 (J)  | 0.0516 (J) | 0.0534 (J) | 0.0487 (J) | 0.0536 (J) | 0.0343 (J) |            |            |
| 2/24/2021  |            |            |            |            |            |            |            | 0.0393 (J) |            |
| 7/12/2021  | <0.1015    |            |            |            |            |            |            |            | <0.1015    |
| 7/20/2021  |            | 0.0592 (J) | 0.0485 (J) | 0.0514 (J) | 0.046= / " | 0.051511   | 0.0045.45  | 0.005 ( "  |            |
| 7/21/2021  |            |            |            |            | 0.0437 (J) | 0.0549 (J) | 0.0318 (J) | 0.035 (J)  |            |

Constituent: Boron (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-20      | MW-3 (bg)  | MW-4 (bg)  |
|------------|------------|------------|------------|
| 4/25/2016  |            | 0.028 (J)  | 0.0414 (J) |
| 4/26/2016  | 0.105      |            |            |
| 6/20/2016  |            |            | 0.0434 (J) |
| 6/22/2016  | 0.107      | 0.0433 (J) |            |
| 8/9/2016   |            | 0.0429 (J) | 0.0453 (J) |
| 8/24/2016  |            | 0.0431 (J) | 0.0451 (J) |
| 10/3/2016  |            |            | 0.0511 (J) |
| 10/4/2016  |            | 0.04 (J)   |            |
| 10/26/2016 |            | 0.0375 (J) | 0.0507 (J) |
| 11/21/2016 |            | 0.0406 (J) | 0.0458 (J) |
| 1/18/2017  |            | 0.0548 (J) | 0.0445 (J) |
| 3/22/2017  |            | 0.0344 (J) | 0.0432 (J) |
| 4/18/2017  |            | <0.1015    | 0.0409 (J) |
| 5/31/2017  |            | 0.0454 (J) | 0.0392 (J) |
| 8/23/2017  |            | 0.0425 (J) | 0.042 (J)  |
| 10/12/2017 | 0.105      |            |            |
| 10/13/2017 | 0.106      |            |            |
| 10/14/2017 | 0.106      |            |            |
| 10/15/2017 | 0.107      |            |            |
| 10/16/2017 | 0.111      |            |            |
| 10/17/2017 | 0.107      |            |            |
| 11/15/2017 | 0.101      |            |            |
| 5/22/2018  | 0.105      |            |            |
| 5/23/2018  |            |            | 0.0433 (J) |
| 5/24/2018  |            | 0.0339 (J) |            |
| 6/12/2018  |            | 0.0371 (J) | 0.0478 (J) |
| 10/17/2018 |            | 0.0596 (J) | 0.0468 (J) |
| 11/19/2018 |            | 0.0514 (J) | 0.0526 (J) |
| 11/20/2018 | 0.114      |            |            |
| 4/10/2019  |            | <0.1015    | 0.0438 (J) |
| 5/14/2019  |            | <0.1015    | <0.203 (o) |
| 5/15/2019  | 0.103 (J)  |            |            |
| 10/8/2019  |            | 0.0537 (J) |            |
| 10/10/2019 | 0.115      |            | 0.0487 (J) |
| 10/16/2019 |            | 0.05 (J)   | 0.0505 (J) |
| 4/6/2020   |            | <0.1015    | 0.0428 (J) |
| 4/8/2020   | 0.104      |            |            |
| 7/13/2020  |            | 0.0366 (J) |            |
| 7/14/2020  |            |            | 0.0441 (J) |
| 7/15/2020  | 0.114      |            |            |
| 2/22/2021  |            | <0.1015    | 0.0397 (J) |
| 2/23/2021  | 0.11       |            |            |
| 7/12/2021  |            | <0.1015    | 0.0411 (J) |
| 7/21/2021  | 0.0999 (J) |            |            |
|            |            |            |            |

Constituent: Cadmium (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg)   | MW-15 (bg) | MW-16   | MW-17R  | MW-18   | MW-19   | MW-2 (bg)       |
|------------|-----------|------------|--------------|------------|---------|---------|---------|---------|-----------------|
| 4/25/2016  |           |            |              |            |         |         |         |         | <0.0002         |
| 4/26/2016  | 0.00196   | <0.0002    | <0.0002      | <0.0002    |         |         | <0.0002 | <0.0002 |                 |
| 4/27/2016  |           |            |              |            | <0.0002 |         |         |         |                 |
| 6/20/2016  | 0.0021    |            |              |            |         |         |         |         | <0.0002         |
| 6/22/2016  |           | <0.0002    | <0.0002      | <0.0002    | <0.0002 |         | <0.0002 | <0.0002 |                 |
| 8/8/2016   | 0.00206   |            |              |            |         |         |         |         | <0.0002         |
| 8/24/2016  | 0.00182   |            |              |            |         |         |         |         | <0.0002         |
| 10/3/2016  | 0.00188   |            |              |            |         |         |         |         | <0.0002         |
| 10/26/2016 | 0.00175   |            |              |            |         |         |         |         | <0.0002         |
| 11/21/2016 | 0.00197   |            |              |            |         |         |         |         | <0.0002         |
| 1/17/2017  | 0.002     |            |              |            |         |         |         |         | 0.000311 (J)    |
| 3/22/2017  | 0.002     |            |              |            |         |         |         |         | <0.0002         |
| 4/18/2017  | 0.0019    |            |              |            |         |         |         |         | <0.0002         |
| 5/30/2017  | 0.00139   |            |              |            |         |         |         |         | <0.000 <u>2</u> |
|            | 0.00214   |            |              |            |         |         |         |         | 0.000212 (1)    |
| 5/31/2017  |           | 0.000      |              | .0.000     | 0.0000  |         | .0.000  | .0.000  | 0.000212 (J)    |
| 10/12/2017 |           | <0.0002    | <0.0002      | <0.0002    | <0.0002 |         | <0.0002 | <0.0002 |                 |
| 10/13/2017 |           | <0.0002    | <0.0002      | <0.0002    | <0.0002 |         | <0.0002 | <0.0002 |                 |
| 10/14/2017 |           | <0.0002    | <0.0002      | <0.0002    | <0.0002 |         | <0.0002 | <0.0002 |                 |
| 10/15/2017 |           | <0.0002    | <0.0002      | <0.0002    | <0.0002 |         | <0.0002 | <0.0002 |                 |
| 10/16/2017 |           | <0.0002    | <0.0002      | <0.0002    | <0.0002 |         | <0.0002 | <0.0002 |                 |
| 10/17/2017 |           | <0.0002    | <0.0002      | <0.0002    | <0.0002 |         | <0.0002 | <0.0002 |                 |
| 2/13/2018  | 0.0018    | <0.0002    | <0.0002      |            |         |         |         |         | <0.0002         |
| 2/14/2018  |           |            |              | <0.0002    | <0.0002 |         | <0.0002 | <0.0002 |                 |
| 5/21/2018  |           | <0.0002    | <0.0002      | <0.0002    | <0.0002 |         |         |         |                 |
| 5/22/2018  | 0.00201   |            |              |            |         |         | <0.0002 | <0.0002 | <0.0002         |
| 6/12/2018  | 0.00217   |            |              |            |         |         |         |         | <0.0002         |
| 10/17/2018 | 0.00228   |            |              |            |         |         |         |         | <0.0002         |
| 11/19/2018 | 0.00156   | <0.0002    | <0.0002      | <0.0002    | <0.0002 |         | <0.0002 |         | <0.0002         |
| 11/20/2018 |           |            |              |            |         |         |         | <0.0002 |                 |
| 4/10/2019  | 0.00224   |            |              |            |         |         |         |         | <0.0002         |
| 5/14/2019  | 0.00238   | <0.0002    | <0.0002      | <0.0002    | <0.0002 |         |         |         | <0.0002         |
| 5/15/2019  |           |            |              |            |         |         | <0.0002 | <0.0002 |                 |
| 10/8/2019  | 0.00218   | <0.0002    | <0.0002      | <0.0002    | <0.0002 |         | <0.0002 | <0.0002 | <0.0002         |
| 10/16/2019 | 0.00225   |            |              |            |         |         |         |         | <0.0002         |
| 4/6/2020   | 0.00184   |            |              |            | <0.0002 |         |         |         | <0.0002         |
| 4/7/2020   |           | <0.0002    | <0.0002      | <0.0002    |         |         |         |         |                 |
| 4/8/2020   |           |            |              |            |         |         | <0.0002 | <0.0002 |                 |
| 7/13/2020  | 0.00194   |            |              |            |         |         |         |         | <0.0002         |
| 7/14/2020  |           | <0.0002    | <0.0002      | <0.0002    | <0.0002 |         | <0.0002 |         |                 |
| 7/15/2020  |           |            |              |            |         |         |         | <0.0002 |                 |
| 2/22/2021  | 0.00184   |            |              |            |         |         |         |         | 8.96E-05 (J)    |
| 2/23/2021  |           | <0.0002    | 0.000122 (J) | <0.0002    | <0.0002 | <0.0002 | <0.0002 |         |                 |
| 2/24/2021  |           |            |              |            |         |         |         | <0.0002 |                 |
| 7/12/2021  | 0.00193   |            |              |            |         |         |         |         | 8E-05 (J)       |
| 7/20/2021  |           | <0.0002    | <0.0002      | <0.0002    |         |         |         |         |                 |
| 7/21/2021  |           |            |              |            | <0.0002 | <0.0002 | <0.0002 | <0.0002 |                 |
|            |           |            |              |            |         |         |         |         |                 |

Constituent: Cadmium (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |         |              | r idiri dorgao | 0.10111. |
|------------|---------|--------------|----------------|----------|
|            | MW-20   | MW-3 (bg)    | MW-4 (bg)      |          |
| 4/25/2016  |         | 0.0121 (O)   | <0.0002        |          |
| 4/26/2016  | <0.0002 |              |                |          |
| 6/20/2016  |         |              | <0.0002        |          |
| 6/22/2016  | <0.0002 | 0.00163      |                |          |
| 8/9/2016   |         | 0.00122      | <0.0002        |          |
| 8/24/2016  |         | <0.0002      | <0.0002        |          |
| 10/3/2016  |         |              | <0.0002        |          |
| 10/4/2016  |         | 0.000689 (J) |                |          |
| 10/26/2016 |         | 0.00136      | <0.0002        |          |
| 11/21/2016 |         | 0.00171      | <0.0002        |          |
| 1/18/2017  |         | 0.003        | <0.0002        |          |
| 3/22/2017  |         | 0.00473      | <0.0002        |          |
| 4/18/2017  |         | 0.00117      | <0.0002        |          |
| 5/31/2017  |         | 0.00296      | <0.0002        |          |
| 10/12/2017 | <0.0002 |              |                |          |
| 10/13/2017 | <0.0002 |              |                |          |
| 10/14/2017 | <0.0002 |              |                |          |
| 10/15/2017 | <0.0002 |              |                |          |
| 10/16/2017 | <0.0002 |              |                |          |
| 10/17/2017 | <0.0002 |              |                |          |
| 2/13/2018  |         | 0.00232      | <0.0002        |          |
| 2/14/2018  | <0.0002 |              |                |          |
| 5/22/2018  | <0.0002 |              |                |          |
| 5/23/2018  |         |              | <0.0002        |          |
| 5/24/2018  |         | 0.00459      |                |          |
| 6/12/2018  |         | 0.00351      | <0.0002        |          |
| 10/17/2018 |         | 0.00393      | <0.0002        |          |
| 11/19/2018 |         | 0.00309      | <0.0002        |          |
| 11/20/2018 | <0.0002 |              |                |          |
| 4/10/2019  |         | 0.00337      | <0.0002        |          |
| 5/14/2019  |         | 0.0013       | <0.0002        |          |
| 5/15/2019  | <0.0002 |              |                |          |
| 10/8/2019  |         | 0.00598      |                |          |
| 10/10/2019 | <0.0002 |              | <0.0002        |          |
| 10/16/2019 |         | 0.00448      | <0.0002        |          |
| 4/6/2020   |         | 0.000645 (J) | <0.0002        |          |
| 4/8/2020   | <0.0002 |              |                |          |
| 7/13/2020  |         | 0.00885 (O)  |                |          |
| 7/14/2020  |         |              | <0.0002        |          |
| 7/15/2020  | <0.0002 |              |                |          |
| 2/22/2021  |         | 0.00536      | 8.96E-05 (J)   |          |
| 2/23/2021  | <0.0002 |              | \-'\           |          |
| 7/12/2021  |         | 0.00094      | 8E-05 (J)      |          |
| 7/21/2021  | <0.0002 |              | \-/            |          |
|            |         |              |                |          |

Constituent: Calcium (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16 | MW-17R | MW-18 | MW-19 | MW-2 (bg) |
|------------|-----------|------------|------------|------------|-------|--------|-------|-------|-----------|
| 4/25/2016  |           |            |            |            |       |        |       |       | 123       |
| 4/26/2016  | 147       | 302        | 335        | 257        |       |        | 319   | 342   |           |
| 4/27/2016  |           |            |            |            | 276   |        |       |       |           |
| 6/20/2016  | 152       |            |            |            |       |        |       |       | 168       |
| 6/22/2016  |           | 354        | 360        | 282        | 301   |        | 354   | 365   |           |
| 8/8/2016   | 150       |            |            |            |       |        |       |       | 180       |
| 8/24/2016  | 142       |            |            |            |       |        |       |       | 180       |
| 10/3/2016  | 139       |            |            |            |       |        |       |       | 184       |
| 10/26/2016 | 133       |            |            |            |       |        |       |       | 171       |
| 11/21/2016 | 144       |            |            |            |       |        |       |       | 179       |
| 1/17/2017  | 131       |            |            |            |       |        |       |       | 188       |
| 3/22/2017  | 141       |            |            |            |       |        |       |       | 155       |
| 4/18/2017  | 149       |            |            |            |       |        |       |       | 156       |
| 5/30/2017  | 140       |            |            |            |       |        |       |       |           |
| 5/31/2017  |           |            |            |            |       |        |       |       | 151       |
| 8/23/2017  | 152       |            |            |            |       |        |       |       | 155       |
| 10/12/2017 |           | 321        | 315        | 256        | 320   |        | 340   | 373   |           |
| 10/13/2017 |           | 312        | 317        | 269        | 297   |        | 326   | 381   |           |
| 10/14/2017 |           | 300        | 315        | 262        | 299   |        | 345   | 399   |           |
| 10/15/2017 |           | 300        | 325        | 275        | 307   |        | 327   | 375   |           |
| 10/16/2017 |           | 290        | 333        | 258        | 310   |        | 325   | 381   |           |
| 10/17/2017 |           | 296        | 309        | 263        | 297   |        | 341   | 386   |           |
| 11/15/2017 |           |            |            | 254        | 287   |        | 318   | 371   |           |
| 11/16/2017 |           | 296        | 313        |            |       |        |       |       |           |
| 5/21/2018  |           | 321        | 349        | 298        | 338   |        |       |       |           |
| 5/22/2018  | 166       |            |            |            |       |        | 364   | 325   | 172       |
| 6/12/2018  | 203       |            |            |            |       |        |       |       | 179       |
| 10/17/2018 | 171       |            |            |            |       |        |       |       | 200       |
| 11/19/2018 | 154       | 288        | 323        | 272        | 301   |        | 356   |       | 221       |
| 11/20/2018 |           |            |            |            |       |        |       | 325   |           |
| 4/10/2019  | 243       |            |            |            |       |        |       |       | 200       |
| 5/14/2019  | 167       | 302        | 337        | 280        | 319   |        |       |       | 168       |
| 5/15/2019  |           |            |            |            |       |        | 337   | 372   |           |
| 10/8/2019  | 157       | 304        | 341        | 299        | 325   |        | 312   | 357   | 190       |
| 10/16/2019 | 157       |            |            |            |       |        |       |       | 194       |
| 4/6/2020   | 149       |            |            |            | 302   |        |       |       | 152       |
| 4/7/2020   |           | 222        | 290        | 276        |       |        |       |       |           |
| 4/8/2020   |           |            |            |            |       |        | 283   | 288   |           |
| 7/13/2020  | 147       |            |            |            |       |        |       |       | 163       |
| 7/14/2020  |           | 291        | 332        | 281        | 306   |        | 316   |       |           |
| 7/15/2020  |           |            |            |            |       |        |       | 315   |           |
| 2/22/2021  | 151       |            |            |            |       |        |       |       | 178       |
| 2/23/2021  |           | 238        | 312        | 302        | 317   | 389    | 284   |       |           |
| 2/24/2021  |           |            |            |            |       |        |       | 332   |           |
| 7/12/2021  | 149       |            |            |            |       |        |       |       | 159       |
| 7/20/2021  |           | 262        | 316        | 274        |       |        |       |       |           |
| 7/21/2021  |           |            |            |            | 295   | 380    | 289   | 332   |           |
|            |           |            |            |            |       |        |       |       |           |

Constituent: Calcium (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-20 | MW-3 (bg) | MW-4 (bg) |
|------------|-------|-----------|-----------|
| 4/25/2016  |       | 224       | 261       |
| 4/26/2016  | 368   |           |           |
| 6/20/2016  |       |           | 295       |
| 6/22/2016  | 386   | 266       |           |
| 8/9/2016   |       | 260       | 318       |
| 8/24/2016  |       | 274       | 319       |
| 10/3/2016  |       |           | 293       |
| 10/4/2016  |       | 243       |           |
| 10/26/2016 |       | 254       | 311       |
| 11/21/2016 |       | 263       | 320       |
| 1/18/2017  |       | 431       | 417       |
| 3/22/2017  |       | 318       | 292       |
| 4/18/2017  |       | 296       | 302       |
| 5/31/2017  |       | 306       | 284       |
| 8/23/2017  |       | 298       | 297       |
| 10/12/2017 | 353   |           |           |
| 10/13/2017 | 354   |           |           |
| 10/14/2017 | 346   |           |           |
| 10/15/2017 | 353   |           |           |
| 10/16/2017 | 347   |           |           |
| 10/17/2017 | 337   |           |           |
| 11/15/2017 | 334   |           |           |
| 5/22/2018  | 398   |           |           |
| 5/23/2018  |       |           | 296       |
| 5/24/2018  |       | 297       |           |
| 6/12/2018  |       | 318       | 355       |
| 10/17/2018 |       | 392       | 342       |
| 11/19/2018 |       | 387       | 289       |
| 11/20/2018 | 349   |           |           |
| 4/10/2019  |       | 348       | 356       |
| 5/14/2019  |       | 254       | 254       |
| 5/15/2019  | 381   |           |           |
| 10/8/2019  |       | 371       |           |
| 10/10/2019 | 407   |           | 302       |
| 10/16/2019 |       | 346       | 356       |
| 4/6/2020   |       | 177       | 222       |
| 4/8/2020   | 345   |           |           |
| 7/13/2020  |       | 264       |           |
| 7/14/2020  |       |           | 259       |
| 7/15/2020  | 342   |           |           |
| 2/22/2021  |       | 312       | 271       |
| 2/23/2021  | 343   |           |           |
| 7/12/2021  |       | 252       | 242       |
| 7/21/2021  | 336   |           |           |
|            |       |           |           |

Constituent: Chloride (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|                    | <br>MW-1 (bg) | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16   | MW-17R | MW-18   | MW-19   | MW-2 (bg)    |
|--------------------|---------------|------------|------------|------------|---------|--------|---------|---------|--------------|
| 4/25/20            | 4.04          |            | 4.40       |            |         |        | 4.45    | 4.70    | 1.9          |
| 4/26/20            | 1.94          | 1.71       | 1.48       | 1.11       | 0.70    |        | 1.45    | 1.76    |              |
| 4/27/20            | 0.00          |            |            |            | 2.76    |        |         |         | 0.40         |
| 6/20/20            | 2.09          | 0.1        | 1.00       | 1.10       | 2.00    |        | 1.04    | 0.10    | 3.43         |
| 6/22/20            | 2.10          | 2.1        | 1.83       | 1.19       | 3.08    |        | 1.64    | 2.19    | 2.21         |
| 8/8/201<br>8/24/20 | 2.18<br>2.22  |            |            |            |         |        |         |         | 3.31<br>3.23 |
| 10/3/20            | 2.22          |            |            |            |         |        |         |         | 3.21         |
| 10/3/20            | 2.34          |            |            |            |         |        |         |         | 3.35         |
| 11/21/2            | 2.5           |            |            |            |         |        |         |         | 3.34         |
| 1/17/20            | 2.68          |            |            |            |         |        |         |         | 3.58         |
| 3/22/20            | 3.7           |            |            |            |         |        |         |         | 3.4          |
| 4/18/20            | 2.4           |            |            |            |         |        |         |         | 2.6          |
| 5/30/20            | 2.6           |            |            |            |         |        |         |         | 2.0          |
| 5/31/20            | 2.0           |            |            |            |         |        |         |         | 4.4          |
| 8/23/20            | 2.7           |            |            |            |         |        |         |         | 4.4          |
| 10/12/2            | 2.7           | 2.3        | 2.2        | 1.8 (J)    | 4.4     |        | 1.8 (J) | 2.9     | 7.7          |
| 10/13/2            |               | 2.5        | 2.2        | 1.8 (J)    | 4.3 (B) |        | 2.3 (B) | 2.6 (B) |              |
| 10/14/2            |               | 1.6 (J)    | 1.3 (J)    | 1.1 (J)    | 3.4     |        | 1 (J)   | 1.8 (J) |              |
| 10/15/2            |               | 1.6 (J)    | 1.4 (J)    | 0.93 (J)   | 3.6     |        |         | 2       |              |
| 10/16/2            |               | 1.5 (J)    | 1.3 (J)    | 0.83 (J)   | 3.9     |        | 1 (J)   | 2.4     |              |
| 10/17/2            |               | 2.1        | 1.8 (J)    | 1.4 (J)    | 3.8     |        | 2       | 2.5     |              |
| 11/15/2            |               | 2.1        | 1.0 (0)    | 1.4 (J)    | 4.3     |        | 3.6     | 2.9     |              |
| 11/16/2            |               | 2.4        | 1.9 (J)    | 1.4 (0)    | 4.0     |        | 0.0     | 2.0     |              |
| 5/21/20            |               | 2.6        | 2.3        | 1.6 (J)    | 4.1     |        |         |         |              |
| 5/22/20            | 2.3           | 2.0        | 2.0        | (0)        |         |        | 2.1     | 2.9     | 3.2          |
| 6/12/20            | 2.3           |            |            |            |         |        |         | 2.0     | 3.7          |
| 10/17/2            | 1.7 (J)       |            |            |            |         |        |         |         | 4.6          |
| 11/19/2            | 1.7 (J)       | 1.6 (J)    | <2         | <2         | 3.7     |        | <2      |         | 3            |
| 11/20/2            | (5)           | (-)        | _          | _          |         |        |         | 1.8 (J) |              |
| 4/10/20            | 2.36          |            |            |            |         |        |         | (0)     | 1.76         |
| 5/14/20            | 2.28          | 1.96       | 1.97       | 1.87       | 4.12    |        |         |         | 2.98         |
| 5/15/20            |               |            |            |            |         |        | 1.61    | 2.22    |              |
| 10/8/20            | 2.31          | 2.1        | 2.01       | 1.8        | 3.88    |        |         | 2.13    | 4.26         |
| 10/16/2            | 2.42          |            |            |            |         |        |         |         | 4.04         |
| 4/6/202            | 2.01          |            |            |            | 3.26    |        |         |         | 2.43         |
| 4/7/202            |               | 1.67       | 1.59       | 1.4        |         |        |         |         |              |
| 4/8/202            |               |            |            |            |         |        | 1.43    | 1.63    |              |
| 7/13/20            | 2.1           |            |            |            |         |        |         |         | 4.05         |
| 7/14/20            |               | 1.9        | 1.73       | 1.5        | 3.61    |        | 1.48    |         |              |
| 7/15/20            |               |            |            |            |         |        |         | 1.71    |              |
| 2/22/20            | 2.16          |            |            |            |         |        |         |         | 1.72         |
| 2/23/20            |               | 1.6        | 1.53       | 1.41       | 3.08    | 2.36   | 1.34    |         |              |
| 2/24/20            |               |            |            |            |         |        |         | 2.02    |              |
| 7/12/20            | 2.19          |            |            |            |         |        |         |         | 2.36         |
| 7/20/20            |               | 1.7        | 3.65       | 3.16       |         |        |         |         |              |
| 7/21/20            |               |            |            |            | 2.97    | 2.38   | 1.4     | 1.74    |              |
|                    |               |            |            |            |         |        |         |         |              |

Constituent: Chloride (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-20 | MW-3 (bg) | MW-4 (bg) |
|------------|-------|-----------|-----------|
| 4/25/2016  |       | 1.32      | 1.53      |
| 4/26/2016  | 2.66  |           |           |
| 6/20/2016  |       |           | 1.85      |
| 6/22/2016  | 2.68  | 1.46      |           |
| 8/9/2016   |       | 1.35      | 1.95      |
| 8/24/2016  |       | 1.47      | 2.07      |
| 10/3/2016  |       |           | 2.02      |
| 10/4/2016  |       | 1.59      |           |
| 10/26/2016 |       | 1.27      | 2.07      |
| 11/21/2016 |       | 1.38      | 2.39      |
| 1/18/2017  |       | 1.34      | 1.9       |
| 3/22/2017  |       | 2         | 1.5 (J)   |
| 4/18/2017  |       | 2.2       | 1.6 (J)   |
| 5/31/2017  |       | 1.5 (J)   | 2.1       |
| 8/23/2017  |       | 1.8 (J)   | 2.3       |
| 10/12/2017 | 5.6   |           |           |
| 10/13/2017 | 5 (B) |           |           |
| 10/14/2017 | 4.4   |           |           |
| 10/15/2017 | 4.8   |           |           |
| 10/16/2017 | 4.9   |           |           |
| 10/17/2017 | 5.1   |           |           |
| 11/15/2017 | 6.3   |           |           |
| 5/22/2018  | 24    |           |           |
| 5/23/2018  |       |           | 2         |
| 5/24/2018  |       | 1.6 (J)   |           |
| 6/12/2018  |       | 1.4 (J)   | 1.7 (J)   |
| 10/17/2018 |       | <2        | 1.5 (J)   |
| 11/19/2018 |       | <2        | <2        |
| 11/20/2018 | 43    |           |           |
| 4/10/2019  |       | 2.25      | 1.88      |
| 5/14/2019  |       | 2.28      | 1.82      |
| 5/15/2019  | 57.7  |           |           |
| 10/8/2019  |       | 1.36      |           |
| 10/10/2019 | 66.1  |           | 1.93      |
| 10/16/2019 |       | 1.4       | 1.92      |
| 4/6/2020   |       | 1.72      | 1.5       |
| 4/8/2020   | 62.7  |           |           |
| 7/13/2020  |       | 1.34      |           |
| 7/14/2020  |       |           | 1.61      |
| 7/15/2020  | 68.4  |           |           |
| 2/22/2021  |       | 2.22      | 1.52      |
| 2/23/2021  | 129   |           |           |
| 7/12/2021  |       | 2.13      | 1.56      |
| 7/21/2021  | 67.9  |           |           |
|            |       |           |           |

Constituent: Chromium (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg)    | MW-13 (bg)   | MW-14 (bg)   | MW-15 (bg) | MW-16    | MW-17R      | MW-18    | MW-19    | MW-2 (bg)   |
|------------|--------------|--------------|--------------|------------|----------|-------------|----------|----------|-------------|
| 4/25/2016  |              |              |              |            |          |             |          |          | <0.00102    |
| 4/26/2016  | <0.00102     | <0.00102     | <0.00102     | <0.00102   |          |             | <0.00102 | <0.00102 |             |
| 4/27/2016  |              |              |              |            | <0.00102 |             |          |          |             |
| 6/20/2016  | <0.00102     |              |              |            |          |             |          |          | <0.00102    |
| 6/22/2016  |              | <0.00102     | <0.00102     | <0.00102   | <0.00102 |             | <0.00102 | <0.00102 |             |
| 8/8/2016   | <0.00102     |              |              |            |          |             |          |          | <0.00102    |
| 8/24/2016  | <0.00102     |              |              |            |          |             |          |          | <0.00102    |
| 10/3/2016  | <0.00102     |              |              |            |          |             |          |          | <0.00102    |
| 10/26/2016 | <0.00102     |              |              |            |          |             |          |          | <0.00102    |
| 11/21/2016 | <0.00102     |              |              |            |          |             |          |          | <0.00102    |
| 1/17/2017  | <0.00102     |              |              |            |          |             |          |          | <0.00102    |
| 3/22/2017  | <0.00102     |              |              |            |          |             |          |          | <0.00102    |
| 4/18/2017  | <0.00102     |              |              |            |          |             |          |          | <0.00102    |
| 5/30/2017  | <0.00102     |              |              |            |          |             |          |          |             |
| 5/31/2017  |              |              |              |            |          |             |          |          | <0.00102    |
| 10/12/2017 |              | <0.00102     | <0.00102     | <0.00102   | <0.00102 |             | <0.00102 | <0.00102 |             |
| 10/13/2017 |              | <0.00102     | <0.00102     | <0.00102   | <0.00102 |             | <0.00102 | <0.00102 |             |
| 10/14/2017 |              | <0.00102     | <0.00102     | <0.00102   | <0.00102 |             | <0.00102 | <0.00102 |             |
| 10/15/2017 |              | <0.00102     | <0.00102     | <0.00102   | <0.00102 |             | <0.00102 | <0.00102 |             |
| 10/16/2017 |              | <0.00102     | <0.00102     | <0.00102   | <0.00102 |             | <0.00102 | <0.00102 |             |
| 10/17/2017 |              | <0.00102     | <0.00102     | <0.00102   | <0.00102 |             | <0.00102 | <0.00102 |             |
| 2/13/2018  | <0.00102     | <0.00102     | <0.00102     |            |          |             |          |          | <0.00102    |
| 2/14/2018  |              |              |              | <0.00102   | <0.00102 |             | <0.00102 | <0.00102 |             |
| 5/21/2018  |              | <0.00102     | <0.00102     | <0.00102   | <0.00102 |             |          |          |             |
| 5/22/2018  | <0.00102     |              |              |            |          |             | <0.00102 | <0.00102 | <0.00102    |
| 6/12/2018  | <0.00102     |              |              |            |          |             |          |          | <0.00102    |
| 10/17/2018 | <0.00102     |              |              |            |          |             |          |          | <0.00102    |
| 11/19/2018 | <0.00102     | <0.00102     | <0.00102     | <0.00102   | <0.00102 |             | <0.00102 |          | <0.00102    |
| 11/20/2018 |              |              |              |            |          |             |          | <0.00102 |             |
| 4/10/2019  | <0.00102     |              |              |            |          |             |          |          | <0.00102    |
| 5/14/2019  | <0.00102     | <0.00102     | <0.00102     | <0.00102   | <0.00102 |             |          |          | <0.00102    |
| 5/15/2019  |              |              |              |            |          |             | <0.00102 | <0.00102 |             |
| 10/8/2019  | <0.00102     | <0.00102     | <0.00102     | <0.00102   | <0.00102 |             | <0.00102 | <0.00102 | <0.00102    |
| 10/16/2019 | <0.00102     |              |              |            |          |             |          |          | <0.00102    |
| 4/6/2020   | <0.00102     |              |              |            | <0.00102 |             |          |          | <0.00102    |
| 4/7/2020   |              | <0.00102     | <0.00102     | <0.00102   |          |             |          |          |             |
| 4/8/2020   |              |              |              |            |          |             | <0.00102 | <0.00102 |             |
| 7/13/2020  | <0.00102     |              |              |            |          |             |          |          | <0.00102    |
| 7/14/2020  |              | <0.00102     | <0.00102     | <0.00102   | <0.00102 |             | <0.00102 |          |             |
| 7/15/2020  |              |              |              |            |          |             |          | <0.00102 |             |
| 2/22/2021  | 0.000382 (J) |              |              |            |          |             |          |          | <0.00102    |
| 2/23/2021  |              | 0.000295 (J) | 0.000253 (J) | <0.00102   | <0.00102 | <0.00102    | <0.00102 |          |             |
| 2/24/2021  |              |              |              |            |          |             |          | <0.00102 |             |
| 7/12/2021  | 0.00049 (J)  |              |              |            |          |             |          |          | 0.00025 (J) |
| 7/20/2021  |              | <0.00102     | <0.00102     | <0.00102   |          |             |          |          |             |
| 7/21/2021  |              |              |              |            | <0.00102 | 0.00036 (J) | <0.00102 | <0.00102 |             |
|            |              |              |              |            |          |             |          |          |             |

Constituent: Chromium (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-20       | MW-3 (bg)   | MW-4 (bg)  |
|------------|-------------|-------------|------------|
| 4/25/2016  |             | 0.00373 (J) | <0.00102   |
| 4/26/2016  | <0.00102    |             |            |
| 6/20/2016  |             |             | <0.00102   |
| 6/22/2016  | <0.00102    | 0.00606 (J) |            |
| 8/9/2016   |             | <0.00102    | <0.00102   |
| 8/24/2016  |             | <0.00102    | <0.00102   |
| 10/3/2016  |             |             | <0.00102   |
| 10/4/2016  |             | <0.00102    |            |
| 10/26/2016 |             | <0.00102    | <0.00102   |
| 11/21/2016 |             | <0.00102    | <0.00102   |
| 1/18/2017  |             | <0.00102    | <0.00102   |
| 3/22/2017  |             | 0.00945 (J) | <0.00102   |
| 4/18/2017  |             | 0.0105      | <0.00102   |
| 5/31/2017  |             | <0.00102    | <0.00102   |
| 10/12/2017 | <0.00102    |             |            |
| 10/13/2017 | <0.00102    |             |            |
| 10/14/2017 | <0.00102    |             |            |
| 10/15/2017 | <0.00102    |             |            |
| 10/16/2017 | <0.00102    |             |            |
| 10/17/2017 | <0.00102    |             |            |
| 2/13/2018  |             | <0.00102    | <0.00102   |
| 2/14/2018  | <0.00102    |             |            |
| 5/22/2018  | <0.00102    |             |            |
| 5/23/2018  |             |             | <0.00102   |
| 5/24/2018  |             | <0.00102    |            |
| 6/12/2018  |             | <0.00102    | <0.00102   |
| 10/17/2018 |             | <0.00102    | <0.00102   |
| 11/19/2018 |             | <0.00102    | <0.00102   |
| 11/20/2018 | <0.00102    |             |            |
| 4/10/2019  |             | <0.00102    | <0.00102   |
| 5/14/2019  |             | <0.00102    | <0.00102   |
| 5/15/2019  | <0.00102    |             |            |
| 10/8/2019  |             | <0.00102    |            |
| 10/10/2019 | <0.00102    |             | <0.00102   |
| 10/16/2019 |             | <0.00102    | <0.00102   |
| 4/6/2020   |             | <0.00102    | <0.00102   |
| 4/8/2020   | 0.00312 (J) |             |            |
| 7/13/2020  |             | <0.00102    |            |
| 7/14/2020  |             |             | <0.00102   |
| 7/15/2020  | <0.00102    |             |            |
| 2/22/2021  |             | 0.00035 (J) | <0.00102   |
| 2/23/2021  | <0.00102    |             |            |
| 7/12/2021  |             | 0.00031 (J) | 0.0003 (J) |
| 7/21/2021  | <0.00102    |             |            |

Constituent: Cobalt (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg)  | MW-15 (bg) | MW-16       | MW-17R | MW-18       | MW-19  | MW-2 (bg) |
|------------|-----------|------------|-------------|------------|-------------|--------|-------------|--------|-----------|
| 4/25/2016  |           |            |             |            |             |        |             |        | 0.0487    |
| 4/26/2016  | 0.0343    | 0.0205     | 0.00716 (J) | 0.0686     |             |        | <0.0002     | 0.0717 |           |
| 4/27/2016  |           |            |             |            | 0.00779 (J) |        |             |        |           |
| 6/20/2016  | 0.0413    |            |             |            |             |        |             |        | 0.0767    |
| 6/22/2016  |           | 0.0261     | 0.0113      | 0.0745     | 0.0093 (J)  |        | <0.0002     | 0.0844 |           |
| 8/8/2016   | 0.0513    |            |             |            |             |        |             |        | 0.103     |
| 8/24/2016  | 0.0471    |            |             |            |             |        |             |        | 0.093     |
| 10/3/2016  | 0.0525    |            |             |            |             |        |             |        | 0.0964    |
| 10/26/2016 | 0.0527    |            |             |            |             |        |             |        | 0.0904    |
| 11/21/2016 | 0.0569    |            |             |            |             |        |             |        | 0.0857    |
| 1/17/2017  | 0.0768    |            |             |            |             |        |             |        | 0.0745    |
| 3/22/2017  | 0.0535    |            |             |            |             |        |             |        | 0.0328    |
| 4/18/2017  | 0.0442    |            |             |            |             |        |             |        | 0.0242    |
| 5/30/2017  | 0.0465    |            |             |            |             |        |             |        |           |
| 5/31/2017  |           |            |             |            |             |        |             |        | 0.0441    |
| 10/12/2017 |           | 0.0183     | 0.0108      | 0.0687     | 0.00923 (J) |        | <0.0002     | 0.173  |           |
| 10/13/2017 |           | 0.0214     | 0.0115      | 0.0705     | 0.00981 (J) |        | <0.0002     | 0.171  |           |
| 10/14/2017 |           | 0.0201     | 0.0113      | 0.0716     | 0.00954 (J) |        | <0.0002     | 0.168  |           |
| 10/15/2017 |           | 0.0193     | 0.0108      | 0.0696     | 0.00979 (J) |        | <0.0002     | 0.166  |           |
| 10/16/2017 |           | 0.0163     | 0.00981 (J) | 0.0632     | 0.00919 (J) |        | <0.0002     | 0.15   |           |
| 10/17/2017 |           | 0.0155     | 0.00949 (J) | 0.0563     | 0.00786 (J) |        | <0.0002     | 0.13   |           |
| 2/13/2018  | 0.062     | 0.0101     | 0.0104      |            |             |        |             |        | 0.0179    |
| 2/14/2018  |           |            |             | 0.0685     | 0.00965 (J) |        | 0.00286 (J) | 0.0741 |           |
| 5/21/2018  |           | 0.0114     | 0.00826 (J) | 0.062      | 0.0092 (J)  |        |             |        |           |
| 5/22/2018  | 0.0443    |            |             |            |             |        | <0.0002     | 0.077  | 0.028     |
| 6/12/2018  | 0.0512    |            |             |            |             |        |             |        | 0.0366    |
| 10/17/2018 | 0.0751    |            |             |            |             |        |             |        | 0.0745    |
| 11/19/2018 | 0.0825    | 0.0208     | 0.0119      | 0.0787     | 0.0117      |        | <0.0002     |        | 0.0225    |
| 11/20/2018 |           |            |             |            |             |        |             | 0.071  |           |
| 4/10/2019  | 0.0445    |            |             |            |             |        |             |        | 0.0152    |
| 5/14/2019  | 0.0485    | 0.00941    | 0.0085      | 0.0739     | 0.00943     |        |             |        | 0.0222    |
| 5/15/2019  |           |            |             |            |             |        | <0.0002     | 0.0454 |           |
| 10/8/2019  | 0.0778    | 0.0204     | 0.0108      | 0.0725     | 0.0111      |        | <0.0002     | 0.0545 | 0.0674    |
| 10/16/2019 | 0.08      |            |             |            |             |        |             |        | 0.073     |
| 4/6/2020   | 0.0417    |            |             |            | 0.00859     |        |             |        | 0.0116    |
| 4/7/2020   |           | 0.00814    | 0.00781     | 0.0697     |             |        |             |        |           |
| 4/8/2020   |           |            |             |            |             |        | <0.0002     | 0.0257 |           |
| 7/13/2020  | 0.0532    |            |             |            |             |        |             |        | 0.0405    |
| 7/14/2020  |           | 0.0143     | 0.00839     | 0.0694     | 0.00979     |        | <0.0002     |        |           |
| 7/15/2020  |           |            |             |            |             |        |             | 0.0299 |           |
| 2/22/2021  | 0.0657    |            |             |            |             |        |             |        | 0.0161    |
| 2/23/2021  |           | 0.00685    | 0.00918     | 0.0755     | 0.01        | 0.385  | <0.0002     |        |           |
| 2/24/2021  |           |            |             |            |             |        |             | 0.0382 |           |
| 7/12/2021  | 0.0556    |            |             |            |             |        |             |        | 0.0155    |
| 7/20/2021  |           | 0.00414    | 0.00847     | 0.0721     |             |        |             |        |           |
| 7/21/2021  |           |            |             |            | 0.00887     | 0.329  | <0.0002     | 0.0293 |           |
|            |           |            |             |            |             |        |             |        |           |

Constituent: Cobalt (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |          |             | i idiii do |
|------------|----------|-------------|------------|
|            | MW-20    | MW-3 (bg)   | MW-4 (bg)  |
| 4/25/2016  |          | 0.232       | <0.0002    |
| 4/26/2016  | <0.0002  |             |            |
| 6/20/2016  |          |             | <0.0002    |
| 6/22/2016  | <0.0002  | 0.332       |            |
| 8/9/2016   |          | 0.311       | <0.0002    |
| 8/24/2016  |          | 0.271       | <0.0002    |
| 10/3/2016  |          |             | <0.0002    |
| 10/4/2016  |          | 0.148       |            |
| 10/26/2016 |          | 0.236       | <0.0002    |
| 11/21/2016 |          | 0.241       | <0.0002    |
| 1/18/2017  |          | 0.347       | <0.0002    |
| 3/22/2017  |          | 0.271       | <0.0002    |
| 4/18/2017  |          | 0.00324 (J) | <0.0002    |
| 5/31/2017  |          | 0.225       | <0.0002    |
| 10/12/2017 | <0.0002  |             |            |
| 10/13/2017 | <0.0002  |             |            |
| 10/14/2017 | <0.0002  |             |            |
| 10/15/2017 | <0.0002  |             |            |
| 10/16/2017 | <0.0002  |             |            |
| 10/17/2017 | <0.0002  |             |            |
| 2/13/2018  |          | 0.00661 (J) | <0.0002    |
| 2/14/2018  | <0.0002  |             |            |
| 5/22/2018  | <0.0002  |             |            |
| 5/23/2018  |          |             | <0.0002    |
| 5/24/2018  |          | 0.158       |            |
| 6/12/2018  |          | 0.291       | <0.0002    |
| 10/17/2018 |          | 0.49        | <0.0002    |
| 11/19/2018 |          | 0.386       | <0.0002    |
| 11/20/2018 | <0.0002  |             |            |
| 4/10/2019  |          | 0.0144      | <0.0002    |
| 5/14/2019  |          | 0.00536     | <0.0002    |
| 5/15/2019  | <0.0002  |             |            |
| 10/8/2019  |          | 1.07 (o)    |            |
| 10/10/2019 | <0.0002  |             | <0.0002    |
| 10/16/2019 |          | 0.848 (o)   | <0.0002    |
| 4/6/2020   |          | <0.0002     | <0.0002    |
| 4/8/2020   | <0.0002  |             |            |
| 7/13/2020  |          | 0.47        |            |
| 7/14/2020  |          |             | <0.0002    |
| 7/15/2020  | <0.0002  |             |            |
| 2/22/2021  |          | 0.0515      | <0.0002    |
| 2/23/2021  | 0.000234 |             |            |
| 7/12/2021  |          | 0.00567     | <0.0002    |
| 7/21/2021  | 0.00023  |             |            |
|            |          |             |            |

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

| 1/00/0010   | MW-1 (bg)  | MW-13 (bg)            | MW-14 (bg) | MW-15 (bg) | MW-16       | MW-17R   | MW-18       | MW-19     | MW-2 (bg)   |
|-------------|------------|-----------------------|------------|------------|-------------|----------|-------------|-----------|-------------|
| 4/26/2016   | 0.622      | 0.245 (U)             | 0.429      | 0.139 (U)  | 0.05 (1)    |          | -0.105 (U)  | 0.415 (U) |             |
| 4/27/2016   |            |                       |            |            | 0.35 (U)    |          |             |           | 0.0740.410  |
| 5/5/2016    |            |                       |            |            |             |          |             |           | -0.0718 (U) |
| 6/20/2016   | 0.159 (U)  |                       |            |            |             |          |             |           | 0.295 (U)   |
| 6/22/2016   |            | 0.822                 | 0.293 (U)  | 0.318 (U)  | 0.231 (U)   |          | 0.109 (U)   | 0.536     |             |
| 8/8/2016    | 0.511 (U)  |                       |            |            |             |          |             |           | 0.231 (U)   |
| 8/24/2016   | 0.566 (U)  |                       |            |            |             |          |             |           | 0.65        |
| 10/3/2016   | 0.537 (U)  |                       |            |            |             |          |             |           | 0.845       |
| 10/26/2016  | 0.636      |                       |            |            |             |          |             |           | 0.994       |
| 11/21/2016  | 0.807      |                       |            |            |             |          |             |           | 0.537 (U)   |
| 1/17/2017   | 0.308 (U)  |                       |            |            |             |          |             |           | -0.0159 (U) |
| 3/22/2017   | 0.344 (U)  |                       |            |            |             |          |             |           | 0.279 (U)   |
| 4/18/2017   | 0.934      |                       |            |            |             |          |             |           | 0.32 (U)    |
| 5/30/2017   | 0.149 (U)  |                       |            |            |             |          |             |           |             |
| 5/31/2017   |            |                       |            |            |             |          |             |           | 0.178 (U)   |
| 10/12/2017  |            | 0.478 (U)             | 0.34 (U)   | 0.575 (U)  | 0.241 (U)   |          | 0.0572 (U)  | 0.188 (U) |             |
| 10/13/2017  |            | 0.561 (U)             | 0.511 (U)  | 0.593 (U)  | 0.964 (U)   |          | 0.433 (U)   | 0.561 (U) |             |
| 10/14/2017  |            | 2.15 (O)              | 0.701 (U)  | 0.573 (U)  | 0.858 (U)   |          | 1.59 (U)    | 0.754 (U) |             |
| 10/15/2017  |            | 0.198 (U)             | 0.311 (U)  | 0.769 (U)  | -0.0572 (U) |          | -0.0872 (U) | 1.06 (U)  |             |
| 10/16/2017  |            | 0.641 (U)             | 0.755 (U)  | 0.441 (U)  | 0.558 (U)   |          | 0.267 (U)   | 0.6 (U)   |             |
| 10/17/2017  |            | 0.344 (U)             | 0.214 (U)  | 0.189 (U)  | 0.783 (U)   |          | 0.427 (U)   | 0.521 (U) |             |
| 2/13/2018   | 0.774      | 1 (U)                 | 1.26       |            |             |          |             |           | 0.804       |
| 2/14/2018   |            |                       |            | 1.91       | 0.621       |          | 1.15        | 1.08      |             |
| 5/21/2018   |            | 0.407 (U)             | 0.375 (U)  | 0.209 (U)  | 2.13        |          |             |           |             |
| 5/22/2018   | -0.091 (U) |                       |            |            |             |          | 0.34 (U)    | 0.384 (U) | 0.0077 (U)  |
| 6/12/2018   | 1.18       |                       |            |            |             |          |             |           | -0.315 (U)  |
| 10/17/2018  | 0.553 (U)  |                       |            |            |             |          |             |           | 0.574 (U)   |
| 11/19/2018  | 0.862 (D)  | 0.637                 | 0.636      | 0.306 (U)  | 0.292 (U)   |          | 0.274 (U)   |           | 0.654 (D)   |
| 11/20/2018  |            |                       |            |            |             |          |             | 0.302 (U) |             |
| 5/14/2019   | 0.509      | 0.529                 | 0.518      | 0.817      | 0.53        |          |             |           | 0.579       |
| 5/15/2019   |            |                       |            |            |             |          | 0.287 (U)   | 0.286 (U) |             |
| 10/8/2019   | 1.47       | 0.29 (U)              | 0.478 (U)  | 0.712 (U)  | 0.748 (U)   |          | -0.169 (U)  | 0.616 (U) | 0.493 (U)   |
| 10/16/2019  | 0.204 (U)  |                       |            |            |             |          |             |           | 0.046 (U)   |
| 4/6/2020    | 0.309 (U)  |                       |            |            | 0.391 (U)   |          |             |           | 0.212 (U)   |
| 4/7/2020    | ,          | 0.169 (U)             | 0.276 (U)  | 0.389 (U)  | ,           |          |             |           | ` ,         |
| 4/8/2020    |            | . ,                   | ,          | ,          |             |          | 0.456 (U)   | 0.502 (U) |             |
| 7/13/2020   | 0.219 (U)  |                       |            |            |             |          |             | (-)       | 0.0814 (U)  |
| 7/14/2020   |            | 0.779                 | 0.651      | 0.369 (U)  | 0.565       |          | 0.205 (U)   |           | (-,         |
| 7/15/2020   |            |                       |            |            |             |          |             | 0.371 (U) |             |
| 2/22/2021   | 0.677 (U)  |                       |            |            |             |          |             |           | 0.434 (U)   |
| 2/23/2021   | 0.077 (0)  | 0.453 (U)             | 0.804 (U)  | 0.587 (U)  | 0.546 (U)   | 0.44 (U) | 0.748 (U)   |           | 0.404 (0)   |
| 2/24/2021   |            | 3.400 (0)             | 3.004 (0)  | 3.007 (0)  | 3.040 (0)   | S.77 (O) | 3.7-10 (0)  | 0.82 (U)  |             |
| 7/12/2021   | 0.476 (U)  |                       |            |            |             |          |             | 3.02 (0)  | 0.155 (U)   |
| 7/20/2021   | 3.470 (0)  | 0.574 (U)             | 0.733 (U)  | 0.877 (U)  |             |          |             |           | 0.100 (0)   |
| 7/20/2021   |            | 5.57 <del>4</del> (0) | 3.733 (0)  | 3.077 (0)  | 0.485 (U)   | 0.72 (U) | 0.389 (U)   | 0.629 (U) |             |
| 112 11202 1 |            |                       |            |            | 0.703 (0)   | 0.72 (0) | 0.505 (0)   | 0.023 (0) |             |

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |           |            | · idiii     |
|------------|-----------|------------|-------------|
|            | MW-20     | MW-3 (bg)  | MW-4 (bg)   |
| 4/25/2016  |           | 0.484 (U)  | 0.434 (U)   |
| 4/26/2016  | 0.967     |            |             |
| 6/20/2016  |           |            | 0.287 (U)   |
| 6/22/2016  | 0.595     | 0.2 (U)    |             |
| 8/9/2016   |           | 0.378 (U)  | 0.516 (U)   |
| 8/24/2016  |           | 0.131 (U)  | 0.266 (U)   |
| 10/3/2016  |           |            | 0.59 (U)    |
| 10/4/2016  |           | 0.514 (U)  |             |
| 10/26/2016 |           | 0.755      | 0.164 (U)   |
| 11/21/2016 |           | 0.7        | 0.296 (U)   |
| 1/18/2017  |           | 0.606      | 0.0267 (U)  |
| 3/22/2017  |           | 0.927      | 0.132 (U)   |
| 4/18/2017  |           | 0.334 (U)  | -0.0439 (U) |
| 5/31/2017  |           | 0.8        | 0.3 (U)     |
| 10/12/2017 | 0.646 (U) |            |             |
| 10/13/2017 | 1.25 (U)  |            |             |
| 10/14/2017 | 1.16 (U)  |            |             |
| 10/15/2017 | 0.935 (U) |            |             |
| 10/16/2017 | 0.929 (U) |            |             |
| 10/17/2017 | 0.736 (U) |            |             |
| 2/13/2018  |           | 0.649      | 0.69        |
| 2/14/2018  | 1.47      |            |             |
| 5/22/2018  | 0.581     |            |             |
| 5/23/2018  |           |            | 0.186 (U)   |
| 5/24/2018  |           | 0.448 (U)  |             |
| 6/12/2018  |           | 0.234 (U)  | 0.153 (U)   |
| 10/17/2018 |           | 0.852      | 0.313 (U)   |
| 11/19/2018 |           | 0.521 (D)  | 0.794 (D)   |
| 11/20/2018 | 0.65      |            |             |
| 5/14/2019  |           | 0.176 (U)  | 0.352 (U)   |
| 5/15/2019  | 0.418     |            |             |
| 10/8/2019  |           | 0.833 (U)  |             |
| 10/10/2019 | 1.18      |            | 1.02 (U)    |
| 10/16/2019 |           | 0.0279 (U) | 0.356 (U)   |
| 4/6/2020   |           | 0.569 (U)  | 0.459 (U)   |
| 4/8/2020   | 0.7       |            |             |
| 7/13/2020  |           | 0.53       |             |
| 7/14/2020  |           |            | 0.169 (U)   |
| 7/15/2020  | 0.96      |            |             |
| 2/22/2021  |           | 0.472 (U)  | 0 (U)       |
| 2/23/2021  | 1.19 (U)  |            |             |
| 7/12/2021  |           | 0.114 (U)  | 0.301 (U)   |
| 7/21/2021  | 1.48      |            |             |

Constituent: Fluoride (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg)  | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16     | MW-17R | MW-18   | MW-19    | MW-2 (bg) |
|------------|------------|------------|------------|------------|-----------|--------|---------|----------|-----------|
| 4/25/2016  |            |            |            |            |           |        |         |          | 0.149 (J) |
| 4/26/2016  | 0.146 (J)  | 0.197 (J)  | 0.271 (J)  | 0.379      |           |        | 0.329   | 0.332    |           |
| 4/27/2016  |            |            |            |            | 0.168 (J) |        |         |          |           |
| 6/20/2016  | 0.148 (J)  |            |            |            |           |        |         |          | 0.148 (J) |
| 6/22/2016  |            | 0.208 (J)  | 0.265 (J)  | 0.347      | 0.176 (J) |        | 0.303   | 0.334    |           |
| 8/8/2016   | 0.137 (J)  |            |            |            |           |        |         |          | 0.134 (J) |
| 8/24/2016  | 0.133 (J)  |            |            |            |           |        |         |          | 0.129 (J) |
| 10/3/2016  | 0.103 (J)  |            |            |            |           |        |         |          | 0.086 (J) |
| 10/26/2016 | 0.05 (J)   |            |            |            |           |        |         |          | 0.027 (J) |
| 11/21/2016 | 0.047 (J)  |            |            |            |           |        |         |          | 0.027 (J) |
| 1/17/2017  | 0.09 (J)   |            |            |            |           |        |         |          | 0.066 (J) |
| 3/22/2017  | 0.12       |            |            |            |           |        |         |          | 0.13      |
| 4/18/2017  | 0.12       |            |            |            |           |        |         |          | 0.16      |
| 5/30/2017  | 0.13       |            |            |            |           |        |         |          |           |
| 5/31/2017  |            |            |            |            |           |        |         |          | 0.13      |
| 8/23/2017  | 0.16       |            |            |            |           |        |         |          | 0.16      |
| 10/12/2017 |            | 0.22       | 0.26       | 0.37       | 0.18      |        | 0.31    | 0.34     |           |
| 10/13/2017 |            | 0.2        | 0.25       | 0.36       | 0.17      |        | 0.32    | 0.34     |           |
| 10/14/2017 |            | 0.21       | 0.26       | 0.37       | 0.18      |        | 0.32    | 0.34     |           |
| 10/15/2017 |            | 0.22       | 0.26       | 0.35       | 0.18      |        | 0.32    | 0.34     |           |
| 10/16/2017 |            | 0.22       | 0.25       | 0.36       | 0.18      |        | 0.31    | 0.35     |           |
| 10/17/2017 |            | 0.2        | 0.25       | 0.35       | 0.17      |        | 0.31    | 0.33     |           |
| 11/15/2017 |            |            |            | 0.35       | 0.17      |        | 0.31    | 0.34     |           |
| 11/16/2017 |            | 0.2        | 0.25       |            |           |        |         |          |           |
| 2/13/2018  | 0.14 (D)   | 0.24 (D)   | 0.25 (D)   |            |           |        |         |          | 0.22 (D)  |
| 2/14/2018  |            |            |            | 0.35 (D)   | 0.17 (D)  |        | 0.3 (D) | 0.28 (D) |           |
| 5/21/2018  |            | 0.22       | 0.26       | 0.35       | 0.18      |        |         |          |           |
| 5/22/2018  | 0.16       |            |            |            |           |        | 0.31    | 0.29     | 0.17      |
| 6/12/2018  | 0.16       |            |            |            |           |        |         |          | 0.16      |
| 10/17/2018 | 0.18       |            |            |            |           |        |         |          | 0.16      |
| 11/19/2018 | 0.15       | 0.2        | 0.25       | 0.34       | 0.17      |        | 0.3     |          | 0.18      |
| 11/20/2018 |            |            |            |            |           |        |         | 0.28     |           |
| 4/10/2019  | 0.102      |            |            |            |           |        |         |          | 0.262     |
| 5/14/2019  | 0.119      | 0.196      | 0.225      | 0.34       | 0.153     |        |         |          | 0.17      |
| 5/15/2019  |            |            |            |            |           |        | 0.27    | 0.277    |           |
| 10/8/2019  | 0.0924 (J) | 0.184      | 0.224      | 0.382      | 0.161     |        | 0.284   | 0.345    | 0.164     |
| 10/16/2019 | 0.0756 (J) |            |            |            |           |        |         |          | 0.114     |
| 4/6/2020   | 0.101      |            |            |            | 0.141     |        |         |          | 0.207     |
| 4/7/2020   |            | 0.189      | 0.201      | 0.303      |           |        |         |          |           |
| 4/8/2020   |            |            |            |            |           |        | 0.305   | 0.304    |           |
| 7/13/2020  | 0.0678 (J) |            |            |            |           |        |         |          | 0.132     |
| 7/14/2020  |            | 0.174      | 0.227      | 0.305      | 0.16      |        | 0.28    |          |           |
| 7/15/2020  |            |            |            |            |           |        |         | 0.342    |           |
| 2/22/2021  | 0.082 (J)  |            |            |            |           |        |         |          | 0.209     |
| 2/23/2021  |            | 0.224      | 0.22       | 0.275      | 0.161     | 0.154  | 0.29    |          |           |
| 2/24/2021  |            |            |            |            |           |        |         | 0.343    |           |
| 7/12/2021  | 0.125      |            |            |            |           |        |         |          | 0.196     |
| 7/20/2021  |            | 0.323      | 0.276      | 0.288      |           |        |         |          |           |
| 7/21/2021  |            |            |            |            | 0.201     | 0.183  | 0.348   | 0.429    |           |
|            |            |            |            |            |           |        |         |          |           |

Constituent: Fluoride (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|                          |           |           | <u> </u>       |
|--------------------------|-----------|-----------|----------------|
|                          | MW-20     | MW-3 (bg) | MW-4 (bg)      |
| 4/25/2016                |           | 0.243 (J) | 0.372          |
| 4/26/2016                | 0.115 (J) |           |                |
| 6/20/2016                |           |           | 0.361          |
| 6/22/2016                | 0.126 (J) | 0.269 (J) |                |
| 8/9/2016                 |           | 0.363     | 0.326          |
| 8/24/2016                |           | 0.346     | 0.329          |
| 10/3/2016                |           |           | 0.287 (J)      |
| 10/4/2016                |           | 0.266 (J) |                |
| 10/26/2016               |           | 0.266 (J) | 0.194 (J)      |
| 11/21/2016               |           | 0.244 (J) | 0.192 (J)      |
| 1/18/2017                |           | 0.385     | 0.223 (J)      |
| 3/22/2017                |           | 0.41      | 0.32           |
| 4/18/2017                |           | 0.29      | 0.32           |
| 5/31/2017                |           | 0.37      | 0.31           |
| 8/23/2017                |           | 0.55      | 0.38           |
| 10/12/2017               | 0.12      |           |                |
| 10/13/2017               | 0.13      |           |                |
| 10/14/2017               | 0.13      |           |                |
| 10/15/2017               | 0.14      |           |                |
| 10/16/2017               | 0.13      |           |                |
| 10/17/2017               | 0.13      |           |                |
| 11/15/2017               | 0.13      |           |                |
| 2/13/2018                |           | 0.27 (D)  | 0.38 (D)       |
| 2/14/2018                | 0.12 (D)  |           |                |
| 5/22/2018                | 0.13      |           |                |
| 5/23/2018                |           |           | 0.38           |
| 5/24/2018                |           | 0.6       |                |
| 6/12/2018                |           | 0.53      | 0.39           |
| 10/17/2018               |           | 0.63      | 0.39           |
| 11/19/2018               |           | 0.31      | 0.36           |
| 11/20/2018               | 0.12      |           |                |
| 4/10/2019                |           | 0.273     | 0.384          |
| 5/14/2019                | 0.40      | 0.281     | 0.335          |
| 5/15/2019                | 0.12      | 0.005     |                |
| 10/8/2019                | 0.103     | 0.225     | 0.204          |
| 10/10/2019<br>10/16/2019 | 0.103     | 0.106     | 0.304          |
| 4/6/2020                 |           | 0.106     | 0.302<br>0.368 |
| 4/8/2020                 | 0.107     | 0.314     | 0.306          |
| 7/13/2020                | 0.107     | 0.13      |                |
| 7/13/2020                |           | 0.10      | 0.33           |
| 7/14/2020                | 0.11      |           | 0.55           |
| 2/22/2021                | 0.11      | 0.246     | 0.357          |
| 2/23/2021                | 0.117     | 0.270     | 0.557          |
| 7/12/2021                | 0.117     | 0.287     | 0.35           |
| 7/12/2021                | 0.143     | 0.207     | 0.00           |
| 112 11202 I              | 0.170     |           |                |

Constituent: Lead (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|                        | MW-1 (bg)          | MW-13 (bg)      | MW-14 (bg)      | MW-15 (bg)      | MW-16          | MW-17R    | MW-18           | MW-19           | MW-2 (bg) |
|------------------------|--------------------|-----------------|-----------------|-----------------|----------------|-----------|-----------------|-----------------|-----------|
| 4/25/2016              |                    |                 |                 |                 |                |           |                 |                 | <0.0002   |
| 4/26/2016              | <0.0002            | <0.0002         | <0.0002         | <0.0002         |                |           | <0.0002         | <0.0002         |           |
| 4/27/2016              |                    |                 |                 |                 | <0.0002        |           |                 |                 |           |
| 6/20/2016              | <0.0002            |                 |                 |                 |                |           |                 |                 | <0.0002   |
| 6/22/2016              |                    | <0.0002         | <0.0002         | <0.0002         | <0.0002        |           | <0.0002         | <0.0002         |           |
| 8/8/2016               | <0.0002            |                 |                 |                 |                |           |                 |                 | <0.0002   |
| 8/24/2016              | <0.0002            |                 |                 |                 |                |           |                 |                 | <0.0002   |
| 10/3/2016              | <0.0002            |                 |                 |                 |                |           |                 |                 | <0.0002   |
| 10/26/2016             | <0.0002            |                 |                 |                 |                |           |                 |                 | <0.0002   |
| 11/21/2016             | <0.0002            |                 |                 |                 |                |           |                 |                 | <0.0002   |
| 1/17/2017              | <0.0002            |                 |                 |                 |                |           |                 |                 | <0.0002   |
| 3/22/2017              | <0.0002            |                 |                 |                 |                |           |                 |                 | <0.0002   |
| 4/18/2017              | <0.0002            |                 |                 |                 |                |           |                 |                 | <0.0002   |
| 5/30/2017              | <0.0002            |                 |                 |                 |                |           |                 |                 |           |
| 5/31/2017              |                    |                 |                 |                 |                |           |                 |                 | <0.0002   |
| 10/12/2017             |                    | <0.0002         | <0.0002         | <0.0002         | <0.0002        |           | <0.0002         | <0.0002         | 0.0002    |
| 10/13/2017             |                    | <0.0002         | <0.0002         | <0.0002         | <0.0002        |           | <0.0002         | <0.0002         |           |
| 10/14/2017             |                    | <0.0002         | <0.0002         | <0.0002         | <0.0002        |           | <0.0002         | <0.0002         |           |
| 10/15/2017             |                    | <0.0002         | <0.0002         | <0.0002         | <0.0002        |           | <0.0002         | <0.0002         |           |
| 10/13/2017             |                    | <0.0002         | <0.0002         | <0.0002         | <0.0002        |           | <0.0002         | <0.0002         |           |
| 10/17/2017             |                    | <0.0002         | <0.0002         | <0.0002         | <0.0002        |           | <0.0002         | <0.0002         |           |
| 2/13/2018              | <0.0002            | <0.0002         | <0.0002         | <b>~</b> 0.0002 | <b>~0.0002</b> |           | <b>~</b> 0.0002 | <0.000 <u>2</u> | <0.0002   |
|                        | <0.0002            | <0.0002         | <0.0002         | <0.0002         | <0.0002        |           | <0.0002         | <0.0002         | <0.0002   |
| 2/14/2018<br>5/21/2018 |                    | <0.0002         | <0.0002         | <0.0002         | <0.0002        |           | <0.0002         | <0.0002         |           |
| 5/22/2018              | <0.0002            | <0.000 <u>2</u> | <0.000 <u>2</u> | <b>~</b> 0.0002 | <b>~0.0002</b> |           | <0.0002         | <0.0002         | <0.0002   |
| 6/12/2018              |                    |                 |                 |                 |                |           | <b>~</b> 0.0002 | <0.000 <u>2</u> | <0.0002   |
| 10/17/2018             | <0.0002<br><0.0002 |                 |                 |                 |                |           |                 |                 | <0.0002   |
|                        |                    | <0.0002         | <0.0000         | <0.0002         | <0.0000        |           | <0.0002         |                 |           |
| 11/19/2018             | <0.0002            | <0.0002         | <0.0002         | <0.0002         | <0.0002        |           | <0.0002         | -0.0000         | <0.0002   |
| 11/20/2018             | -0.0000            |                 |                 |                 |                |           |                 | <0.0002         | -0.0000   |
| 4/10/2019              | <0.0002            |                 |                 |                 |                |           |                 |                 | <0.0002   |
| 5/14/2019              | <0.0002            | <0.0002         | <0.0002         | <0.0002         | <0.0002        |           |                 |                 | <0.0002   |
| 5/15/2019              |                    |                 |                 |                 |                |           | <0.0002         | <0.0002         |           |
| 10/8/2019              | <0.0002            | <0.0002         | <0.0002         | <0.0002         | <0.0002        |           | <0.0002         | <0.0002         | <0.0002   |
| 10/16/2019             | <0.0002            |                 |                 |                 |                |           |                 |                 | <0.0002   |
| 4/6/2020               | <0.0002            |                 |                 |                 | <0.0002        |           |                 |                 | <0.0002   |
| 4/7/2020               |                    | <0.0002         | <0.0002         | <0.0002         |                |           |                 |                 |           |
| 4/8/2020               |                    |                 |                 |                 |                |           | <0.0002         | <0.0002         |           |
| 7/13/2020              | <0.0002            |                 |                 |                 |                |           |                 |                 | <0.0002   |
| 7/14/2020              |                    | <0.0002         | <0.0002         | <0.0002         | <0.0002        |           | <0.0002         |                 |           |
| 7/15/2020              |                    |                 |                 |                 |                |           |                 | <0.0002         |           |
| 2/22/2021              | <0.0002            |                 |                 |                 |                |           |                 |                 | <0.0002   |
| 2/23/2021              |                    | <0.0002         | 0.000108 (J)    | <0.0002         | <0.0002        | <0.0002   | <0.0002         |                 |           |
| 2/24/2021              |                    |                 |                 |                 |                |           |                 | <0.0002         |           |
| 7/12/2021              | <0.0002            |                 |                 |                 |                |           |                 |                 | <0.0002   |
| 7/20/2021              |                    | <0.0002         | <0.0002         | <0.0002         |                |           |                 |                 |           |
| 7/21/2021              |                    |                 |                 |                 | <0.0002        | 9E-05 (J) | <0.0002         | <0.0002         |           |
|                        |                    |                 |                 |                 |                |           |                 |                 |           |

Constituent: Lead (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |         |             | . idiii Go |
|------------|---------|-------------|------------|
|            | MW-20   | MW-3 (bg)   | MW-4 (bg)  |
| 4/25/2016  |         | <0.0002     | <0.0002    |
| 4/26/2016  | <0.0002 |             |            |
| 6/20/2016  |         |             | <0.0002    |
| 6/22/2016  | <0.0002 | <0.0002     |            |
| 8/9/2016   |         | <0.0002     | <0.0002    |
| 8/24/2016  |         | <0.0002     | <0.0002    |
| 10/3/2016  |         |             | <0.0002    |
| 10/4/2016  |         | <0.0002     |            |
| 10/26/2016 |         | <0.0002     | <0.0002    |
| 11/21/2016 |         | <0.0002     | <0.0002    |
| 1/18/2017  |         | <0.0002     | <0.0002    |
| 3/22/2017  |         | <0.0002     | <0.0002    |
| 4/18/2017  |         | <0.0002     | <0.0002    |
| 5/31/2017  |         | <0.0002     | <0.0002    |
| 10/12/2017 | <0.0002 |             |            |
| 10/13/2017 | <0.0002 |             |            |
| 10/14/2017 | <0.0002 |             |            |
| 10/15/2017 | <0.0002 |             |            |
| 10/16/2017 | <0.0002 |             |            |
| 10/17/2017 | <0.0002 |             |            |
| 2/13/2018  |         | <0.0002     | <0.0002    |
| 2/14/2018  | <0.0002 |             |            |
| 5/22/2018  | <0.0002 |             |            |
| 5/23/2018  |         |             | <0.0002    |
| 5/24/2018  |         | <0.0002     |            |
| 6/12/2018  |         | <0.0002     | <0.0002    |
| 10/17/2018 |         | 0.00102 (J) | <0.0002    |
| 11/19/2018 |         | 0.00692 (o) | <0.0002    |
| 11/20/2018 | <0.0002 |             |            |
| 4/10/2019  |         | <0.0002     | <0.0002    |
| 5/14/2019  |         | <0.0002     | <0.0002    |
| 5/15/2019  | <0.0002 |             |            |
| 10/8/2019  |         | <0.0002     |            |
| 10/10/2019 | <0.0002 |             | <0.0002    |
| 10/16/2019 |         | 0.00108 (J) | <0.0002    |
| 4/6/2020   |         | <0.0002     | <0.0002    |
| 4/8/2020   | 0.00686 |             |            |
| 7/13/2020  |         | <0.0002     |            |
| 7/14/2020  |         |             | <0.0002    |
| 7/15/2020  | <0.0002 |             |            |
| 2/22/2021  |         | 8.8E-05 (J) | <0.0002    |
| 2/23/2021  | <0.0002 |             |            |
| 7/12/2021  |         | 8E-05 (J)   | <0.0002    |
| 7/21/2021  | <0.0002 |             |            |
|            |         |             |            |

Constituent: Lithium (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg)                | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16                    | MW-17R | MW-18  | MW-19  | MW-2 (bg)                |
|------------|--------------------------|------------|------------|------------|--------------------------|--------|--------|--------|--------------------------|
| 4/25/2016  |                          |            |            |            |                          |        |        |        | 0.0353 (J)               |
| 4/26/2016  | 0.0264 (J)               | 0.0184 (J) | 0.0373 (J) | 0.0634     |                          |        | 0.0589 | 0.0702 |                          |
| 4/27/2016  |                          |            |            |            | 0.018 (J)                |        |        |        |                          |
| 6/20/2016  | 0.0246 (J)               |            |            |            |                          |        |        |        | 0.0583                   |
| 6/22/2016  |                          | 0.0222 (J) | 0.0374 (J) | 0.0666     | 0.0191 (J)               |        | 0.0647 | 0.0761 |                          |
| 8/8/2016   | 0.0229 (J)               |            |            |            |                          |        |        |        | 0.0627                   |
| 8/24/2016  | 0.0236 (J)               |            |            |            |                          |        |        |        | 0.0651                   |
| 10/3/2016  | 0.0229 (J)               |            |            |            |                          |        |        |        | 0.0622                   |
| 10/26/2016 | 0.0227 (J)               |            |            |            |                          |        |        |        | 0.0293 (J)               |
| 11/21/2016 | 0.0236 (J)               |            |            |            |                          |        |        |        | 0.0667                   |
| 1/17/2017  | 0.0228 (J)               |            |            |            |                          |        |        |        | 0.0636                   |
| 3/22/2017  | 0.0238 (J)               |            |            |            |                          |        |        |        | 0.0464 (J)               |
| 4/18/2017  | 0.0242 (J)               |            |            |            |                          |        |        |        | 0.0446 (J)               |
| 5/30/2017  | 0.0229 (J)               |            |            |            |                          |        |        |        | ` '                      |
| 5/31/2017  | ( )                      |            |            |            |                          |        |        |        | 0.0496 (J)               |
| 10/12/2017 |                          | 0.0211 (J) | 0.0338 (J) | 0.0618     | 0.0174 (J)               |        | 0.0601 | 0.0863 | (-)                      |
| 10/13/2017 |                          | 0.0198 (J) | 0.0333 (J) | 0.0614     | 0.0164 (J)               |        | 0.0614 | 0.0853 |                          |
| 10/14/2017 |                          | 0.0193 (J) | 0.0327 (J) | 0.0596     | 0.0167 (J)               |        | 0.0581 | 0.087  |                          |
| 10/15/2017 |                          | 0.0204 (J) | 0.0351 (J) | 0.0634     | 0.0165 (J)               |        | 0.0592 | 0.084  |                          |
| 10/16/2017 |                          | 0.0204 (J) | 0.0352 (J) | 0.0687     | 0.0176 (J)               |        | 0.0542 | 0.09   |                          |
| 10/17/2017 |                          | 0.0206 (J) | 0.0352 (J) | 0.0634     | 0.0164 (J)               |        | 0.0618 | 0.0826 |                          |
| 2/13/2018  | 0.0233 (J)               | 0.0249 (J) | 0.0332 (J) | 0.0034     | 0.0104 (0)               |        | 0.0010 | 0.0020 | 0.0615                   |
| 2/14/2018  | 0.0255 (0)               | 0.0243 (0) | 0.0323 (0) | 0.0637     | 0.0168 (J)               |        | 0.055  | 0.0569 | 0.0013                   |
| 5/21/2018  |                          | 0.0241 (J) | 0.0339 (J) | 0.0634     | 0.0108 (J)<br>0.0171 (J) |        | 0.055  | 0.0309 |                          |
| 5/22/2018  | 0.0263 (J)               | 0.0241 (3) | 0.0339 (3) | 0.0034     | 0.0171 (3)               |        | 0.0604 | 0.0543 | 0.0465 (J)               |
| 6/12/2018  | 0.0203 (J)<br>0.0251 (J) |            |            |            |                          |        | 0.0004 | 0.0343 | 0.0403 (J)<br>0.0472 (J) |
| 10/17/2018 | 0.0251 (J)               |            |            |            |                          |        |        |        | 0.0472 (3)               |
| 11/19/2018 | 0.023 (3)                | 0.0195 (J) | 0.0346     | 0.0664     | 0.0174 (J)               |        | 0.0586 |        | 0.0584                   |
|            | 0.0241                   | 0.0195 (3) | 0.0340     | 0.0004     | 0.0174 (3)               |        | 0.0360 | 0.0526 | 0.0364                   |
| 11/20/2018 | 0.0005                   |            |            |            |                          |        |        | 0.0526 | 0.0574                   |
| 4/10/2019  | 0.0285                   | <0.040¢    | 0.0324 (1) | 0.0670     | <0.0406                  |        |        |        | 0.0574                   |
| 5/14/2019  | 0.026 (J)                | <0.0406    | 0.0334 (J) | 0.0679     | <0.0406                  |        | 0.0502 | 0.050  | 0.0445                   |
| 5/15/2019  | 0.0000                   | 0.00 (1)   | 0.000      | 0.0770     | 0.040470                 |        | 0.0593 | 0.059  | 0.0077                   |
| 10/8/2019  | 0.0268                   | 0.02 (J)   | 0.0389     | 0.0772     | 0.0194 (J)               |        | 0.0658 | 0.0698 | 0.0677                   |
| 10/16/2019 | 0.0263                   |            |            |            | 0.040 ( 1)               |        |        |        | 0.0661                   |
| 4/6/2020   | 0.0278                   |            |            |            | 0.019 (J)                |        |        |        | 0.0496                   |
| 4/7/2020   |                          | 0.0224     | 0.0372     | 0.0711     |                          |        |        |        |                          |
| 4/8/2020   |                          |            |            |            |                          |        | 0.0633 | 0.0657 |                          |
| 7/13/2020  | 0.028                    |            |            |            |                          |        |        |        | 0.0615                   |
| 7/14/2020  |                          | 0.017 (J)  | 0.0384     | 0.0705     | 0.0182 (J)               |        | 0.0686 |        |                          |
| 7/15/2020  |                          |            |            |            |                          |        |        | 0.0714 |                          |
| 2/22/2021  | 0.0301                   |            |            |            |                          |        |        |        | 0.0625                   |
| 2/23/2021  |                          | 0.024      | 0.0398     | 0.0741     | 0.02                     | 0.0569 | 0.0627 |        |                          |
| 2/24/2021  |                          |            |            |            |                          |        |        | 0.0739 |                          |
| 7/12/2021  | 0.0266                   |            |            |            |                          |        |        |        | 0.0495                   |
| 7/20/2021  |                          | 0.0282     | 0.0376     | 0.0661     |                          |        |        |        |                          |
| 7/21/2021  |                          |            |            |            | 0.0179 (J)               | 0.0504 | 0.0574 | 0.0617 |                          |
|            |                          |            |            |            |                          |        |        |        |                          |

Constituent: Lithium (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-20 | MW-3 (bg) | MW-4 (bg)  |
|------------|-------|-----------|------------|
| 4/25/2016  |       | 0.0964    | 0.0528     |
| 4/26/2016  | 0.256 |           |            |
| 6/20/2016  |       |           | 0.0554     |
| 6/22/2016  | 0.271 | 0.156     |            |
| 8/9/2016   |       | 0.122     | 0.0452 (J) |
| 8/24/2016  |       | 0.138     | 0.0488 (J) |
| 10/3/2016  |       |           | 0.0476 (J) |
| 10/4/2016  |       | 0.0966    |            |
| 10/26/2016 |       | 0.134     | 0.049 (J)  |
| 11/21/2016 |       | 0.167     | 0.0477 (J) |
| 1/18/2017  |       | 0.237     | 0.045 (J)  |
| 3/22/2017  |       | 0.203     | 0.0493 (J) |
| 4/18/2017  |       | 0.0764    | 0.0494 (J) |
| 5/31/2017  |       | 0.218     | 0.0501     |
| 10/12/2017 | 0.259 |           |            |
| 10/13/2017 | 0.253 |           |            |
| 10/14/2017 | 0.265 |           |            |
| 10/15/2017 | 0.262 |           |            |
| 10/16/2017 | 0.278 |           |            |
| 10/17/2017 | 0.26  |           |            |
| 2/13/2018  |       | 0.0964    | 0.0446 (J) |
| 2/14/2018  | 0.256 |           |            |
| 5/22/2018  | 0.262 |           |            |
| 5/23/2018  |       |           | 0.0513     |
| 5/24/2018  |       | 0.145     |            |
| 6/12/2018  |       | 0.194     | 0.0511     |
| 10/17/2018 |       | 0.384     | 0.0532     |
| 11/19/2018 |       | 0.323     | 0.0467     |
| 11/20/2018 | 0.253 |           |            |
| 4/10/2019  |       | 0.0905    | 0.0504     |
| 5/14/2019  |       | 0.0828    | 0.0485     |
| 5/15/2019  | 0.241 |           |            |
| 10/8/2019  |       | 0.419     |            |
| 10/10/2019 | 0.264 |           | 0.054      |
| 10/16/2019 |       | 0.337     | 0.052      |
| 4/6/2020   |       | 0.0689    | 0.0519     |
| 4/8/2020   | 0.238 |           |            |
| 7/13/2020  |       | 0.256     |            |
| 7/14/2020  |       |           | 0.0543     |
| 7/15/2020  | 0.256 |           |            |
| 2/22/2021  |       | 0.126     | 0.0558     |
| 2/23/2021  | 0.27  |           |            |
| 7/12/2021  |       | 0.0808    | 0.0533     |
| 7/21/2021  | 0.239 |           |            |
|            |       |           |            |

Constituent: Mercury (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|                         | MW-1 (bg)          | MW-13 (bg) | MW-14 (bg) | MW-15 (bg)     | MW-16   | MW-17R  | MW-18          | MW-19          | MW-2 (bg)          |
|-------------------------|--------------------|------------|------------|----------------|---------|---------|----------------|----------------|--------------------|
| 4/25/2016               |                    |            |            |                |         |         |                |                | <0.0005            |
| 4/26/2016               | <0.0005            | <0.0005    | <0.0005    | <0.0005        |         |         | <0.0005        | <0.0005        |                    |
| 4/27/2016               |                    |            |            |                | <0.0005 |         |                |                |                    |
| 6/20/2016               | <0.0005            |            |            |                |         |         |                |                | <0.0005            |
| 6/22/2016               |                    | <0.0005    | <0.0005    | <0.0005        | <0.0005 |         | <0.0005        | <0.0005        |                    |
| 8/8/2016                | <0.0005            |            |            |                |         |         |                |                | <0.0005            |
| 8/24/2016               | <0.0005            |            |            |                |         |         |                |                | <0.0005            |
| 10/3/2016               | <0.0005            |            |            |                |         |         |                |                | <0.0005            |
| 10/26/2016              | <0.0005            |            |            |                |         |         |                |                | <0.0005            |
| 11/21/2016              | <0.0005            |            |            |                |         |         |                |                | <0.0005            |
| 1/17/2017               | <0.0005            |            |            |                |         |         |                |                | <0.0005            |
| 3/22/2017               | <0.0005            |            |            |                |         |         |                |                | <0.0005            |
| 4/18/2017               | <0.0005            |            |            |                |         |         |                |                | <0.0005            |
| 5/30/2017               | <0.0005            |            |            |                |         |         |                |                |                    |
| 5/31/2017               |                    |            |            |                |         |         |                |                | <0.0005            |
| 10/12/2017              |                    | <0.0005    | <0.0005    | <0.0005        | <0.0005 |         | <0.0005        | <0.0005        | 0.0000             |
| 10/13/2017              |                    | <0.0005    | <0.0005    | <0.0005        | <0.0005 |         | <0.0005        | <0.0005        |                    |
| 10/14/2017              |                    | <0.0005    | <0.0005    | <0.0005        | <0.0005 |         | <0.0005        | <0.0005        |                    |
| 10/15/2017              |                    | <0.0005    | <0.0005    | <0.0005        | <0.0005 |         | <0.0005        | <0.0005        |                    |
| 10/16/2017              |                    | <0.0005    | <0.0005    | <0.0005        | <0.0005 |         | <0.0005        | <0.0005        |                    |
| 10/17/2017              |                    | <0.0005    | <0.0005    | <0.0005        | <0.0005 |         | <0.0005        | <0.0005        |                    |
| 2/13/2018               | <0.0005            | <0.0005    | <0.0005    | <b>~0.0003</b> | <0.0003 |         | <b>~0.0003</b> | <b>~0.0003</b> | <0.0005            |
| 2/13/2018               | <0.0005            | <0.0005    | <0.0005    | <0.0005        | <0.0005 |         | <0.0005        | <0.0005        | <0.0005            |
|                         |                    | <0.0005    | <0.0005    | <0.0005        | <0.0005 |         | <0.0003        | <0.0005        |                    |
| 5/21/2018               | <0.0005            | <0.0005    | <0.0005    | <0.0003        | <0.0005 |         | <0.0005        | <0.0005        | <0.000E            |
| 5/22/2018               |                    |            |            |                |         |         | <0.0003        | <0.0005        | <0.0005            |
| 6/12/2018<br>10/17/2018 | <0.0005<br><0.0005 |            |            |                |         |         |                |                | <0.0005<br><0.0005 |
|                         |                    | <0.000E    | <0.000E    | <0.000E        | <0.000E |         | <0.000E        |                |                    |
| 11/19/2018              | <0.0005            | <0.0005    | <0.0005    | <0.0005        | <0.0005 |         | <0.0005        | -0.0005        | <0.0005            |
| 11/20/2018              | .0.005             |            |            |                |         |         |                | <0.0005        | 0.0005             |
| 4/10/2019               | <0.0005            |            | 2 2225     | 0.0005         | .0.005  |         |                |                | <0.0005            |
| 5/14/2019               | <0.0005            | <0.0005    | <0.0005    | <0.0005        | <0.0005 |         |                |                | <0.0005            |
| 5/15/2019               |                    |            |            |                |         |         | <0.0005        | <0.0005        |                    |
| 10/8/2019               | <0.0005            | <0.0005    | <0.0005    | <0.0005        | <0.0005 |         | <0.0005        | <0.0005        | <0.0005            |
| 10/16/2019              | <0.0005            |            |            |                |         |         |                |                | <0.0005            |
| 4/6/2020                | <0.0005            |            |            |                | <0.0005 |         |                |                | <0.0005            |
| 4/7/2020                |                    | <0.0005    | <0.0005    | <0.0005        |         |         |                |                |                    |
| 4/8/2020                |                    |            |            |                |         |         | <0.0005        | <0.0005        |                    |
| 7/13/2020               | <0.0005            |            |            |                |         |         |                |                | <0.0005            |
| 7/14/2020               |                    | <0.0005    | <0.0005    | <0.0005        | <0.0005 |         | <0.0005        |                |                    |
| 7/15/2020               |                    |            |            |                |         |         |                | <0.0005        |                    |
| 2/22/2021               | <0.0005            |            |            |                |         |         |                |                | <0.0005            |
| 2/23/2021               |                    | <0.0005    | <0.0005    | <0.0005        | <0.0005 | <0.0005 | <0.0005        |                |                    |
| 2/24/2021               |                    |            |            |                |         |         |                | <0.0005        |                    |
| 7/12/2021               | <0.0005            |            |            |                |         |         |                |                | <0.0005            |
| 7/20/2021               |                    | <0.0005    | <0.0005    | <0.0005        |         |         |                |                |                    |
| 7/21/2021               |                    |            |            |                | <0.0005 | <0.0005 | <0.0005        | <0.0005        |                    |
|                         |                    |            |            |                |         |         |                |                |                    |

Constituent: Mercury (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |         |           | 1 10.11 01 |
|------------|---------|-----------|------------|
|            | MW-20   | MW-3 (bg) | MW-4 (bg)  |
| 4/25/2016  |         | <0.0005   | <0.0005    |
| 4/26/2016  | <0.0005 |           |            |
| 6/20/2016  |         |           | <0.0005    |
| 6/22/2016  | <0.0005 | <0.0005   |            |
| 8/9/2016   |         | <0.0005   | <0.0005    |
| 8/24/2016  |         | <0.0005   | <0.0005    |
| 10/3/2016  |         |           | <0.0005    |
| 10/4/2016  |         | <0.0005   |            |
| 10/26/2016 |         | <0.0005   | <0.0005    |
| 11/21/2016 |         | <0.0005   | <0.0005    |
| 1/18/2017  |         | <0.0005   | <0.0005    |
| 3/22/2017  |         | <0.0005   | <0.0005    |
| 4/18/2017  |         | <0.0005   | <0.0005    |
| 5/31/2017  |         | <0.0005   | <0.0005    |
| 10/12/2017 | <0.0005 |           |            |
| 10/13/2017 | <0.0005 |           |            |
| 10/14/2017 | <0.0005 |           |            |
| 10/15/2017 | <0.0005 |           |            |
| 10/16/2017 | <0.0005 |           |            |
| 10/17/2017 | <0.0005 |           |            |
| 2/13/2018  |         | <0.0005   | <0.0005    |
| 2/14/2018  | <0.0005 |           |            |
| 5/22/2018  | <0.0005 |           |            |
| 5/23/2018  |         |           | <0.0005    |
| 5/24/2018  |         | <0.0005   |            |
| 6/12/2018  |         | <0.0005   | <0.0005    |
| 10/17/2018 |         | <0.0005   | <0.0005    |
| 11/19/2018 |         | <0.0005   | <0.0005    |
| 11/20/2018 | <0.0005 |           |            |
| 4/10/2019  |         | <0.0005   | <0.0005    |
| 5/14/2019  |         | <0.0005   | <0.0005    |
| 5/15/2019  | <0.0005 |           |            |
| 10/8/2019  |         | <0.0005   |            |
| 10/10/2019 | <0.0005 |           | <0.0005    |
| 10/16/2019 |         | <0.0005   | <0.0005    |
| 4/6/2020   |         | <0.0005   | <0.0005    |
| 4/8/2020   | <0.0005 |           |            |
| 7/13/2020  |         | <0.0005   |            |
| 7/14/2020  |         |           | <0.0005    |
| 7/15/2020  | <0.0005 |           |            |
| 2/22/2021  |         | <0.0005   | <0.0005    |
| 2/23/2021  | <0.0005 |           |            |
| 7/12/2021  |         | <0.0005   | <0.0005    |
| 7/21/2021  | <0.0005 |           |            |
|            |         |           |            |

Constituent: Molybdenum (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|                        | MW-1 (bg)          | MW-13 (bg)     | MW-14 (bg)      | MW-15 (bg)         | MW-16              | MW-17R       | MW-18           | MW-19           | MW-2 (bg)      |
|------------------------|--------------------|----------------|-----------------|--------------------|--------------------|--------------|-----------------|-----------------|----------------|
| 4/25/2016              |                    |                |                 |                    |                    |              |                 |                 | <0.0002        |
| 4/26/2016              | <0.0002            | <0.0002        | <0.0002         | <0.0002            |                    |              | <0.0002         | <0.0002         |                |
| 4/27/2016              |                    |                |                 |                    | <0.0002            |              |                 |                 |                |
| 6/20/2016              | <0.0002            |                |                 |                    |                    |              |                 |                 | <0.0002        |
| 6/22/2016              |                    | <0.0002        | <0.0002         | <0.0002            | <0.0002            |              | <0.0002         | <0.0002         |                |
| 8/8/2016               | <0.0002            |                |                 |                    |                    |              |                 |                 | <0.0002        |
| 8/24/2016              | <0.0002            |                |                 |                    |                    |              |                 |                 | <0.0002        |
| 10/3/2016              | <0.0002            |                |                 |                    |                    |              |                 |                 | <0.0002        |
| 10/26/2016             | <0.0002            |                |                 |                    |                    |              |                 |                 | <0.0002        |
| 11/21/2016             | <0.0002            |                |                 |                    |                    |              |                 |                 | <0.0002        |
| 1/17/2017              | <0.0002            |                |                 |                    |                    |              |                 |                 | <0.0002        |
| 3/22/2017              | <0.0002            |                |                 |                    |                    |              |                 |                 | <0.0002        |
| 4/18/2017              | <0.0002            |                |                 |                    |                    |              |                 |                 | <0.0002        |
| 5/30/2017              | <0.0002            |                |                 |                    |                    |              |                 |                 |                |
| 5/31/2017              |                    |                |                 |                    |                    |              |                 |                 | <0.0002        |
| 10/12/2017             |                    | <0.0002        | <0.0002         | <0.0002            | <0.0002            |              | <0.0002         | <0.0002         | 0.0002         |
| 10/13/2017             |                    | <0.0002        | <0.0002         | <0.0002            | <0.0002            |              | <0.0002         | <0.0002         |                |
| 10/14/2017             |                    | <0.0002        | <0.0002         | <0.0002            | <0.0002            |              | <0.0002         | <0.0002         |                |
| 10/15/2017             |                    | <0.0002        | <0.0002         | <0.0002            | <0.0002            |              | <0.0002         | <0.0002         |                |
| 10/15/2017             |                    | <0.0002        | <0.0002         | <0.0002            | <0.0002            |              | <0.0002         | <0.0002         |                |
| 10/17/2017             |                    | <0.0002        | <0.0002         | <0.0002            | <0.0002            |              | <0.0002         | <0.0002         |                |
| 2/13/2018              | <0.0002            | <0.0002        | <0.0002         | <0.000 <u>2</u>    | <b>~0.0002</b>     |              | <0.000 <u>2</u> | <0.000 <u>2</u> | <0.0002        |
|                        | <0.0002            | <0.0002        | <0.0002         | <0.0000            | <0.0000            |              | <0.0002         | <0.0002         | <b>\0.0002</b> |
| 2/14/2018<br>5/21/2018 |                    | <0.0002        | <0.0002         | <0.0002<br><0.0002 | <0.0002<br><0.0002 |              | <0.0002         | <0.0002         |                |
| 5/22/2018              | <0.0002            | <b>\0.0002</b> | <b>\0.0002</b>  | <0.000 <u>2</u>    | <b>~0.0002</b>     |              | <0.0002         | <0.0002         | <0.0002        |
|                        |                    |                |                 |                    |                    |              | <0.000 <u>2</u> | <0.000 <u>2</u> | <0.0002        |
| 6/12/2018              | <0.0002<br><0.0002 |                |                 |                    |                    |              |                 |                 | <0.0002        |
| 10/17/2018             |                    | <0.0000        | <b>~</b> 0.0000 | <0.0000            | <0.0000            |              | <0.0002         |                 |                |
| 11/19/2018             | <0.0002            | <0.0002        | <0.0002         | <0.0002            | <0.0002            |              | <0.0002         | -0.0000         | <0.0002        |
| 11/20/2018             |                    |                |                 |                    |                    |              |                 | <0.0002         | 0.0000         |
| 4/10/2019              | <0.0002            | 0.000          |                 |                    | .0.000             |              |                 |                 | <0.0002        |
| 5/14/2019              | <0.0002            | <0.0002        | <0.0002         | <0.0002            | <0.0002            |              |                 |                 | <0.0002        |
| 5/15/2019              |                    |                |                 |                    |                    |              | <0.0002         | <0.0002         |                |
| 10/8/2019              | <0.0002            | <0.0002        | <0.0002         | <0.0002            | <0.0002            |              | <0.0002         | <0.0002         | <0.0002        |
| 10/16/2019             | <0.0002            |                |                 |                    |                    |              |                 |                 | <0.0002        |
| 4/6/2020               | <0.0002            |                |                 |                    | <0.0002            |              |                 |                 | <0.0002        |
| 4/7/2020               |                    | <0.0002        | <0.0002         | <0.0002            |                    |              |                 |                 |                |
| 4/8/2020               |                    |                |                 |                    |                    |              | <0.0002         | <0.0002         |                |
| 7/13/2020              | <0.0002            |                |                 |                    |                    |              |                 |                 | <0.0002        |
| 7/14/2020              |                    | <0.0002        | <0.0002         | <0.0002            | <0.0002            |              | <0.0002         |                 |                |
| 7/15/2020              |                    |                |                 |                    |                    |              |                 | <0.0002         |                |
| 2/22/2021              | <0.0002            |                |                 |                    |                    |              |                 |                 | <0.0002        |
| 2/23/2021              |                    | 0.000495       | 0.000933        | 7.97E-05 (J)       | 0.000486           | 0.000159 (J) | 0.00012 (J)     |                 |                |
| 2/24/2021              |                    |                |                 |                    |                    |              |                 | 0.000197 (J)    |                |
| 7/12/2021              | <0.0002            |                |                 |                    |                    |              |                 |                 | <0.0002        |
| 7/20/2021              |                    | 0.00051        | 0.00028         | 7E-05 (J)          |                    |              |                 |                 |                |
| 7/21/2021              |                    |                |                 |                    | 0.00043            | 0.00017 (J)  | 0.0001 (J)      | 0.00021         |                |
|                        |                    |                |                 |                    |                    |              |                 |                 |                |

Constituent: Molybdenum (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            |         |           | · ·          |
|------------|---------|-----------|--------------|
|            | MW-20   | MW-3 (bg) | MW-4 (bg)    |
| 4/25/2016  |         | <0.0002   | <0.0002      |
| 4/26/2016  | <0.0002 |           |              |
| 6/20/2016  |         |           | <0.0002      |
| 6/22/2016  | <0.0002 | <0.0002   |              |
| 8/9/2016   |         | <0.0002   | <0.0002      |
| 8/24/2016  |         | <0.0002   | <0.0002      |
| 10/3/2016  |         |           | <0.0002      |
| 10/4/2016  |         | <0.0002   |              |
| 10/26/2016 |         | <0.0002   | <0.0002      |
| 11/21/2016 |         | <0.0002   | <0.0002      |
| 1/18/2017  |         | <0.0002   | <0.0002      |
| 3/22/2017  |         | <0.0002   | <0.0002      |
| 4/18/2017  |         | <0.0002   | <0.0002      |
| 5/31/2017  |         | <0.0002   | <0.0002      |
| 10/12/2017 | <0.0002 |           |              |
| 10/13/2017 | <0.0002 |           |              |
| 10/14/2017 | <0.0002 |           |              |
| 10/15/2017 | <0.0002 |           |              |
| 10/16/2017 | <0.0002 |           |              |
| 10/17/2017 | <0.0002 |           |              |
| 2/13/2018  |         | <0.0002   | <0.0002      |
| 2/14/2018  | <0.0002 |           |              |
| 5/22/2018  | <0.0002 |           |              |
| 5/23/2018  |         |           | <0.0002      |
| 5/24/2018  |         | <0.0002   |              |
| 6/12/2018  |         | <0.0002   | <0.0002      |
| 10/17/2018 |         | <0.0002   | <0.0002      |
| 11/19/2018 |         | <0.0002   | <0.0002      |
| 11/20/2018 | <0.0002 |           |              |
| 4/10/2019  |         | <0.0002   | <0.0002      |
| 5/14/2019  |         | <0.0002   | <0.0002      |
| 5/15/2019  | <0.0002 |           |              |
| 10/8/2019  |         | <0.0002   |              |
| 10/10/2019 | <0.0002 |           | <0.0002      |
| 10/16/2019 |         | <0.0002   | <0.0002      |
| 4/6/2020   |         | <0.0002   | <0.0002      |
| 4/8/2020   | <0.0002 |           |              |
| 7/13/2020  |         | <0.0002   |              |
| 7/14/2020  |         |           | <0.0002      |
| 7/15/2020  | <0.0002 |           |              |
| 2/22/2021  |         | <0.0002   | 0.000131 (J) |
| 2/23/2021  | 0.00108 |           |              |
| 7/12/2021  |         | <0.0002   | 0.00014 (J)  |
| 7/21/2021  | 0.00101 |           |              |
|            |         |           |              |

Constituent: pH (pH) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16 | MW-17R | MW-18 |      | MW-2 (bg) |
|------------|-----------|------------|------------|------------|-------|--------|-------|------|-----------|
| 4/25/2016  |           |            |            |            |       |        |       |      | 5.94      |
| 4/26/2016  | 5.2       | 6.35       | 6.41       | 6.08       |       |        | 6.54  | 6.16 |           |
| 4/27/2016  |           |            |            |            | 6.5   |        |       |      |           |
| 6/20/2016  | 5.18      |            |            |            |       |        |       |      | 5.96      |
| 6/22/2016  |           | 6.33       | 6.39       | 6.11       | 6.47  |        | 6.45  | 6.2  |           |
| 8/8/2016   | 5.12      |            |            |            |       |        |       |      | 5.88      |
| 10/3/2016  | 5.21 (D)  |            |            |            |       |        |       |      | 5.91 (D)  |
| 10/26/2016 | 5.2       |            |            |            |       |        |       |      | 5.84      |
| 11/21/2016 | 5.19 (D)  |            |            |            |       |        |       |      | 5.82 (D)  |
| 1/17/2017  | 5.17 (D)  |            |            |            |       |        |       |      | 5.87 (D)  |
| 3/22/2017  | 5.2 (D)   |            |            |            |       |        |       |      | 6.01 (D)  |
| 4/18/2017  | 5.2       |            |            |            |       |        |       |      | 6.02      |
| 5/30/2017  | 5.14 (D)  |            |            |            |       |        |       |      |           |
| 5/31/2017  |           |            |            |            |       |        |       |      | 5.85 (D)  |
| 8/23/2017  | 5.12 (D)  |            |            |            |       |        |       |      | 5.89 (D)  |
| 10/12/2017 |           | 6.38       | 6.35       | 6.06       | 6.47  |        | 6.5   | 6.14 |           |
| 10/13/2017 |           | 6.37       | 6.34       | 6.06       | 6.45  |        | 6.49  | 6.18 |           |
| 10/14/2017 |           | 6.4        | 6.38       | 6.12       | 6.48  |        | 6.54  | 6.21 |           |
| 10/15/2017 |           | 6.35       | 6.32       | 6.05       | 6.43  |        | 6.55  | 6.14 |           |
| 10/16/2017 |           | 6.37       | 6.33       | 6.05       | 6.42  |        | 6.55  | 6.16 |           |
| 10/17/2017 |           | 6.44       | 6.4        | 6.12       | 6.48  |        | 6.55  | 6.15 |           |
| 11/15/2017 |           |            |            | 6.06       | 6.44  |        | 6.46  | 6.15 |           |
| 11/16/2017 |           | 6.31       | 6.28       |            |       |        |       |      |           |
| 2/13/2018  | 5.18      | 6.5        | 6.36       |            |       |        |       |      | 6.21      |
| 2/14/2018  |           |            |            | 6.1        | 6.45  |        | 6.53  | 6.18 |           |
| 5/21/2018  |           | 6.41       | 6.38       | 6.06       | 6.45  |        |       |      |           |
| 5/22/2018  | 5.2       |            |            |            |       |        | 6.5   | 6.13 | 6.04      |
| 6/12/2018  | 5.15      |            |            |            |       |        |       |      | 5.95      |
| 10/17/2018 | 5.12      |            |            |            |       |        |       |      | 5.9       |
| 11/19/2018 | 5.09      | 6.38       | 6.35       | 6.08       | 6.44  |        | 6.54  |      | 6.03      |
| 11/20/2018 |           |            |            |            |       |        |       | 6.16 |           |
| 4/10/2019  | 5.11      |            |            |            |       |        |       |      | 6.1       |
| 5/14/2019  | 5.19      | 6.41       | 6.39       | 6.1        | 6.44  |        |       |      | 6.07      |
| 5/15/2019  |           |            |            |            |       |        | 6.48  | 6.21 |           |
| 10/8/2019  | 5.12      | 6.34       | 6.32       | 5.99       | 6.16  |        | 6.43  | 6.19 | 5.96      |
| 10/16/2019 | 5.16      |            |            |            |       |        |       |      | 5.98      |
| 4/6/2020   | 5.21      |            |            |            | 6.37  |        |       |      | 6.21      |
| 4/7/2020   |           | 6.53       | 6.42       | 6.1        |       |        |       |      |           |
| 4/8/2020   |           |            |            |            |       |        | 6.57  | 6.26 |           |
| 7/13/2020  | 5.14      |            |            |            |       |        |       |      | 5.84      |
| 7/14/2020  |           | 6.33       | 6.37       | 6.05       | 6.43  |        | 6.36  |      |           |
| 7/15/2020  |           |            |            |            |       |        |       | 6.28 |           |
| 2/22/2021  | 5.06      |            |            |            |       |        |       |      | 6.1       |
| 2/23/2021  |           | 6.55       | 6.38       | 6.07       | 6.47  | 5.91   | 6.47  |      |           |
| 2/24/2021  |           |            |            |            |       |        |       | 6.26 |           |
| 7/12/2021  | 5.13      |            |            |            |       |        |       |      | 6.16      |
| 7/20/2021  |           | 6.59       | 6.38       | 6.03       |       |        |       |      |           |
| 7/21/2021  |           |            |            |            | 6.24  | 5.79   | 6.33  | 6.23 |           |
|            |           |            |            |            |       |        |       |      |           |

Constituent: pH (pH) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-20 | MW-3 (bg) | MW-4 (bg) | <br> |
|------------|-------|-----------|-----------|------|
| 4/25/2016  |       | 5.56      | 6.22      |      |
| 4/26/2016  | 6.83  |           |           |      |
| 6/20/2016  |       |           | 6.21      |      |
| 6/22/2016  | 6.85  | 5.57      |           |      |
| 8/9/2016   |       | 5.67      | 6.11      |      |
| 8/24/2016  |       | 5.63      | 6.11      |      |
| 10/3/2016  |       |           | 6.13 (D)  |      |
| 10/4/2016  |       | 5.69 (D)  |           |      |
| 10/26/2016 |       | 5.56      | 6.12      |      |
| 11/21/2016 |       | 5.42 (D)  | 6.09 (D)  |      |
| 1/18/2017  |       | 5.11 (D)  | 6.09 (D)  |      |
| 3/22/2017  |       | 4.52 (D)  | 6.15 (D)  |      |
| 4/18/2017  |       | 5.84      | 6.19      |      |
| 5/31/2017  |       | 4.56 (D)  | 6.13 (D)  |      |
| 8/23/2017  |       | 4.77 (D)  | 6.12 (D)  |      |
| 10/12/2017 | 6.79  | (-/       | - (-/     |      |
| 10/13/2017 |       |           |           |      |
| 10/14/2017 |       |           |           |      |
| 10/15/2017 |       |           |           |      |
| 10/15/2017 |       |           |           |      |
| 10/17/2017 |       |           |           |      |
| 11/15/2017 |       |           |           |      |
|            | 0.77  | 5.67      | 6 22      |      |
| 2/13/2018  | 6.04  | 5.67      | 6.22      |      |
| 2/14/2018  | 6.84  |           |           |      |
| 5/22/2018  | 6.81  |           | 0.01      |      |
| 5/23/2018  |       | F 10      | 6.21      |      |
| 5/24/2018  |       | 5.19      | 0.40      |      |
| 6/12/2018  |       | 4.79      | 6.16      |      |
| 10/17/2018 |       | 4.75      | 6.12      |      |
| 11/19/2018 |       | 3.77 (o)  | 6.16      |      |
| 11/20/2018 | 6.81  |           |           |      |
| 4/10/2019  |       | 5.54      | 6.14      |      |
| 5/14/2019  |       | 5.71      | 6.23      |      |
| 5/15/2019  | 6.76  |           |           |      |
| 10/8/2019  |       | 4.98      |           |      |
| 10/10/2019 | 6.78  |           | 6.15      |      |
| 10/16/2019 |       | 4.51      | 6.19      |      |
| 4/6/2020   |       | 5.91      | 6.35      |      |
| 4/8/2020   | 6.81  |           |           |      |
| 7/13/2020  |       | 5.16      |           |      |
| 7/14/2020  |       |           | 6.2       |      |
| 7/15/2020  | 6.87  |           |           |      |
| 2/22/2021  |       | 5.59      | 6.19      |      |
| 2/23/2021  | 6.75  |           |           |      |
| 7/12/2021  |       | 5.86      | 6.06      |      |
| 7/21/2021  | 6.6   |           |           |      |
|            |       |           |           |      |
|            |       |           |           |      |

Constituent: Selenium (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg)   | MW-13 (bg)  | MW-14 (bg)      | MW-15 (bg)      | MW-16            | MW-17R       | MW-18         | MW-19           | MW-2 (bg)   |
|------------|-------------|-------------|-----------------|-----------------|------------------|--------------|---------------|-----------------|-------------|
| 4/25/2016  |             |             |                 |                 |                  |              |               |                 | <0.00102    |
| 4/26/2016  | 0.00261 (J) | <0.00102    | <0.00102        | <0.00102        |                  |              | 0.00263 (J)   | <0.00102        |             |
| 4/27/2016  |             |             |                 |                 | <0.00102         |              |               |                 |             |
| 6/20/2016  | 0.00242 (J) |             |                 |                 |                  |              |               |                 | <0.00102    |
| 6/22/2016  |             | <0.00102    | <0.00102        | <0.00102        | <0.00102         |              | <0.00102      | <0.00102        |             |
| 8/8/2016   | 0.00253 (J) |             |                 |                 |                  |              |               |                 | <0.00102    |
| 8/24/2016  | <0.00102    |             |                 |                 |                  |              |               |                 | <0.00102    |
| 10/3/2016  | 0.00211 (J) |             |                 |                 |                  |              |               |                 | <0.00102    |
| 10/26/2016 | <0.00102    |             |                 |                 |                  |              |               |                 | <0.00102    |
| 11/21/2016 | <0.00102    |             |                 |                 |                  |              |               |                 | <0.00102    |
| 1/17/2017  | <0.00102    |             |                 |                 |                  |              |               |                 | <0.00102    |
| 3/22/2017  | 0.0022 (J)  |             |                 |                 |                  |              |               |                 | <0.00102    |
| 4/18/2017  | 0.0027 (J)  |             |                 |                 |                  |              |               |                 | <0.00102    |
| 5/30/2017  | 0.00316 (J) |             |                 |                 |                  |              |               |                 |             |
| 5/31/2017  | ,           |             |                 |                 |                  |              |               |                 | <0.00102    |
| 10/12/2017 |             | <0.00102    | <0.00102        | <0.00102        | <0.00102         |              | 0.00268 (J)   | <0.00102        |             |
| 10/13/2017 |             | <0.00102    | <0.00102        | <0.00102        | <0.00102         |              | 0.00267 (J)   | <0.00102        |             |
| 10/14/2017 |             | <0.00102    | <0.00102        | <0.00102        | <0.00102         |              | 0.00295 (J)   | <0.00102        |             |
| 10/15/2017 |             | <0.00102    | <0.00102        | <0.00102        | <0.00102         |              | 0.00349 (J)   | <0.00102        |             |
| 10/16/2017 |             | <0.00102    | <0.00102        | <0.00102        | <0.00102         |              | 0.0027 (J)    | <0.00102        |             |
| 10/17/2017 |             | 0.00274 (J) | 0.00205 (J)     | <0.00102        | <0.00102         |              | 0.00404 (J)   | <0.00102        |             |
| 2/13/2018  | 0.00211 (J) | 0.0034 (J)  | <0.00102        | 0.00102         | 0.00102          |              | 0.00 10 1 (0) | 0.00102         | <0.00102    |
| 2/14/2018  | 0.002 (0)   | 0.0001 (0)  | 0.00102         | <0.00102        | <0.00102         |              | <0.00102      | <0.00102        | 0.00102     |
| 5/21/2018  |             | 0.0023 (J)  | <0.00102        | <0.00102        | <0.00102         |              | 10.00102      | -0.00102        |             |
| 5/22/2018  | 0.00372 (J) | 0.0020 (0)  | 10.00102        | 10.00102        | -0.00102         |              | 0.00278 (J)   | <0.00102        | <0.00102    |
| 6/12/2018  | 0.00409 (J) |             |                 |                 |                  |              | 0.00270 (0)   | -0.00102        | <0.00102    |
| 10/17/2018 | <0.00102    |             |                 |                 |                  |              |               |                 | <0.00102    |
| 11/19/2018 | <0.00102    | <0.00102    | <0.00102        | <0.00102        | <0.00102         |              | <0.00102      |                 | <0.00102    |
| 11/20/2018 | -0.00102    | -0.00102    | -0.00102        | -0.00102        | -0.00102         |              | 10.00102      | <0.00102        | -0.00102    |
| 4/10/2019  | 0.00471 (J) |             |                 |                 |                  |              |               | -0.00102        | 0.00322 (J) |
| 5/14/2019  | 0.00316 (J) | <0.00102    | <0.00102        | <0.00102        | <0.00102         |              |               |                 | <0.00102    |
| 5/15/2019  | 0.00010(0)  | -0.00102    | -0.00102        | -0.00102        | -0.00102         |              | 0.0028 (J)    | <0.00102        | -0.00102    |
| 10/8/2019  | <0.00102    | <0.00102    | <0.00102        | <0.00102        | <0.00102         |              | 0.00279 (J)   | <0.00102        | <0.00102    |
| 10/16/2019 | <0.00102    | <0.00102    | <b>~0.00102</b> | <b>~0.00102</b> | <0.0010 <u>2</u> |              | 0.00279 (3)   | <b>~0.00102</b> | <0.00102    |
| 4/6/2020   | 0.00275 (J) |             |                 |                 | <0.00102         |              |               |                 | <0.00102    |
| 4/7/2020   | 0.00273 (3) | <0.00102    | <0.00102        | <0.00102        | <0.0010 <u>2</u> |              |               |                 | <0.00 TOZ   |
|            |             | <0.00102    | <b>~0.00102</b> | <b>~0.00102</b> |                  |              | 0.00387 (1)   | <0.00102        |             |
| 4/8/2020   | 0.00245 (1) |             |                 |                 |                  |              | 0.00387 (J)   | <0.00102        | <0.00102    |
| 7/13/2020  | 0.00245 (J) | -0.00102    | -0.00102        | <0.00102        | <0.00102         |              | 0.00242 (1)   |                 | <0.00102    |
| 7/14/2020  |             | <0.00102    | <0.00102        | <0.00102        | <0.00102         |              | 0.00243 (J)   | .0.004.00       |             |
| 7/15/2020  | 0.00044     |             |                 |                 |                  |              |               | <0.00102        | 0.00400     |
| 2/22/2021  | 0.00241     | 0.0017      | -0.00100        | -0.00100        | 10.00100         | 0.000770 (1) | 0.0001        |                 | <0.00102    |
| 2/23/2021  |             | 0.0017      | <0.00102        | <0.00102        | <0.00102         | 0.000778 (J) | 0.0031        | .0.004.00       |             |
| 2/24/2021  | 0.0000      |             |                 |                 |                  |              |               | <0.00102        | -0.00100    |
| 7/12/2021  | 0.0028      | 0.00315     | -0.00100        | <0.00100        |                  |              |               |                 | <0.00102    |
| 7/20/2021  |             | 0.00315     | <0.00102        | <0.00102        | <0.00100         | 0.0000777    | 0.00204       | <0.00100        |             |
| 7/21/2021  |             |             |                 |                 | <0.00102         | 0.00067 (J)  | 0.00294       | <0.00102        |             |

Constituent: Selenium (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-20    | MW-3 (bg)   | MW-4 (bg)   |
|------------|----------|-------------|-------------|
| 4/25/2016  |          | <0.00102    | <0.00102    |
| 4/26/2016  | <0.00102 |             |             |
| 6/20/2016  |          |             | <0.00102    |
| 6/22/2016  | <0.00102 | <0.00102    |             |
| 8/9/2016   |          | <0.00102    | <0.00102    |
| 8/24/2016  |          | <0.00102    | <0.00102    |
| 10/3/2016  |          |             | <0.00102    |
| 10/4/2016  |          | <0.00102    |             |
| 10/26/2016 |          | <0.00102    | <0.00102    |
| 11/21/2016 |          | <0.00102    | <0.00102    |
| 1/18/2017  |          | <0.00102    | <0.00102    |
| 3/22/2017  |          | 0.0141      | <0.00102    |
| 4/18/2017  |          | 0.0158      | <0.00102    |
| 5/31/2017  |          | 0.00632 (J) | <0.00102    |
| 10/12/2017 | <0.00102 |             |             |
| 10/13/2017 | <0.00102 |             |             |
| 10/14/2017 | <0.00102 |             |             |
| 10/15/2017 | <0.00102 |             |             |
| 10/16/2017 | <0.00102 |             |             |
| 10/17/2017 | <0.00102 |             |             |
| 2/13/2018  |          | 0.0209      | 0.00403 (J) |
| 2/14/2018  | <0.00102 |             |             |
| 5/22/2018  | <0.00102 |             |             |
| 5/23/2018  |          |             | <0.00102    |
| 5/24/2018  |          | 0.00918 (J) |             |
| 6/12/2018  |          | 0.00836 (J) | <0.00102    |
| 10/17/2018 |          | <0.00102    | <0.00102    |
| 11/19/2018 |          | 0.00439 (J) | 0.00436 (J) |
| 11/20/2018 | <0.00102 |             |             |
| 4/10/2019  |          | 0.0113      | <0.00102    |
| 5/14/2019  |          | 0.0119      | 0.00201 (J) |
| 5/15/2019  | <0.00102 |             |             |
| 10/8/2019  |          | 0.00256 (J) |             |
| 10/10/2019 | <0.00102 |             | <0.00102    |
| 10/16/2019 |          | 0.00286 (J) | <0.00102    |
| 4/6/2020   |          | 0.01        | 0.00284 (J) |
| 4/8/2020   | <0.00102 |             |             |
| 7/13/2020  |          | 0.0134      |             |
| 7/14/2020  |          |             | <0.00102    |
| 7/15/2020  | <0.00102 |             |             |
| 2/22/2021  |          | 0.0181      | 0.00222     |
| 2/23/2021  | <0.00102 |             |             |
| 7/12/2021  |          | 0.0133      | 0.00155     |
| 7/21/2021  | <0.00102 |             |             |
|            |          |             |             |

Constituent: Sulfate (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16 | MW-17R | MW-18 | MW-19 | MW-2 (bg) |
|------------|-----------|------------|------------|------------|-------|--------|-------|-------|-----------|
| 4/25/2016  |           |            |            |            |       |        |       |       | 745       |
| 4/26/2016  | 1490      | 1920       | 2150       | 1640       |       |        | 1960  | 2200  |           |
| 4/27/2016  |           |            |            |            | 1220  |        |       |       |           |
| 6/20/2016  | 1420      |            |            |            |       |        |       |       | 964       |
| 6/22/2016  |           | 2270       | 2080       | 1720       | 1160  |        | 1950  | 2230  |           |
| 8/8/2016   | 1460      |            |            |            |       |        |       |       | 1100      |
| 8/24/2016  | 1450      |            |            |            |       |        |       |       | 1130      |
| 10/3/2016  | 1460      |            |            |            |       |        |       |       | 1140      |
| 10/26/2016 | 1330      |            |            |            |       |        |       |       | 1060      |
| 11/21/2016 | 1420      |            |            |            |       |        |       |       | 1100      |
| 1/17/2017  | 1350      |            |            |            |       |        |       |       | 1160      |
| 3/22/2017  | 1500      |            |            |            |       |        |       |       | 900       |
| 4/18/2017  | 1300      |            |            |            |       |        |       |       | 870       |
| 5/30/2017  | 1400      |            |            |            |       |        |       |       |           |
| 5/31/2017  |           |            |            |            |       |        |       |       | 1100      |
| 8/23/2017  | 1500      |            |            |            |       |        |       |       | 920       |
| 10/12/2017 |           | 2100       | 1900       | 1600       | 1300  |        | 2000  | 2300  |           |
| 10/13/2017 |           | 2000       | 1800       | 1600       | 1300  |        | 1900  | 2200  |           |
| 10/14/2017 |           | 1800       | 1700       | 1500       | 1200  |        | 1800  | 2300  |           |
| 10/15/2017 |           | 1800       | 1800       | 1500       | 1200  |        | 1800  | 2200  |           |
| 10/16/2017 |           | 1800       | 1800       | 1400       | 1200  |        | 1900  | 2000  |           |
| 10/17/2017 |           | 1700       | 1900       | 1600       | 1300  |        | 1800  | 2300  |           |
| 11/15/2017 |           |            |            | 1500       | 1200  |        | 1900  | 2100  |           |
| 11/16/2017 |           | 1800       | 1700       |            |       |        |       |       |           |
| 5/21/2018  |           | 2400       | 2500       | 2100       | 1700  |        |       |       |           |
| 5/22/2018  | 2100 (o)  |            |            |            |       |        | 2000  | 2300  | 1200      |
| 6/12/2018  | 1500      |            |            |            |       |        |       |       | 860       |
| 10/17/2018 | 1400      |            |            |            |       |        |       |       | 970       |
| 11/19/2018 | 1300      | 1800       | 1900       | 1500       | 1200  |        | 1800  |       | 1000      |
| 11/20/2018 |           |            |            |            |       |        |       | 1700  |           |
| 4/10/2019  | 1700      |            |            |            |       |        |       |       | 889       |
| 5/14/2019  | 1560      | 1600       | 2000       | 1940       | 1490  |        |       |       | 948       |
| 5/15/2019  |           |            |            |            |       |        | 1800  | 1900  |           |
| 10/8/2019  | 1540      | 1980       | 2030       | 1650       | 1490  |        | 1900  | 2380  | 1230      |
| 10/16/2019 | 1680      |            |            |            |       |        |       |       | 1170      |
| 4/6/2020   | 1530      |            |            |            | 1270  |        |       |       | 786       |
| 4/7/2020   |           | 1400       | 1760       | 1670       |       |        |       |       |           |
| 4/8/2020   |           |            |            |            |       |        | 1750  | 1890  |           |
| 7/13/2020  | 1450      |            |            |            |       |        |       |       | 843       |
| 7/14/2020  |           | 1740       | 1840       | 1630       | 1270  |        | 1690  |       |           |
| 7/15/2020  |           |            |            |            |       |        |       | 1770  |           |
| 2/22/2021  | 1400      |            |            |            |       |        |       |       | 864       |
| 2/23/2021  |           | 1470       | 1850       | 1740       | 1330  | 2380   | 1560  |       |           |
| 2/24/2021  |           |            |            |            |       |        |       | 1970  |           |
| 7/12/2021  | 1560      |            |            |            |       |        |       |       | 763       |
| 7/20/2021  |           | 1560       | 1830       | 1700       |       |        |       |       |           |
| 7/21/2021  |           |            |            |            | 1370  | 2450   | 1650  | 1990  |           |
|            |           |            |            |            |       |        |       |       |           |

Constituent: Sulfate (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

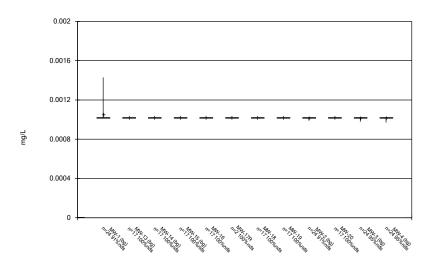
|            |       |           | riam dorgad Gilomi Godinom Gompany | Data: Gorgao C |
|------------|-------|-----------|------------------------------------|----------------|
|            | MW-20 | MW-3 (bg) | MW-4 (bg)                          |                |
| 4/25/2016  |       | 1890      | 2260                               |                |
| 4/26/2016  | 1650  |           |                                    |                |
| 6/20/2016  |       |           | 2500                               |                |
| 6/22/2016  | 1680  | 2100      |                                    |                |
| 8/9/2016   |       | 2050      | 2750                               |                |
| 8/24/2016  |       | 2190      | 2770                               |                |
| 10/3/2016  |       |           | 3060                               |                |
| 10/4/2016  |       | 1950      |                                    |                |
| 10/26/2016 |       | 1980      | 2650                               |                |
| 11/21/2016 |       | 2060      | 2720                               |                |
| 1/18/2017  |       | 2620      | 2650                               |                |
| 3/22/2017  |       | 3200      | 2700                               |                |
| 4/18/2017  |       | 2500      | 2400                               |                |
| 5/31/2017  |       | 2800      | 2700                               |                |
| 8/23/2017  |       | 2600      | 2700                               |                |
| 10/12/2017 | 1600  |           |                                    |                |
| 10/13/2017 | 1600  |           |                                    |                |
| 10/14/2017 | 1500  |           |                                    |                |
| 10/15/2017 | 1500  |           |                                    |                |
| 10/16/2017 | 1400  |           |                                    |                |
| 10/17/2017 | 1500  |           |                                    |                |
| 11/15/2017 | 1500  |           |                                    |                |
| 5/22/2018  | 2000  |           |                                    |                |
| 5/23/2018  |       |           | 2400                               |                |
| 5/24/2018  |       | 2700      |                                    |                |
| 6/12/2018  |       | 2500      | 2600                               |                |
| 10/17/2018 |       | 2700      | 2600                               |                |
| 11/19/2018 |       | 3000      | 2400                               |                |
| 11/20/2018 | 1500  |           |                                    |                |
| 4/10/2019  |       | 2460      | 2090                               |                |
| 5/14/2019  |       | 2460      | 2240                               |                |
| 5/15/2019  | 1560  |           |                                    |                |
| 10/8/2019  |       | 2950      |                                    |                |
| 10/10/2019 | 1700  |           | 2690                               |                |
| 10/16/2019 |       | 2820      | 3050                               |                |
| 4/6/2020   |       | 1670      | 1810                               |                |
| 4/8/2020   | 1530  |           |                                    |                |
| 7/13/2020  |       | 2130      |                                    |                |
| 7/14/2020  |       |           | 1970                               |                |
| 7/15/2020  | 1480  |           |                                    |                |
| 2/22/2021  |       | 3040      | 2040                               |                |
| 2/23/2021  | 1420  |           |                                    |                |
| 7/12/2021  |       | 2380      | 1930                               |                |
| 7/21/2021  | 1480  |           |                                    |                |
|            |       |           |                                    |                |

Constituent: Thallium (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16   | MW-17R  | MW-18   | MW-19   | MW-2 (bg) |
|------------|-----------|------------|------------|------------|---------|---------|---------|---------|-----------|
| 4/25/2016  |           |            |            |            |         |         |         |         | <0.0002   |
| 4/26/2016  | <0.0002   | <0.0002    | <0.0002    | <0.0002    |         |         | <0.0002 | <0.0002 |           |
| 4/27/2016  |           |            |            |            | <0.0002 |         |         |         |           |
| 6/20/2016  | <0.0002   |            |            |            |         |         |         |         | <0.0002   |
| 6/22/2016  |           | <0.0002    | <0.0002    | <0.0002    | <0.0002 |         | <0.0002 | <0.0002 |           |
| 8/8/2016   | <0.0002   |            |            |            |         |         |         |         | <0.0002   |
| 8/24/2016  | <0.0002   |            |            |            |         |         |         |         | <0.0002   |
| 10/3/2016  | <0.0002   |            |            |            |         |         |         |         | <0.0002   |
| 10/26/2016 | <0.0002   |            |            |            |         |         |         |         | <0.0002   |
| 11/21/2016 | <0.0002   |            |            |            |         |         |         |         | <0.0002   |
| 1/17/2017  | <0.0002   |            |            |            |         |         |         |         | <0.0002   |
| 3/22/2017  | <0.0002   |            |            |            |         |         |         |         | <0.0002   |
| 4/18/2017  | <0.0002   |            |            |            |         |         |         |         | <0.0002   |
| 5/30/2017  | <0.0002   |            |            |            |         |         |         |         |           |
| 5/31/2017  |           |            |            |            |         |         |         |         | <0.0002   |
| 10/12/2017 |           | <0.0002    | <0.0002    | <0.0002    | <0.0002 |         | <0.0002 | <0.0002 | *****     |
| 10/13/2017 |           | <0.0002    | <0.0002    | <0.0002    | <0.0002 |         | <0.0002 | <0.0002 |           |
| 10/14/2017 |           | <0.0002    | <0.0002    | <0.0002    | <0.0002 |         | <0.0002 | <0.0002 |           |
| 10/15/2017 |           | <0.0002    | <0.0002    | <0.0002    | <0.0002 |         | <0.0002 | <0.0002 |           |
| 10/16/2017 |           | <0.0002    | <0.0002    |            | <0.0002 |         | <0.0002 | <0.0002 |           |
|            |           |            |            | <0.0002    |         |         |         |         |           |
| 10/17/2017 | <0.0000   | <0.0002    | <0.0002    | <0.0002    | <0.0002 |         | <0.0002 | <0.0002 | -0.0000   |
| 2/13/2018  | <0.0002   | <0.0002    | <0.0002    | -0.0000    | -0.0000 |         | -0.0000 | -0.0000 | <0.0002   |
| 2/14/2018  |           | -0.0000    | -0.0000    | <0.0002    | <0.0002 |         | <0.0002 | <0.0002 |           |
| 5/21/2018  | .0.000    | <0.0002    | <0.0002    | <0.0002    | <0.0002 |         | .0.000  |         |           |
| 5/22/2018  | <0.0002   |            |            |            |         |         | <0.0002 | <0.0002 | <0.0002   |
| 6/12/2018  | <0.0002   |            |            |            |         |         |         |         | <0.0002   |
| 10/17/2018 | <0.0002   |            |            |            |         |         |         |         | <0.0002   |
| 11/19/2018 | <0.0002   | <0.0002    | <0.0002    | <0.0002    | <0.0002 |         | <0.0002 |         | <0.0002   |
| 11/20/2018 |           |            |            |            |         |         |         | <0.0002 |           |
| 4/10/2019  | <0.0002   |            |            |            |         |         |         |         | <0.0002   |
| 5/14/2019  | <0.0002   | <0.0002    | <0.0002    | <0.0002    | <0.0002 |         |         |         | <0.0002   |
| 5/15/2019  |           |            |            |            |         |         | <0.0002 | <0.0002 |           |
| 10/8/2019  | <0.0002   | <0.0002    | <0.0002    | <0.0002    | <0.0002 |         | <0.0002 | <0.0002 | <0.0002   |
| 10/16/2019 | <0.0002   |            |            |            |         |         |         |         | <0.0002   |
| 4/6/2020   | <0.0002   |            |            |            | <0.0002 |         |         |         | <0.0002   |
| 4/7/2020   |           | <0.0002    | <0.0002    | <0.0002    |         |         |         |         |           |
| 4/8/2020   |           |            |            |            |         |         | <0.0002 | <0.0002 |           |
| 7/13/2020  | <0.0002   |            |            |            |         |         |         |         | <0.0002   |
| 7/14/2020  |           | <0.0002    | <0.0002    | <0.0002    | <0.0002 |         | <0.0002 |         |           |
| 7/15/2020  |           |            |            |            |         |         |         | <0.0002 |           |
| 2/22/2021  | <0.0002   |            |            |            |         |         |         |         | <0.0002   |
| 2/23/2021  |           | <0.0002    | <0.0002    | <0.0002    | <0.0002 | <0.0002 | <0.0002 |         |           |
| 2/24/2021  |           |            |            |            |         |         |         | <0.0002 |           |
| 7/12/2021  | <0.0002   |            |            |            |         |         |         |         | <0.0002   |
| 7/20/2021  |           | <0.0002    | <0.0002    | <0.0002    |         |         |         |         |           |
| 7/21/2021  |           |            |            |            | <0.0002 | <0.0002 | <0.0002 | <0.0002 |           |
|            |           |            |            |            |         |         |         |         |           |

Constituent: Thallium (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

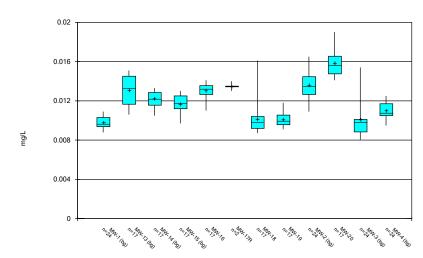
|            | MW-20   | MW-3 (bg)    | MW-4 (bg) |
|------------|---------|--------------|-----------|
| 4/25/2016  |         | 0.000205 (J) | <0.0002   |
| 4/26/2016  | <0.0002 |              |           |
| 6/20/2016  |         |              | <0.0002   |
| 6/22/2016  | <0.0002 | <0.0002      |           |
| 8/9/2016   |         | <0.0002      | <0.0002   |
| 8/24/2016  |         | <0.0002      | <0.0002   |
| 10/3/2016  |         |              | <0.0002   |
| 10/4/2016  |         | <0.0002      |           |
| 10/26/2016 |         | 0.000209 (J) | <0.0002   |
| 11/21/2016 |         | <0.0002      | <0.0002   |
| 1/18/2017  |         | <0.0002      | <0.0002   |
| 3/22/2017  |         | <0.0002      | <0.0002   |
| 4/18/2017  |         | <0.0002      | <0.0002   |
| 5/31/2017  |         | <0.0002      | <0.0002   |
| 10/12/2017 | <0.0002 |              |           |
| 10/13/2017 | <0.0002 |              |           |
| 10/14/2017 | <0.0002 |              |           |
| 10/15/2017 | <0.0002 |              |           |
| 10/16/2017 | <0.0002 |              |           |
| 10/17/2017 | <0.0002 |              |           |
| 2/13/2018  |         | <0.0002      | <0.0002   |
| 2/14/2018  | <0.0002 |              |           |
| 5/22/2018  | <0.0002 |              |           |
| 5/23/2018  |         |              | <0.0002   |
| 5/24/2018  |         | <0.0002      |           |
| 6/12/2018  |         | <0.0002      | <0.0002   |
| 10/17/2018 |         | <0.0002      | <0.0002   |
| 11/19/2018 |         | 0.000226 (J) | <0.0002   |
| 11/20/2018 | <0.0002 |              |           |
| 4/10/2019  |         | <0.0002      | <0.0002   |
| 5/14/2019  |         | <0.0002      | <0.0002   |
| 5/15/2019  | <0.0002 |              |           |
| 10/8/2019  |         | <0.0002      |           |
| 10/10/2019 | <0.0002 |              | <0.0002   |
| 10/16/2019 |         | <0.0002      | <0.0002   |
| 4/6/2020   |         | <0.0002      | <0.0002   |
| 4/8/2020   | <0.0002 |              |           |
| 7/13/2020  |         | <0.0002      |           |
| 7/14/2020  |         |              | <0.0002   |
| 7/15/2020  | <0.0002 |              |           |
| 2/22/2021  |         | <0.0002      | <0.0002   |
| 2/23/2021  | <0.0002 |              |           |
| 7/12/2021  |         | <0.0002      | <0.0002   |
| 7/21/2021  | <0.0002 |              |           |


Constituent: Total Dissolved Solids (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 (bg) | MW-13 (bg) | MW-14 (bg) | MW-15 (bg) | MW-16 | MW-17R | MW-18 | MW-19 | MW-2 (bg) |
|------------|-----------|------------|------------|------------|-------|--------|-------|-------|-----------|
| 4/25/2016  |           |            |            |            |       |        |       |       | 1260 (D)  |
| 4/26/2016  | 2080 (D)  | 2940       | 3400       | 2540       |       |        | 3130  | 3350  |           |
| 4/27/2016  |           |            |            |            | 2130  |        |       |       |           |
| 6/20/2016  | 2060 (D)  |            |            |            |       |        |       |       | 1620 (D)  |
| 6/22/2016  |           | 3580       | 3400       | 2520       | 2270  |        | 3120  | 3090  |           |
| 8/8/2016   | 2070 (D)  |            |            |            |       |        |       |       | 1740 (D)  |
| 8/24/2016  | 2040      |            |            |            |       |        |       |       | 1720      |
| 10/3/2016  | 2110 (D)  |            |            |            |       |        |       |       | 1800 (D)  |
| 10/26/2016 | 2000      |            |            |            |       |        |       |       | 1800      |
| 11/21/2016 | 2070 (D)  |            |            |            |       |        |       |       | 1740 (D)  |
| 1/17/2017  | 1930 (D)  |            |            |            |       |        |       |       | 1960 (D)  |
| 3/22/2017  | 2060 (D)  |            |            |            |       |        |       |       | 1510 (D)  |
| 4/18/2017  | 2140      |            |            |            |       |        |       |       | 1580      |
| 5/30/2017  | 2240 (D)  |            |            |            |       |        |       |       |           |
| 5/31/2017  |           |            |            |            |       |        |       |       | 1730 (D)  |
| 8/23/2017  | 2160 (D)  |            |            |            |       |        |       |       | 1550 (D)  |
| 10/12/2017 |           | 3350       | 3170       | 2660       | 2380  |        | 3290  | 3720  |           |
| 10/13/2017 |           | 3340       | 3070       | 2680       | 2340  |        | 3140  | 3890  |           |
| 10/14/2017 |           | 3120       | 3090       | 2530       | 2340  |        | 3150  | 3800  |           |
| 10/15/2017 |           | 3210       | 3190       | 2640       | 2440  |        | 3210  | 3800  |           |
| 10/16/2017 |           | 3150       | 3110       | 2550       | 2330  |        | 2610  | 3770  |           |
| 10/17/2017 |           | 3030       | 3110       | 2600       | 2380  |        | 3180  | 3780  |           |
| 11/15/2017 |           |            |            | 2620       | 2400  |        | 3170  | 3710  |           |
| 11/16/2017 |           | 3150       | 3160       |            |       |        |       |       |           |
| 5/21/2018  |           | 2760       | 2980       | 2510       | 2340  |        |       |       |           |
| 5/22/2018  | 2380 (D)  |            |            |            |       |        | 2960  | 2700  | 1500 (D)  |
| 6/12/2018  | 2400      |            |            |            |       |        |       |       | 1550      |
| 10/17/2018 | 2220      |            |            |            |       |        |       |       | 1740      |
| 11/19/2018 | 2360      | 2960       | 3270       | 2630       | 2420  |        | 3260  |       | 1990      |
| 11/20/2018 |           |            |            |            |       |        |       | 2580  |           |
| 4/10/2019  | 2630      |            |            |            |       |        |       |       | 1250      |
| 5/14/2019  | 2340 (D)  | 2530       | 3150       | 2520       | 2350  |        |       |       | 1480      |
| 5/15/2019  |           |            |            |            |       |        | 2860  | 2990  |           |
| 10/8/2019  | 2330      | 3050       | 3120       | 2640       | 2460  |        | 2860  | 3300  | 1840      |
| 10/16/2019 | 3650 (o)  |            |            |            |       |        |       |       | 1830      |
| 4/6/2020   | 2240      |            |            |            | 2360  |        |       |       | 1440      |
| 4/7/2020   |           | 2190       | 2820       | 2760       |       |        |       |       |           |
| 4/8/2020   |           |            |            |            |       |        | 2670  | 2710  |           |
| 7/13/2020  | 2240      |            |            |            |       |        |       |       | 1540      |
| 7/14/2020  |           | 2860       | 3160       | 2750       | 2360  |        | 2890  |       |           |
| 7/15/2020  |           |            |            |            |       |        |       | 3030  |           |
| 2/22/2021  | 2230      |            |            |            |       |        |       |       | 1620      |
| 2/23/2021  |           | 2370       | 3020       | 2890       | 2480  | 3930   | 2570  |       |           |
| 2/24/2021  |           |            |            |            |       |        |       | 3070  |           |
| 7/12/2021  | 2210      |            |            |            |       |        |       |       | 1390      |
| 7/20/2021  |           | 2520       | 2990       | 2600       |       |        |       |       |           |
| 7/21/2021  |           |            |            |            | 2290  | 3860   | 2620  | 3130  |           |
|            |           |            |            |            |       |        |       |       |           |

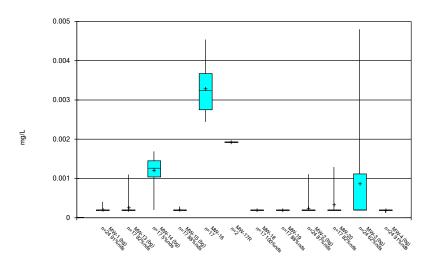
Constituent: Total Dissolved Solids (mg/L) Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-20 | MW-3 (bg) | MW-4 (bg) |
|------------|-------|-----------|-----------|
| 4/25/2016  |       | 2720 (D)  | 3300 (D)  |
| 4/26/2016  | 2690  |           |           |
| 6/20/2016  |       |           | 3870 (D)  |
| 6/22/2016  | 2500  | 3250 (D)  |           |
| 8/9/2016   |       | 3050 (D)  | 4140 (D)  |
| 8/24/2016  |       | 3080      | 4190      |
| 10/3/2016  |       |           | 4190 (D)  |
| 10/4/2016  |       | 2900 (D)  |           |
| 10/26/2016 |       | 2940      | 4400      |
| 11/21/2016 |       | 3090 (D)  | 4230 (D)  |
| 1/18/2017  |       | 4020 (D)  | 4120 (D)  |
| 3/22/2017  |       | 4180 (D)  | 3980 (D)  |
| 4/18/2017  |       | 4440      | 3880      |
| 5/31/2017  |       | 3970 (D)  | 4210 (D)  |
| 8/23/2017  |       | 4050 (D)  | 3990 (D)  |
| 10/12/2017 | 2670  |           |           |
| 10/13/2017 | 2640  |           |           |
| 10/14/2017 | 2590  |           |           |
| 10/15/2017 | 2700  |           |           |
| 10/16/2017 | 2670  |           |           |
| 10/17/2017 | 2570  |           |           |
| 11/15/2017 | 2600  |           |           |
| 5/22/2018  | 2540  |           |           |
| 5/23/2018  |       |           | 3740 (D)  |
| 5/24/2018  |       | 3680 (D)  |           |
| 6/12/2018  |       | 3820      | 4080      |
| 10/17/2018 |       | 4730      | 4250      |
| 11/19/2018 |       | 4710      | 3920      |
| 11/20/2018 | 2420  |           |           |
| 4/10/2019  |       | 3680      | 3280      |
| 5/14/2019  |       | 3580 (D)  | 3130 (D)  |
| 5/15/2019  | 2600  |           |           |
| 10/8/2019  |       | 4720      |           |
| 10/10/2019 | 2580  |           | 4000      |
| 10/16/2019 |       | 4210      | 4060      |
| 4/6/2020   |       | 2630      | 2820      |
| 4/8/2020   | 2480  |           |           |
| 7/13/2020  |       | 3650      |           |
| 7/14/2020  |       |           | 3310      |
| 7/15/2020  | 2480  |           |           |
| 2/22/2021  |       | 4670      | 3190      |
| 2/23/2021  | 2460  |           |           |
| 7/12/2021  |       | 3510      | 3000      |
| 7/21/2021  | 2320  |           |           |
|            |       |           |           |


# FIGURE B.



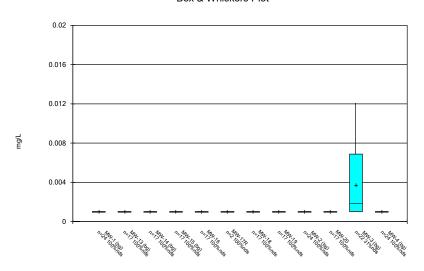
Constituent: Antimony Analysis Run 11/18/2021 2:31 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


#### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

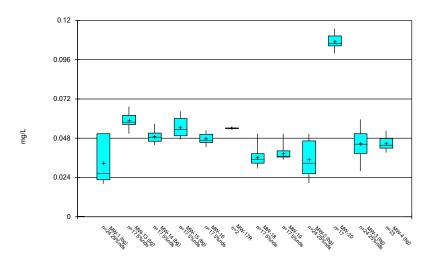
#### Box & Whiskers Plot



Constituent: Barium Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Box & Whiskers Plot

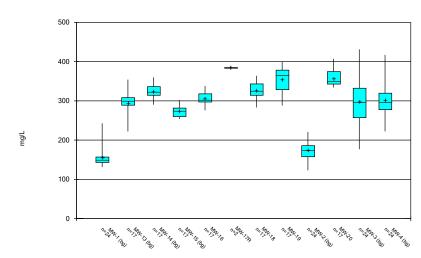



Constituent: Arsenic Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

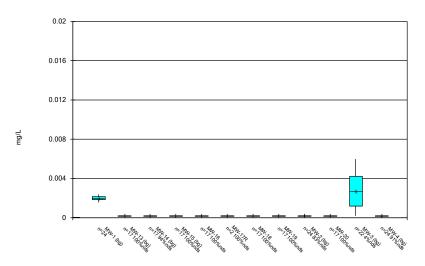
Box & Whiskers Plot




Constituent: Beryllium Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



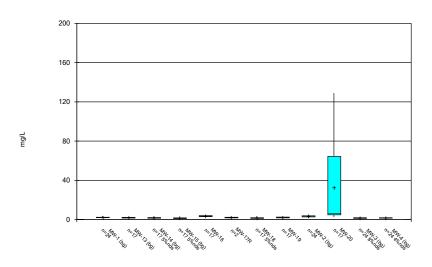
Constituent: Boron Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


#### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

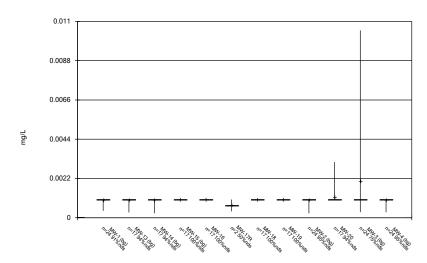
#### Box & Whiskers Plot



Constituent: Calcium Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Box & Whiskers Plot

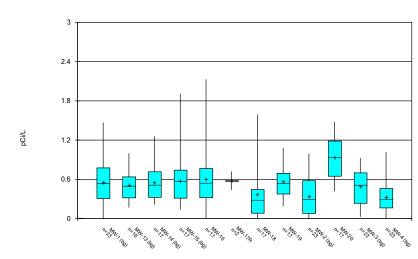



Constituent: Cadmium Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

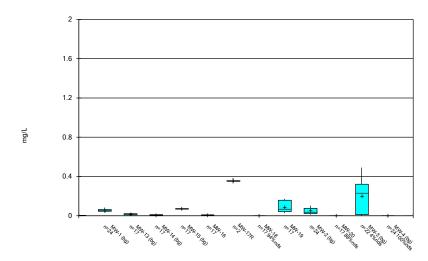
Box & Whiskers Plot




Constituent: Chloride Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



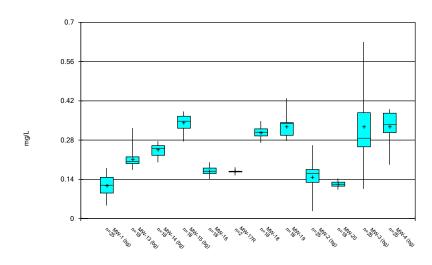
Constituent: Chromium Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


#### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

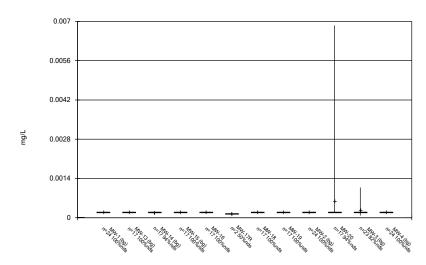
#### Box & Whiskers Plot



Constituent: Combined Radium 226 + 228 Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Box & Whiskers Plot

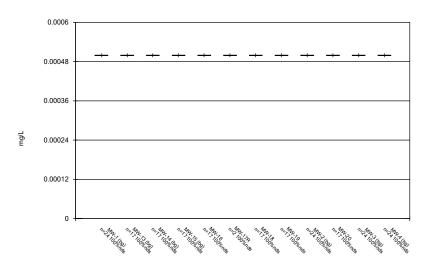



Constituent: Cobalt Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

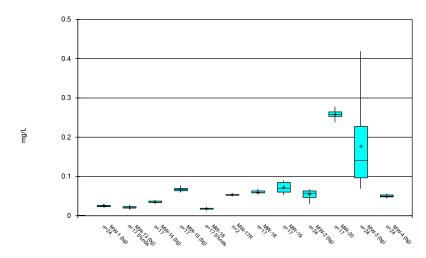
Box & Whiskers Plot




Constituent: Fluoride Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



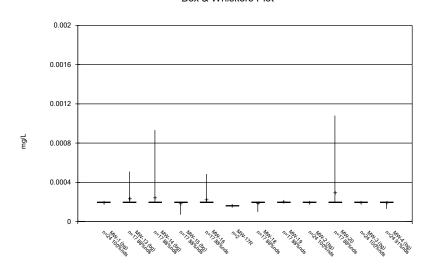
Constituent: Lead Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

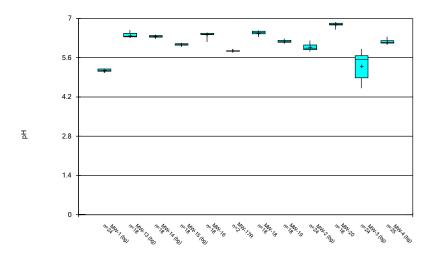
Box & Whiskers Plot



Constituent: Mercury Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Box & Whiskers Plot

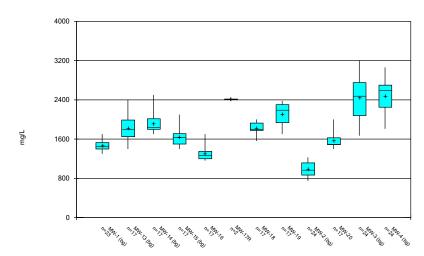



Constituent: Lithium Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

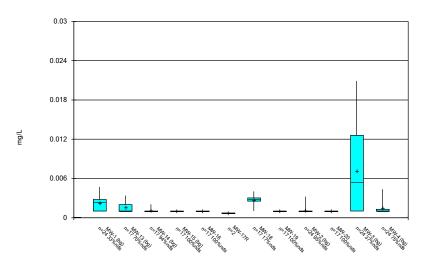
Box & Whiskers Plot




Constituent: Molybdenum Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



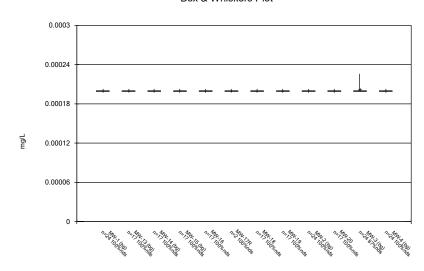
Constituent: pH Analysis Run 11/18/2021 2:32 PM View: Descriptive
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

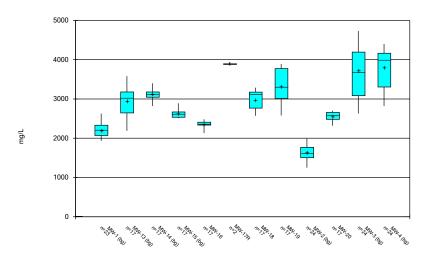
Box & Whiskers Plot



Constituent: Sulfate Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Box & Whiskers Plot




Constituent: Selenium Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Thallium Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



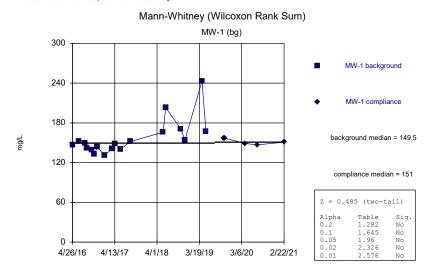
Constituent: Total Dissolved Solids Analysis Run 11/18/2021 2:32 PM View: Descriptive Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

# FIGURE C.

# **Outlier Summary**

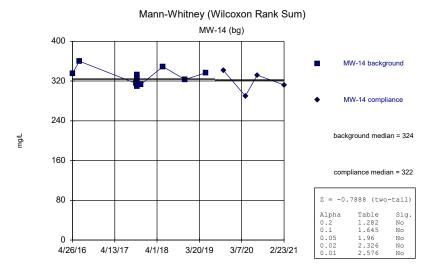
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 11/18/2021, 2:29 PM

|            | MW-3 Berylliur | m (mg/L)<br>MW-4 Boron (1 | mg/L)<br>MW-3 Cadmiur | n (mg/L)<br>MW-3 Cobalt ( | mg/L)<br>MW-13 Combir | <sub>ned</sub> Radium 226<br>MW-3 Lead (m | + 228 (pCi/L)<br>ng/L)<br>MW-3 pH (pH) | MW-1 Sulfate ( | mg/L)<br>MW-1 Total Dissolved Solids (mg/L) |
|------------|----------------|---------------------------|-----------------------|---------------------------|-----------------------|-------------------------------------------|----------------------------------------|----------------|---------------------------------------------|
| 4/25/2016  |                |                           | 0.0121 (O)            |                           |                       |                                           |                                        |                |                                             |
| 1/18/2017  | 0.0169 (O)     |                           |                       |                           |                       |                                           |                                        |                |                                             |
| 10/14/2017 |                |                           |                       |                           | 2.15 (O)              |                                           |                                        |                |                                             |
| 5/22/2018  |                |                           |                       |                           |                       |                                           |                                        | 2100 (o)       |                                             |
| 11/19/2018 | 0.0185 (O)     |                           |                       |                           |                       | 0.00692 (o)                               | 3.77 (o)                               |                |                                             |
| 5/14/2019  |                | <0.203 (o)                |                       |                           |                       |                                           |                                        |                |                                             |
| 10/8/2019  |                |                           |                       | 1.07 (o)                  |                       |                                           |                                        |                |                                             |
| 10/16/2019 |                |                           |                       | 0.848 (o)                 |                       |                                           |                                        |                | 3650 (o)                                    |
| 7/13/2020  |                |                           | 0.00885 (O)           |                           |                       |                                           |                                        |                |                                             |

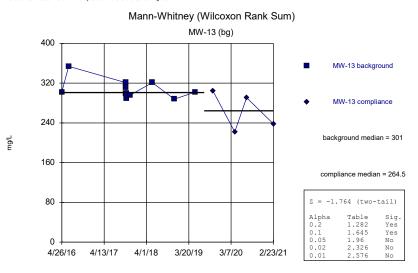

# FIGURE D.

# Mann-Whitney Summary - Significant Results

|                 | Plant Gorgas | Client: Southern Company | Data: Gorgas Gypsum Landfill | Printed 11/12/2021, 9:4- | 4 AM |        |
|-----------------|--------------|--------------------------|------------------------------|--------------------------|------|--------|
| Constituent     |              | Well                     | Calc.                        | <u>0.01</u>              | Sig. | Method |
| Calcium (mg/L)  |              | MW-18                    | -2.971                       | Yes                      | Yes  | Mann-W |
| Chloride (mg/L) |              | MW-20                    | 3.308                        | Yes                      | Yes  | Mann-W |
| Fluoride (mg/L) |              | MW-14 (bg)               | -2.97                        | Yes                      | Yes  | Mann-W |
| Fluoride (mg/L) |              | MW-16                    | -2.73                        | Yes                      | Yes  | Mann-W |
| Fluoride (mg/L) |              | MW-20                    | -2.97                        | Yes                      | Yes  | Mann-W |

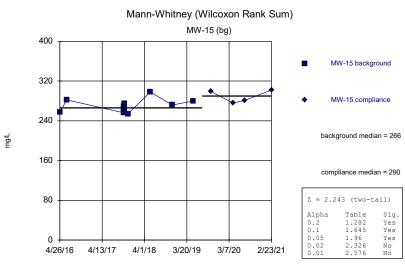

# Mann-Whitney Summary - All Results

|                                                              | Plant Gorgas | Client: Southern Company | Data: Gorgas Gypsum Landfill | Printed 11/12/2021, | 9:44 AM  |        |
|--------------------------------------------------------------|--------------|--------------------------|------------------------------|---------------------|----------|--------|
| Constituent                                                  |              | <u>Well</u>              | Calc.                        | <u>0.01</u>         | Sig.     | Method |
| Calcium (mg/L)                                               |              | MW-1 (bg)                | 0.485                        | No                  | No       | Mann-W |
| Calcium (mg/L)                                               |              | MW-13 (bg)               | -1.764                       | No                  | No       | Mann-W |
| Calcium (mg/L)                                               |              | MW-14 (bg)               | -0.7888                      | No No               | No       | Mann-W |
| Calcium (mg/L)                                               |              | MW-15 (bg)               | 2.243                        | No                  | No       | Mann-W |
| Calcium (mg/L)                                               |              | MW-16                    | 1.154                        | No                  | No       | Mann-W |
| Calcium (mg/L)                                               |              | MW-18                    | -2.971                       | Yes                 | Yes      | Mann-W |
| Calcium (mg/L)                                               |              | MW-19                    | -2.368                       | No                  | No       | Mann-W |
| Calcium (mg/L)                                               |              | MW-2 (bg)                | 0.0373                       | 1 No                | No       | Mann-W |
| Calcium (mg/L)                                               |              | MW-20                    | -0.7888                      | No No               | No       | Mann-W |
| Calcium (mg/L)                                               |              | MW-3 (bg)                | 0.1119                       | No                  | No       | Mann-W |
| Calcium (mg/L)                                               |              | MW-4 (bg)                | -1.23                        | No                  | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-1 (bg)                | -0.9324                      | No                  | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-13 (bg)               | -0.7352                      | ! No                | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-14 (bg)               | -0.0607                      | '2 No               | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-15 (bg)               | 1.037                        | No                  | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-16                    | -1.336                       | No                  | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-18                    | -0.7912                      | . No                | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-19                    | -2.008                       | No                  | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-2 (bg)                | 0.1118                       | No                  | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-20                    | 3.308                        | Yes                 | Yes      | Mann-W |
| Chloride (mg/L)                                              |              | MW-3 (bg)                | 0.1119                       | No                  | No       | Mann-W |
| Chloride (mg/L)                                              |              | MW-4 (bg)                | -1.157                       | No                  | No       | Mann-W |
| Fluoride (mg/L)                                              |              | MW-1 (bg)                | -2.562                       | No                  | No       | Mann-W |
| Fluoride (mg/L)                                              |              | MW-13 (bg)               | -1.662                       | No                  | No       | Mann-W |
| Fluoride (mg/L)                                              |              | MW-14 (bg)               | -2.97                        | Yes                 | Yes      | Mann-W |
| Fluoride (mg/L)                                              |              | MW-15 (bg)               | -1.551                       | No                  | No       | Mann-W |
| Fluoride (mg/L)                                              |              | MW-16                    | -2.73                        | Yes                 | Yes      | Mann-W |
| Fluoride (mg/L)                                              |              | MW-18                    | -2.243                       | No                  | No       | Mann-W |
| Fluoride (mg/L)                                              |              | MW-19                    | 1.549                        | No                  | No       | Mann-W |
| Fluoride (mg/L)                                              |              | MW-2 (bg)                | 0.7841                       | No                  | No       | Mann-W |
| Fluoride (mg/L)                                              |              | MW-20                    | -2.97                        | Yes                 | Yes      | Mann-W |
| Fluoride (mg/L)                                              |              | MW-3 (bg)                | -2.56                        | No                  | No       | Mann-W |
| Fluoride (mg/L)                                              |              | MW-4 (bg)                | -0.6406                      |                     | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-1 (bg)                | 1.047                        | No                  | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-13 (bg)               | -1.785                       | No                  | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-14 (bg)               | -0.4273                      |                     | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-15 (bg)               | 1.409                        | No                  | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-16                    | 1.237                        | No                  | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-18                    | -2.234                       | No                  | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-19                    | -1.042                       | No                  | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-2 (bg)                | -0.485                       | No                  | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-20                    | -0.6775                      |                     | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-3 (bg)                | 0.7086                       | No                  | No       | Mann-W |
| Sulfate (mg/L)                                               |              | MW-4 (bg)                | -1.308                       | No                  | No       | Mann-W |
| Total Dissolved Solids (mg/L)                                |              | MW-1 (bg)                | 1.68                         | No                  | No       | Mann-W |
| Total Dissolved Solids (mg/L)                                |              | MW-13 (bg)               | -2.124                       | No                  | No       | Mann-W |
| Total Dissolved Solids (mg/L)  Total Dissolved Solids (mg/L) |              | MW-13 (bg)               | -2.124<br>-1.458             | No                  | No       | Mann-W |
| Total Dissolved Solids (mg/L)  Total Dissolved Solids (mg/L) |              | MW-14 (bg)<br>MW-15 (bg) | 2.55                         | No                  | No       | Mann-W |
| Total Dissolved Solids (mg/L)                                |              | MW-16                    | 1.644                        | No                  | No       | Mann-W |
| Total Dissolved Solids (mg/L)  Total Dissolved Solids (mg/L) |              | MW-18                    |                              |                     |          | Mann-W |
| , - ,                                                        |              | MW-19                    | -2.427<br>-1.517             | No<br>No            | No<br>No |        |
| Total Dissolved Solids (mg/L)                                |              |                          | -1.517                       | No<br>No            | No<br>No | Mann-W |
| Total Dissolved Solids (mg/L)                                |              | MW-2 (bg)                | 0.1493                       | No<br>No            | No<br>No | Mann-W |
| Total Dissolved Solids (mg/L)                                |              | MW-20                    | -2.127                       | No<br>No            | No<br>No | Mann-W |
| Total Dissolved Solids (mg/L)                                |              | MW-3 (bg)                | 0.7828                       | No<br>No            | No<br>No | Mann-W |
| Total Dissolved Solids (mg/L)                                |              | MW-4 (bg)                | -1.752                       | No                  | No       | Mann-W |




Constituent: Calcium Analysis Run 11/12/2021 9:42 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

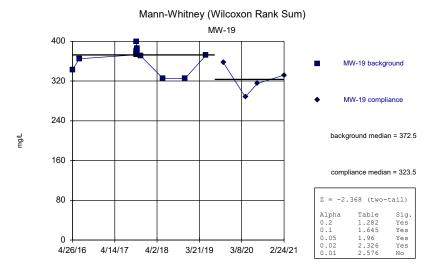
Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



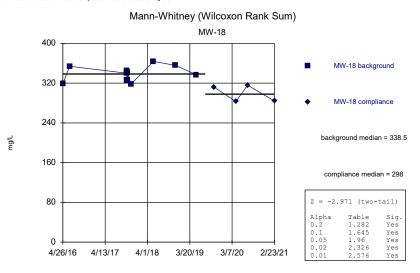

Constituent: Calcium Analysis Run 11/12/2021 9:42 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



Constituent: Calcium Analysis Run 11/12/2021 9:42 AM View: Mann Whitney Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

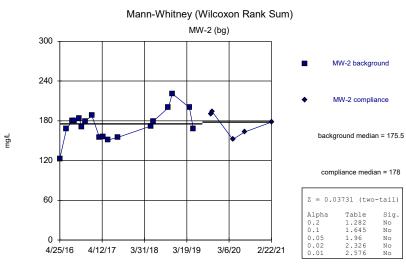

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

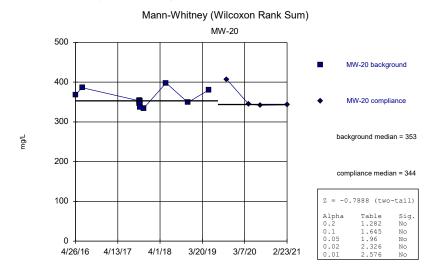





Constituent: Calcium Analysis Run 11/12/2021 9:42 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

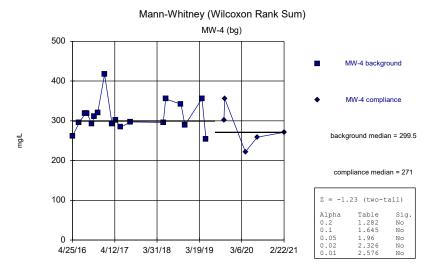
Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



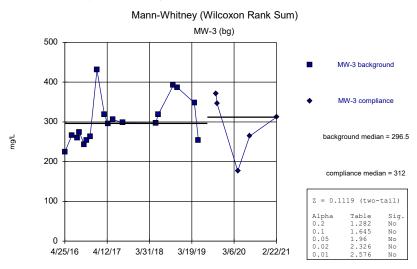


Constituent: Calcium Analysis Run 11/12/2021 9:42 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



Constituent: Calcium Analysis Run 11/12/2021 9:42 AM View: Mann Whitney Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

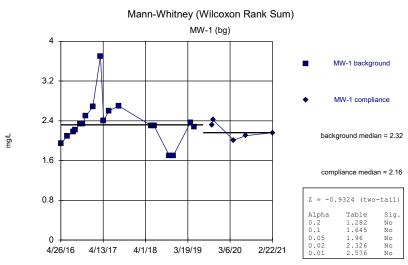

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

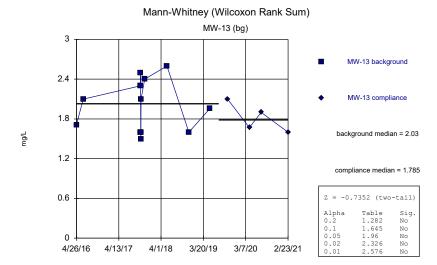





Constituent: Calcium Analysis Run 11/12/2021 9:42 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG





Constituent: Calcium Analysis Run 11/12/2021 9:42 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

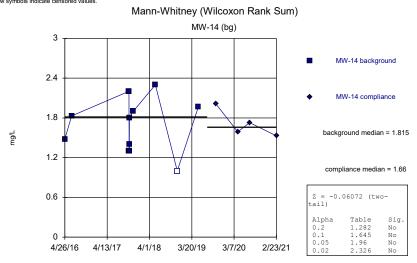


Constituent: Calcium Analysis Run 11/12/2021 9:42 AM View: Mann Whitney Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



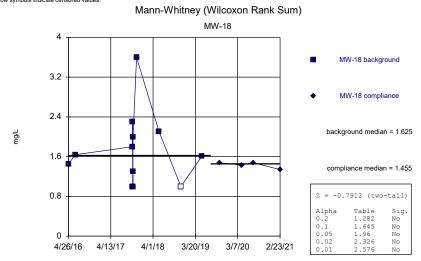



Constituent: Chloride Analysis Run 11/12/2021 9:42 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

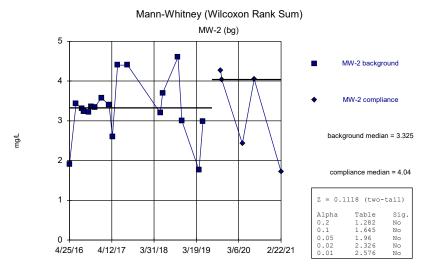
Mann-Whitney (Wilcoxon Rank Sum) MW-15 (bg) 2 MW-15 background 1.6 MW-15 compliance 1.2 mg/L background median = 1.295 0.8 compliance median = 1.455 Z = 1.037 (two-tail) 0.4 Alpha Table Sig. 0.2 1.282 No 1.645 No 0.05 1.96 0.02 No 4/13/17 3/20/19 2/23/21 4/26/16 4/1/18 3/7/20 2.576

Constituent: Chloride Analysis Run 11/12/2021 9:42 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

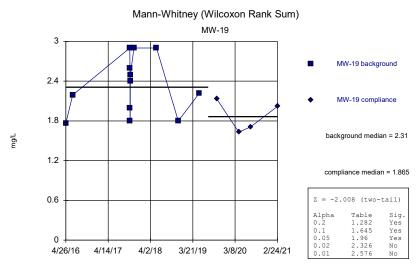

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Chloride Analysis Run 11/12/2021 9:42 AM View: Mann Whitney Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

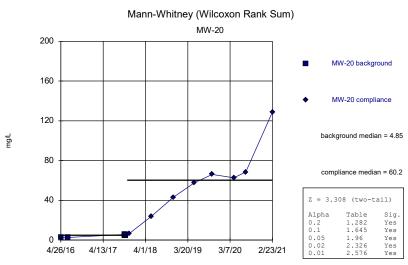

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG





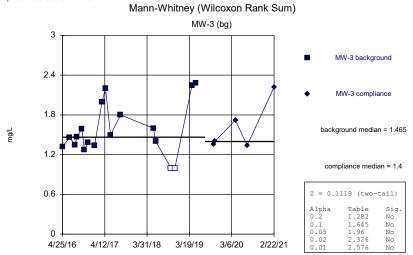

Constituent: Chloride Analysis Run 11/12/2021 9:42 AM View: Mann Whitney Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



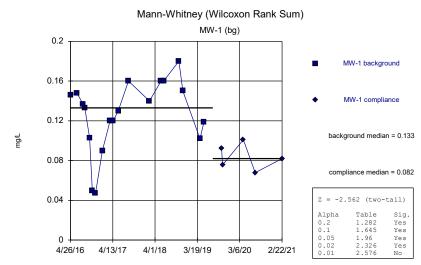

Constituent: Chloride Analysis Run 11/12/2021 9:42 AM View: Mann Whitney Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: Chloride Analysis Run 11/12/2021 9:42 AM View: Mann Whitney Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

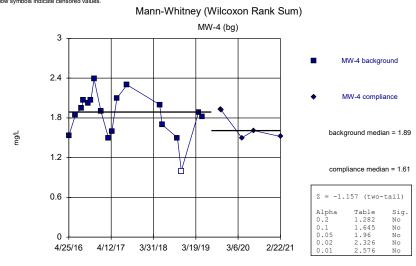
Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG




Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

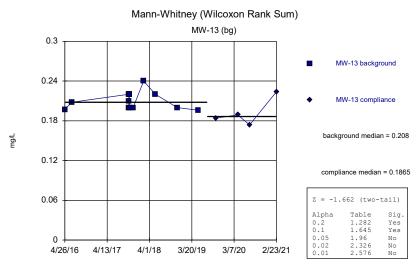
Hollow symbols indicate censored values.



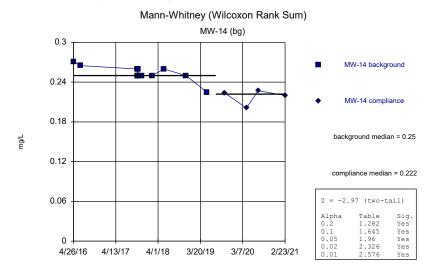

Constituent: Chloride Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



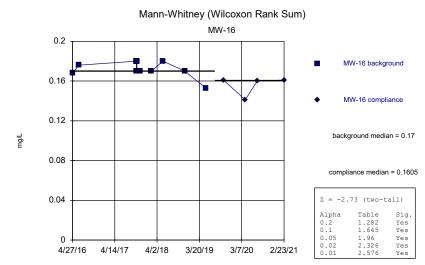

Constituent: Fluoride Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

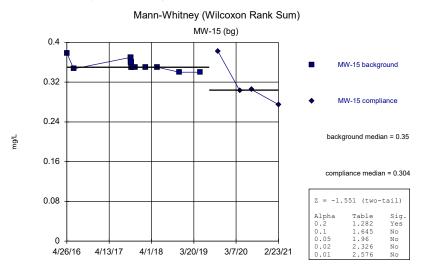



Constituent: Chloride Analysis Run 11/12/2021 9:43 AM View: Mann Whitney Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

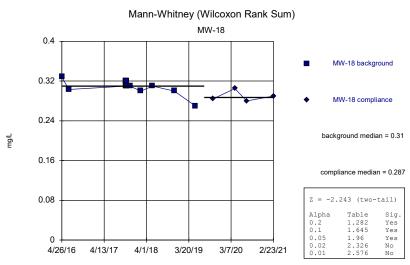
Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

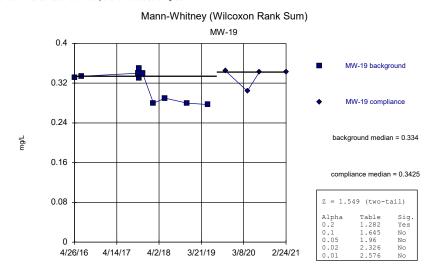



Constituent: Fluoride Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

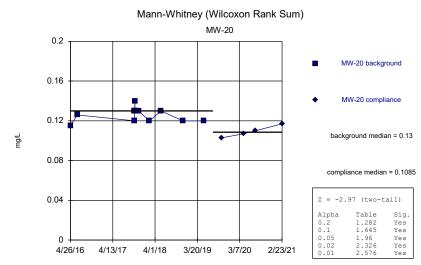



Constituent: Fluoride Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

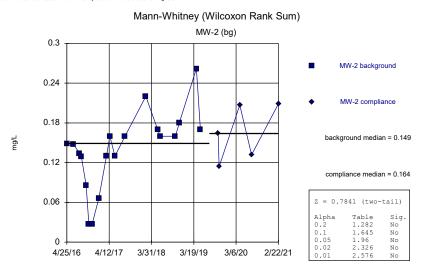

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



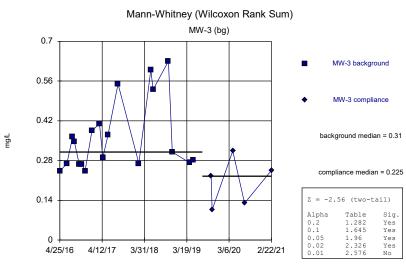

Constituent: Fluoride Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

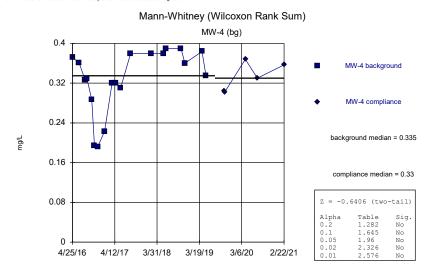



Constituent: Fluoride Analysis Run 11/12/2021 9:43 AM View: Mann Whitney Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



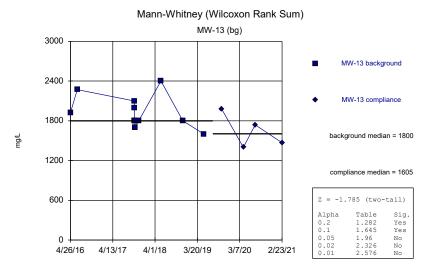




Constituent: Fluoride Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

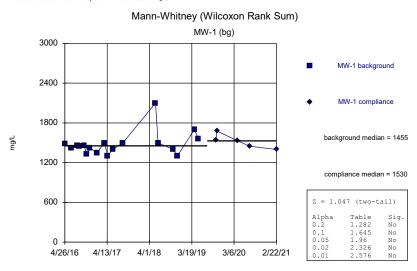



Constituent: Fluoride Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



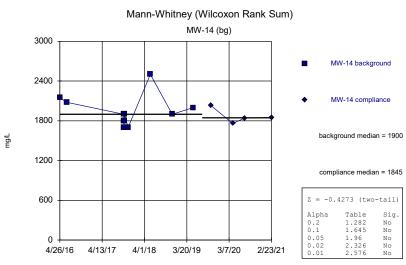

Constituent: Fluoride Analysis Run 11/12/2021 9:43 AM View: Mann Whitney Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



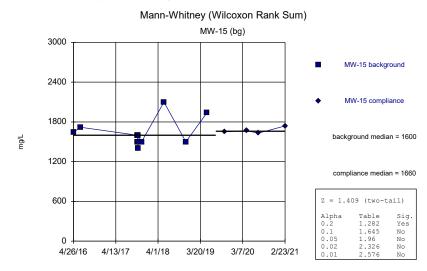



Constituent: Fluoride Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

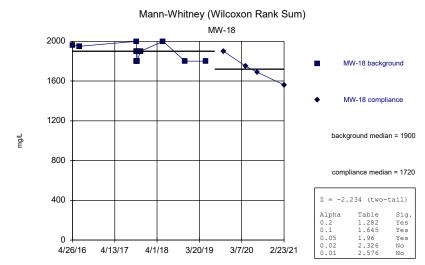



Constituent: Sulfate Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

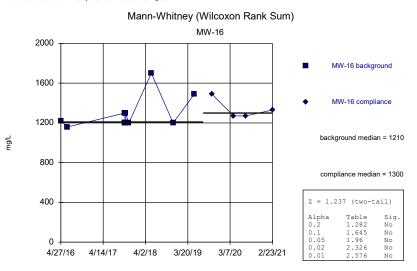



Constituent: Sulfate Analysis Run 11/12/2021 9:43 AM View: Mann Whitney Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

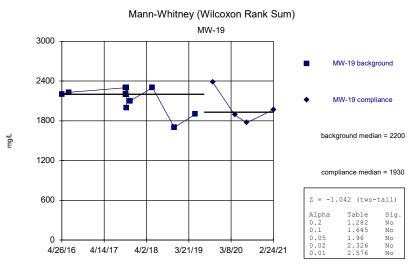



Constituent: Sulfate Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

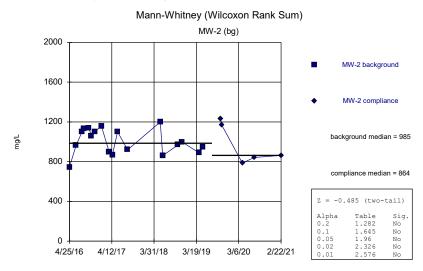



Constituent: Sulfate Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

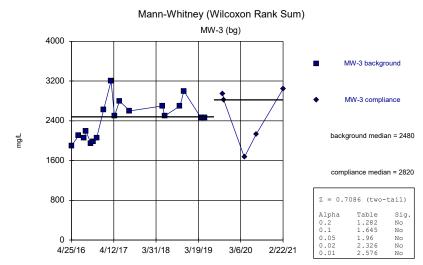



Constituent: Sulfate Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

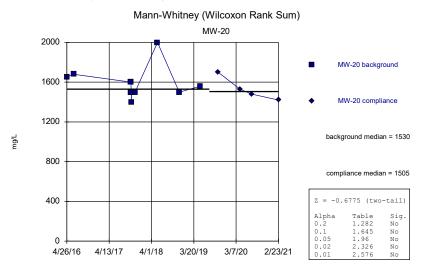



Constituent: Sulfate Analysis Run 11/12/2021 9:43 AM View: Mann Whitney Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

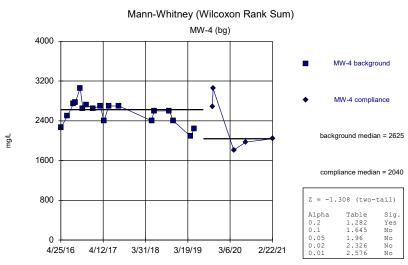



Constituent: Sulfate Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

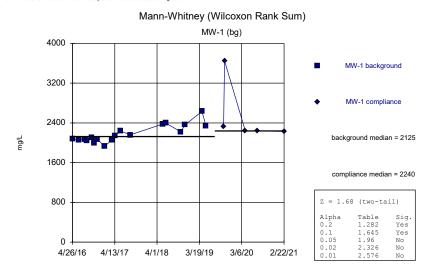



Constituent: Sulfate Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

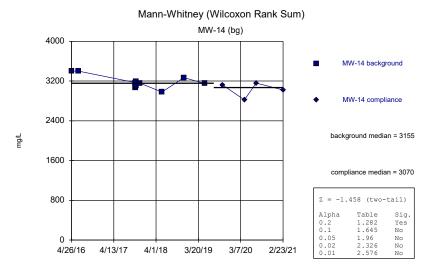
Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



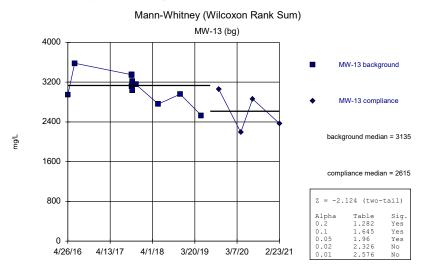

Constituent: Sulfate Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: Sulfate Analysis Run 11/12/2021 9:43 AM View: Mann Whitney Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

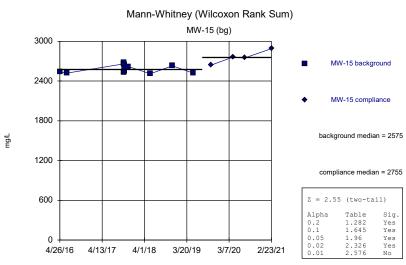

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

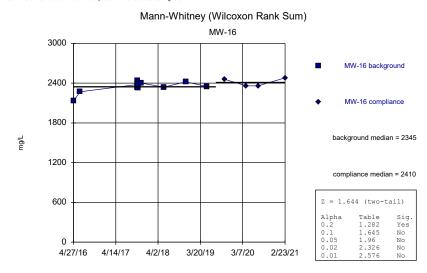



Constituent: Sulfate Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

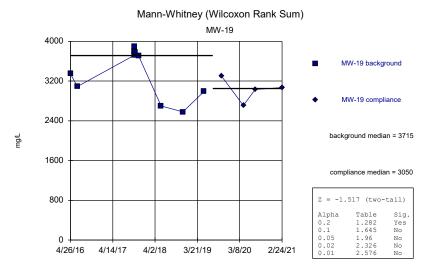


Constituent: Total Dissolved Solids Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

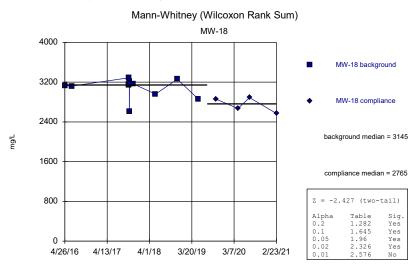




Constituent: Total Dissolved Solids Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



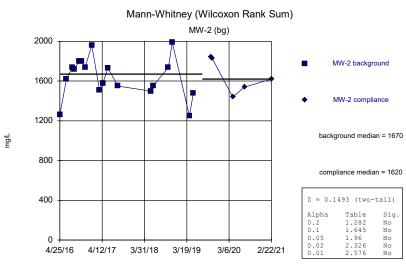

Constituent: Total Dissolved Solids Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

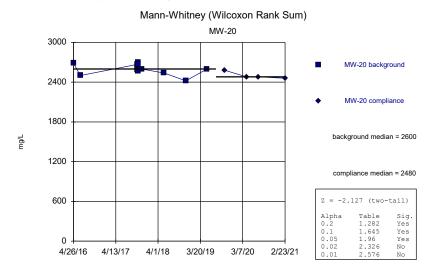
Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG





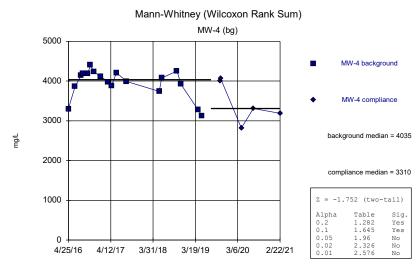

Constituent: Total Dissolved Solids Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



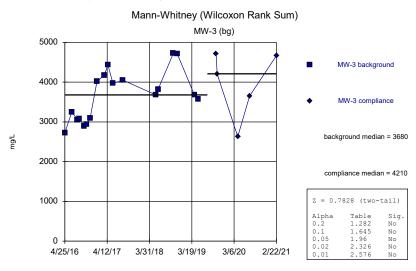


Constituent: Total Dissolved Solids Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



Constituent: Total Dissolved Solids Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG






Constituent: Total Dissolved Solids Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Total Dissolved Solids Analysis Run 11/12/2021 9:43 AM View: Mann Whitney
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



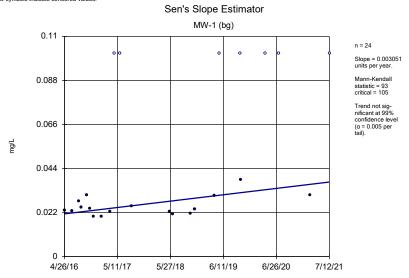
Constituent: Total Dissolved Solids Analysis Run 11/12/2021 9:43 AM View: Mann Whitney Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

# FIGURE E.

## Appendix III Trend Test Summary - Significant Results

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 11/12/2021, 11:08 AM

 Constituent
 Well
 Slope
 Calc.
 Critical
 Sig.
 N
 %NDs
 Normality
 Xform
 Alpha
 Method


 Boron (mg/L)
 MW-2 (bg)
 0.00734
 127
 105
 Yes
 24
 25
 n/a
 n/a
 0.01
 NP

## Appendix III Trend Test Summary - All Results

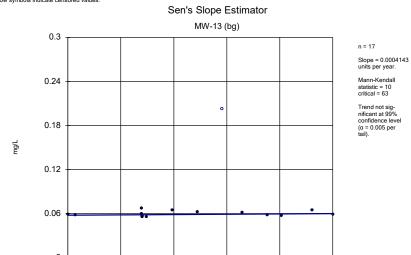
|              | Plant Gorgas | Client: Souther | n Company D | )ata: ( | Gorgas Gy | psum Landfil | l Prir | nted 11/1 | 12/2021, | 11:08 AM  |              |              |        |
|--------------|--------------|-----------------|-------------|---------|-----------|--------------|--------|-----------|----------|-----------|--------------|--------------|--------|
| Constituent  | Well         |                 | Slope       |         | Calc.     | Critical     | Sig.   | <u>N</u>  | %NDs     | Normality | <u>Xform</u> | <u>Alpha</u> | Method |
| Boron (mg/L) | MW-1 (       | bg)             | 0.003051    |         | 93        | 105          | No     | 24        | 29.17    | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L) | MW-13        | (bg)            | 0.0004143   |         | 10        | 63           | No     | 17        | 5.882    | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L) | MW-14        | (bg)            | 0.0006368   |         | 23        | 63           | No     | 17        | 5.882    | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L) | MW-15        | (bg)            | 0.0008575   |         | 30        | 63           | No     | 17        | 5.882    | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L) | MW-2 (       | bg)             | 0.00734     |         | 127       | 105          | Yes    | 24        | 25       | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L) | MW-3 (       | bg)             | 0.006876    |         | 97        | 105          | No     | 24        | 25       | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L) | MW-4 (       | bg)             | -0.00009099 |         | -6        | -105         | No     | 24        | 4.167    | n/a       | n/a          | 0.01         | NP     |
| pH (pH)      | MW-1 (       | bg)             | -0.01437    |         | -88       | -105         | No     | 24        | 0        | n/a       | n/a          | 0.01         | NP     |
| pH (pH)      | MW-13        | (bg)            | 0.03035     |         | 54        | 68           | No     | 18        | 0        | n/a       | n/a          | 0.01         | NP     |
| pH (pH)      | MW-14        | (bg)            | 0           |         | 4         | 68           | No     | 18        | 0        | n/a       | n/a          | 0.01         | NP     |
| pH (pH)      | MW-15        | (bg)            | -0.005313   |         | -31       | -68          | No     | 18        | 0        | n/a       | n/a          | 0.01         | NP     |
| pH (pH)      | MW-2 (       | bg)             | 0.04162     |         | 102       | 105          | No     | 24        | 0        | n/a       | n/a          | 0.01         | NP     |
| pH (pH)      | MW-3 (       | bg)             | -0.01603    |         | -16       | -111         | No     | 25        | 0        | n/a       | n/a          | 0.01         | NP     |
| pH (pH)      | MW-4 (       | bg)             | 0.01244     |         | 57        | 111          | No     | 25        | 0        | n/a       | n/a          | 0.01         | NP     |

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.



Constituent: Boron Analysis Run 11/12/2021 11:07 AM View: Trend Tests - Interwell App III Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.



Constituent: Boron Analysis Run 11/12/2021 11:07 AM View: Trend Tests - Interwell App III Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Boron Analysis Run 11/12/2021 11:07 AM View: Trend Tests - Interwell App III Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

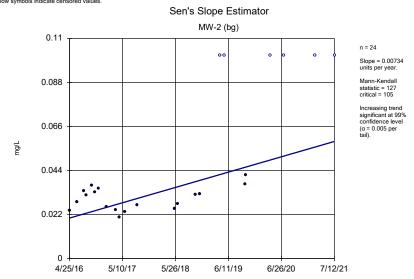
6/16/19

7/2/20

5/30/18

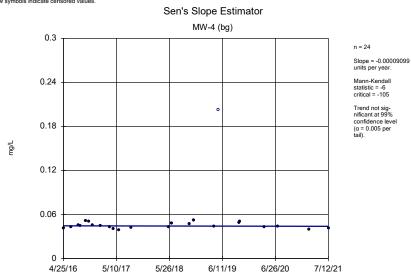
7/20/21

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


4/26/16

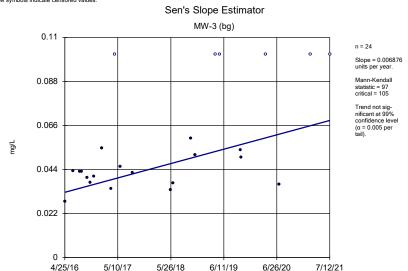
5/13/17




Constituent: Boron Analysis Run 11/12/2021 11:07 AM View: Trend Tests - Interwell App III Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

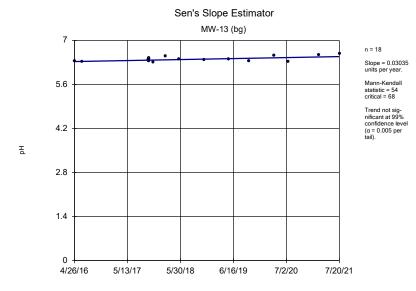



Constituent: Boron Analysis Run 11/12/2021 11:07 AM View: Trend Tests - Interwell App III
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



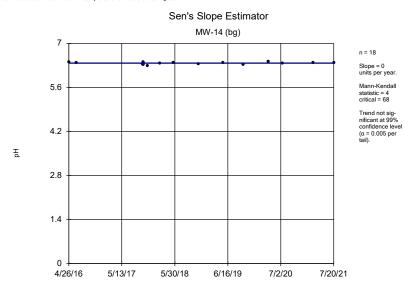
Constituent: Boron Analysis Run 11/12/2021 11:07 AM View: Trend Tests - Interwell App III
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

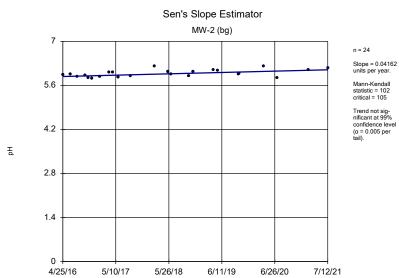


Constituent: Boron Analysis Run 11/12/2021 11:07 AM View: Trend Tests - Interwell App III
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

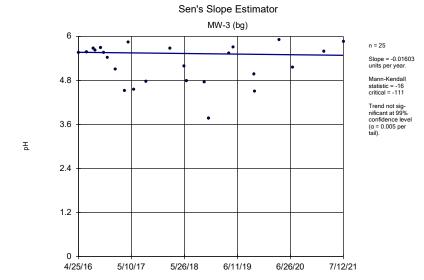



Constituent: pH Analysis Run 11/12/2021 11:07 AM View: Trend Tests - Interwell App III
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

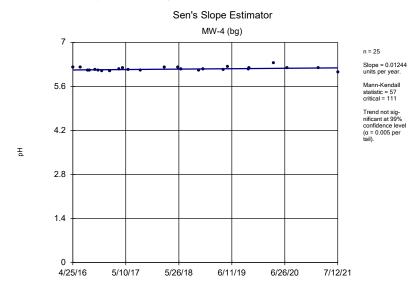



Constituent: pH Analysis Run 11/12/2021 11:07 AM View: Trend Tests - Interwell App III
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: pH Analysis Run 11/12/2021 11:07 AM View: Trend Tests - Interwell App III
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: pH Analysis Run 11/12/2021 11:07 AM View: Trend Tests - Interwell App III
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



Constituent: pH Analysis Run 11/12/2021 11:07 AM View: Trend Tests - Interwell App III
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



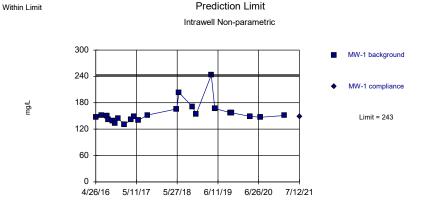
Constituent: pH Analysis Run 11/12/2021 11:07 AM View: Trend Tests - Interwell App III
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



Constituent: pH Analysis Run 11/12/2021 11:07 AM View: Trend Tests - Interwell App III
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

# FIGURE F.

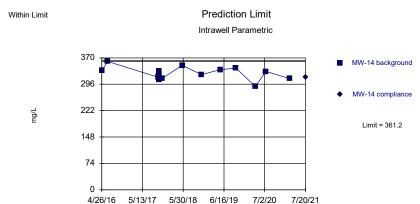
## Intrawell Prediction Limits - Significant Results Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 11/12/2021, 10:06 AM


| Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 11/12/2021, 10:06 AM |       |            |            |             |         |      |      |         |           |      |         |           |          |                             |
|-------------------------------------------------------------------------------------------------|-------|------------|------------|-------------|---------|------|------|---------|-----------|------|---------|-----------|----------|-----------------------------|
| Constituent                                                                                     | Well  | Upper Lim. | Lower Lim. | <u>Date</u> | Observ. | Sig. | Bg N | Bg Mean | Std. Dev. | %NDs | ND Adj. | Transform | n Alpha  | Method                      |
| Chloride (mg/L)                                                                                 | MW-14 | 2.494      | n/a        | 7/20/2021   | 3.65    | Yes  | 16   | 1.721   | 0.3723    | 6.25 | None    | No        | 0.00188  | Param Intra 1 of 2          |
| Chloride (mg/L)                                                                                 | MW-15 | 2.077      | n/a        | 7/20/2021   | 3.16    | Yes  | 16   | 1.384   | 0.3337    | 6.25 | None    | No        | 0.00188  | Param Intra 1 of 2          |
| Chloride (mg/L)                                                                                 | MW-20 | 7.306      | n/a        | 7/21/2021   | 67.9    | Yes  | 8    | 4.393   | 1.114     | 0    | None    | No        | 0.00188  | Param Intra 1 of 2          |
| Fluoride (mg/L)                                                                                 | MW-13 | 0.2401     | n/a        | 7/20/2021   | 0.323   | Yes  | 17   | 0.206   | 0.01659   | 0    | None    | No        | 0.00188  | Param Intra 1 of 2          |
| Fluoride (mg/L)                                                                                 | MW-16 | 0.1913     | n/a        | 7/21/2021   | 0.201   | Yes  | 17   | 0.1688  | 0.01092   | 0    | None    | No        | 0.00188  | Param Intra 1 of 2          |
| Fluoride (mg/L)                                                                                 | MW-18 | 0.3364     | n/a        | 7/21/2021   | 0.348   | Yes  | 17   | 0.3042  | 0.01568   | 0    | None    | No        | 0.00188  | Param Intra 1 of 2          |
| Fluoride (mg/L)                                                                                 | MW-19 | 0.35       | n/a        | 7/21/2021   | 0.429   | Yes  | 17   | n/a     | n/a       | 0    | n/a     | n/a       | 0.005914 | NP Intra (normality) 1 of 2 |
| Fluoride (mg/L)                                                                                 | MW-20 | 0 1424     | n/a        | 7/21/2021   | 0 143   | Yes  | 17   | 0 1222  | 0.00982   | 0    | None    | No        | 0 00188  | Param Intra 1 of 2          |

### Intrawell Prediction Limits - All Results

Client: Southern Company Data: Gorgas Gypsum Landfill Constituent Well Std. Dev. <u>%NDs</u> ND Adj. Transform Alpha Lower Lim. Date Sig. Method Calcium (mg/L) MW-1 243 n/a 7/12/2021 149 Nο 23 n/a n/a 0 n/a n/a 0.003415 NP Intra (normality) 1 of 2 Calcium (mg/L) MW-13 359.5 n/a 7/20/2021 262 Nο 16 296 1 30.55 0 None Nο 0.00188 Param Intra 1 of 2 Calcium (mg/L) MW-14 361.2 n/a 7/20/2021 316 No 16 325.4 17.27 0 None No 0.00188 Param Intra 1 of 2 n Calcium (mg/L) MW-15 306.6 n/a 7/20/2021 274 Nο 16 274 15 71 None Nο 0.00188 Param Intra 1 of 2 Calcium (mg/L) MW-16 337.7 n/a 7/21/2021 295 No 16 306.4 15.11 0 None No 0.00188 Param Intra 1 of 2 Calcium (mg/L) MW-18 375.9 n/a 7/21/2021 289 No 16 327.9 23.09 0 None No 0.00188 Param Intra 1 of 2 MW-19 7/21/2021 0.00188 Calcium (mg/L) 419.3 n/a 332 No 16 355.4 30.77 0 None No Param Intra 1 of 2 MW-2 159 23 174.2 0 0.00188 Calcium (mg/L) 214.8 n/a 7/12/2021 No 20.8 None No Param Intra 1 of 2 7/21/2021 16 358.9 0 0.00188 Calcium (mg/L) MW-20 405.3 n/a 336 No 22.33 None No Param Intra 1 of 2 252 0 Calcium (mg/L) MW-3 416 7/12/2021 23 300 59.54 0.00188 Param Intra 1 of 2 n/a No None No 0.00188 Calcium (mg/L) MW-4 386.1 n/a 7/12/2021 242 No 23 304.8 41.68 0 None No Param Intra 1 of 2 MW-1 2.19 23 0 Chloride (ma/L) 3.101 n/a 7/12/2021 1.518 0.1248 sart(x) 0.00188 Param Intra 1 of 2 No None 7/20/2021 1.953 0 0.00188 Chloride (mg/L) MW-13 2.701 n/a 1.7 No 16 0.3604 None No Param Intra 1 of 2 Chloride (ma/L) MW-14 2.494 7/20/2021 3.65 1.721 0.3723 0.00188 Param Intra 1 of 2 n/a Yes 16 6.25 None No 7/20/2021 Chloride (mg/L) MW-15 2.077 3.16 1.384 0.3337 0.00188 Param Intra 1 of 2 n/a Yes 16 6.25 None No MW-16 4.72 7/21/2021 2.97 0.4887 0 0.00188 Chloride (mg/L) n/a 16 3.706 No Param Intra 1 of 2 No None MW-18 3.031 7/21/2021 16 1.269 0.00188 Chloride (mg/L) n/a 1.4 No 0.2275 6.25 sqrt(x) Param Intra 1 of 2 None MW-19 3.131 7/21/2021 1.74 16 2.216 0.4406 0 0.00188 Param Intra 1 of 2 Chloride (mg/L) n/a No No None Chloride (mg/L) MW-2 4.893 n/a 7/12/2021 2.36 No 23 3.3 0.8175 0 No 0.00188 Param Intra 1 of 2 None Chloride (mg/L) MW-20 7.306 7/21/2021 67.9 Yes 1.114 0 None No 0.00188 Param Intra 1 of 2 n/a Chloride (mg/L) MW-3 2.316 7/12/2021 2.13 No 23 1.576 0.3795 8.696 None No 0.00188 Param Intra 1 of 2 n/a Chloride (mg/L) MW-4 2.419 n/a 7/12/2021 1.56 No 1.811 0.3119 None No 0.00188 Param Intra 1 of 2 Fluoride (mg/L) MW-1 0.1878 7/12/2021 0.125 No 24 0.03644 0 No 0.00188 None Fluoride (mg/L) MW-13 0.2401 n/a 7/20/2021 0.323 17 0.206 0.01659 0 None No 0.00188 Param Intra 1 of 2 0.2455 Fluoride (mg/L) MW-14 0.2847 7/20/2021 0.276 No 17 0.01912 0 None No 0.00188 Param Intra 1 of 2 MW-15 0.4037 7/20/2021 0.288 0.3459 0.02812 0 0.00188 Fluoride (mg/L) n/a No 17 None No Param Intra 1 of 2 7/21/2021 0.201 Fluoride (mg/L) MW-16 0.1913 n/a 17 0.1688 0.01092 0 No 0.00188 Param Intra 1 of 2 Fluoride (mg/L) MW-18 0.3364 7/21/2021 0.348 0.3042 0.01568 0 No 0.00188 n/a 17 None Param Intra 1 of 2 7/21/2021 Fluoride (mg/L) MW-19 0.35 0.429 0 n/a 0.005914 NP Intra (normality) 1 of 2 n/a 17 n/a Fluoride (mg/L) MW-2 0.2528 n/a 7/12/2021 0.196 24 0.1456 0.05538 0 None No 0.00188 Param Intra 1 of 2 No 0.1424 n/a Fluoride (mg/L) MW-20 7/21/2021 0.143 17 0.1222 0.00982 0 No 0.00188 Param Intra 1 of 2 Yes None Fluoride (mg/L) Param Intra 1 of 2 MW-3 0.5886 n/a 7/12/2021 0.287 No 24 0.3299 0.1336 0 None No 0.00188 0.03425 Fluoride (mg/L) MW-4 0.4215 n/a 7/12/2021 0.35 No 24 0.1114 0 None x^2 0.00188 Param Intra 1 of 2 Sulfate (mg/L) MW-1 1665 n/a 7/12/2021 1560 No 22 1461 104.1 0 None No 0.00188 Param Intra 1 of 2 Sulfate (mg/L) MW-13 2396 n/a 7/20/2021 1560 No 16 1849 263.6 0 None Nο 0.00188 Param Intra 1 of 2 Sulfate (mg/L) MW-14 2339 n/a 7/20/2021 1830 No 16 1919 201.9 0 None Nο 0.00188 Param Intra 1 of 2 MW-15 1700 16 175.1 0 Sulfate (mg/L) 2007 n/a 7/20/2021 No 1643 None No 0.00188 Param Intra 1 of 2 MW-16 1370 0 0.006456 Sulfate (mg/L) 1700 n/a 7/21/2021 Nο 16 n/a n/a n/a n/a NP Intra (normality) 1 of 2 Sulfate (mg/L) MW-18 2089 n/a 7/21/2021 1650 No 16 1844 118 0 None No 0.00188 Param Intra 1 of 2 Sulfate (mg/L) MW-19 7/21/2021 1990 16 2109 0 0.00188 Param Intra 1 of 2 2546 n/a No 210.4 None No MW-2 1274 0 Sulfate (mg/L) 7/12/2021 763 23 997.8 141.7 0.00188 Param Intra 1 of 2 n/a No None No 7/21/2021 0 0.00188 Sulfate (mg/L) MW-20 1868 n/a 1480 No 16 39.59 1.75 None sart(x) Param Intra 1 of 2 MW-3 0 3272 7/12/2021 2380 23 2451 421.1 0.00188 Param Intra 1 of 2 Sulfate (mg/L) n/a No No None Sulfate (mg/L) MW-4 7/12/2021 1930 23 0 0.00188 3143 2511 Param Intra 1 of 2 n/a No 324 None No MW-1 2210 0 Total Dissolved Solids (mg/L) 2519 n/a 7/12/2021 No 22 2197 164 None No 0.00188 Param Intra 1 of 2 Total Dissolved Solids (mg/L) MW-13 3738 7/20/2021 2520 16 2974 0 No 0.00188 Param Intra 1 of 2 n/a No 367.6 None Total Dissolved Solids (mg/L) MW-14 3436 7/20/2021 2990 16 3139 143.4 0 0.00188 n/a No Param Intra 1 of 2 No None Total Dissolved Solids (mg/L) MW-15 2846 7/20/2021 2600 16 2628 105.4 0 No 0.00188 Param Intra 1 of 2 n/a No None Total Dissolved Solids (mg/L) MW-16 2531 7/21/2021 2290 16 2361 81.64 0 No 0.00188 Param Intra 1 of 2 n/a None No Total Dissolved Solids (mg/L) MW-18 3492 n/a 7/21/2021 2620 16 3004 235.1 0 No 0.00188 Param Intra 1 of 2 No None

### Intrawell Prediction Limits - All Results


| Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 11/12/2021, 10:06 AM |       |            |            |             |         |      |      |           |           |      |         |           |                |                    |
|-------------------------------------------------------------------------------------------------|-------|------------|------------|-------------|---------|------|------|-----------|-----------|------|---------|-----------|----------------|--------------------|
| Constituent                                                                                     | Well  | Upper Lim. | Lower Lim. | <u>Date</u> | Observ. | Sig. | Bg N | N Bg Mean | Std. Dev. | %NDs | ND Adj. | Transforn | n <u>Alpha</u> | Method             |
| Total Dissolved Solids (mg/L)                                                                   | MW-19 | 4278       | n/a        | 7/21/2021   | 3130    | No   | 16   | 3331      | 456.4     | 0    | None    | No        | 0.00188        | Param Intra 1 of 2 |
| Total Dissolved Solids (mg/L)                                                                   | MW-2  | 2021       | n/a        | 7/12/2021   | 1390    | No   | 23   | 1643      | 193.7     | 0    | None    | No        | 0.00188        | Param Intra 1 of 2 |
| Total Dissolved Solids (mg/L)                                                                   | MW-20 | 2756       | n/a        | 7/21/2021   | 2320    | No   | 16   | 2574      | 87.48     | 0    | None    | No        | 0.00188        | Param Intra 1 of 2 |
| Total Dissolved Solids (mg/L)                                                                   | MW-3  | 5051       | n/a        | 7/12/2021   | 3510    | No   | 23   | 3729      | 678.1     | 0    | None    | No        | 0.00188        | Param Intra 1 of 2 |
| Total Dissolved Solids (mg/L)                                                                   | MW-4  | 4600       | n/a        | 7/12/2021   | 3000    | No   | 23   | 1.5e7     | 3201096   | 0    | None    | x^2       | 0.00188        | Param Intra 1 of 2 |



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 23 background values. Well-constituent pair annual alpha = 0.006819. Individual comparison alpha = 0.003415 (1 of 2).

> Constituent: Calcium Analysis Run 11/12/2021 9:58 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

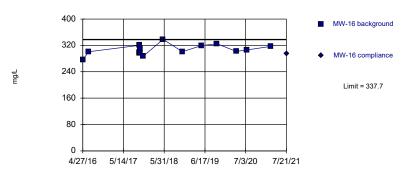
Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=325.4, Std. Dev.=17.27, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9781, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

Prediction Limit Within Limit Intrawell Parametric 400 ■ MW-13 background 320 MW-13 compliance 240 Limit = 359.5 160 80 4/26/16 5/13/17 5/30/18 6/16/19 7/2/20 7/20/21

Background Data Summary: Mean=296.1, Std. Dev.=30.55, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8558, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =


> Constituent: Calcium Analysis Run 11/12/2021 9:58 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

**Prediction Limit** Within Limit Intrawell Parametric 310 MW-15 background 248 MW-15 compliance 186 Limit = 306.6 124 62 4/26/16 5/13/17 5/30/18 6/16/19 7/2/20 7/20/21

Background Data Summary: Mean=274, Std. Dev.=15.71, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9193, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =



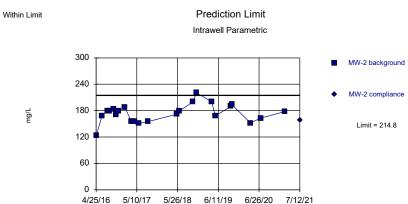


Background Data Summary: Mean=306.4, Std. Dev.=15.11, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9777, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188

Constituent: Calcium Analysis Run 11/12/2021 9:58 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

Background Data Summary: Mean=355.4, Std. Dev.=30.77, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9277, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Within Limit Prediction Limit
Intrawell Parametric

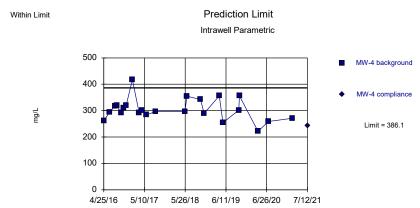



Background Data Summary: Mean=327.9, Std. Dev.=23.09, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9472, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188

Constituent: Calcium Analysis Run 11/12/2021 9:58 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG




Background Data Summary: Mean=174.2, Std. Dev.=20.8, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9781, critical = 0.881. Kappa = 1.95 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.



Background Data Summary: Mean=358.9, Std. Dev.=22.33, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8558, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188

Constituent: Calcium Analysis Run 11/12/2021 9:58 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=304.8, Std. Dev.=41.68, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9567, critical = 0.881. Kappa = 1.95 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Within Limit Prediction Limit Intrawell Parametric

MW-3 background

MW-3 compliance

Limit = 416

Background Data Summary: Mean=300, Std. Dev.=59.54, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9749, critical = 0.881. Kappa = 1.95 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188

4/25/16 5/10/17 5/26/18 6/11/19 6/26/20 7/12/21

Constituent: Calcium Analysis Run 11/12/2021 9:58 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

Within Limit Prediction Limit Intrawell Parametric

MW-1 background

MW-1 compliance

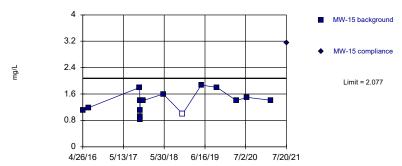
Limit = 3.101

Background Data Summary (based on square root transformation): Mean=1.518, Std. Dev.=0.1248, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8853, critical = 0.881. Kappa = 1.95 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

Within Limit Prediction Limit
Intrawell Parametric



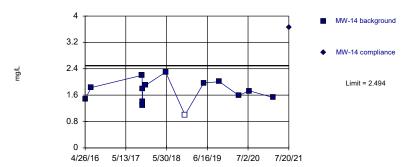

Background Data Summary: Mean=1.953, Std. Dev.=0.3604, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9072, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188

Constituent: Chloride Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

Exceeds Limit Prediction Limit
Intrawell Parametric

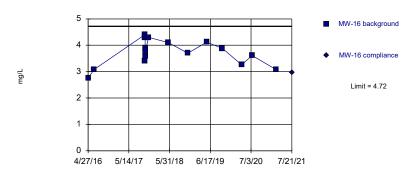



Background Data Summary: Mean=1.384, Std. Dev.=0.3337, n=16, 6.25% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9384, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Exceeds Limit Prediction Limit
Intrawell Parametric

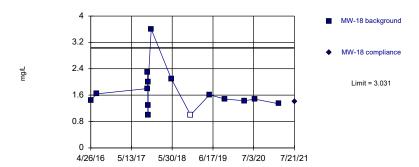



Background Data Summary: Mean=1.721, Std. Dev.=0.3723, n=16, 6.25% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.973, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00184

Constituent: Chloride Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

Within Limit Prediction Limit
Intrawell Parametric




Background Data Summary: Mean=3.706, Std. Dev.=0.4887, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9598, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

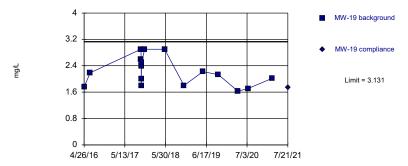
Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Parametric



Background Data Summary (based on square root transformation): Mean=1.269, Std. Dev.=0.2275, n=16, 6.25% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8854, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

> Constituent: Chloride Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Within Limit Intrawell Parametric MW-2 background MW-2 compliance 3 Limit = 4.893 4/25/16 5/10/17 5/26/18 6/11/19 6/26/20 7/12/21

Background Data Summary: Mean=3.3, Std. Dev.=0.8175, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.944, critical = 0.881. Kappa = 1.95 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

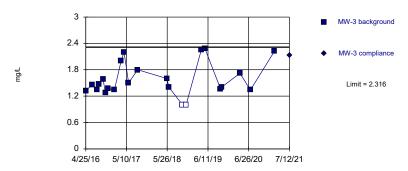
Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG





Background Data Summary: Mean=2.216, Std. Dev.=0.4406, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9131, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: Chloride Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=4.393, Std. Dev.=1.114, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8117, critical = 0.749. Kappa = 2.616 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit



Background Data Summary: Mean=1.576, Std. Dev.=0.3795, n=23, 8.696% NDs. Normality test: Shapiro Wilk @alpha = 0.07, calculated = 0.8884, critical = 0.881. Kappa = 1.95 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

Within Limit

Intrawell Parametric

0.2

0.16

0.12

0.08

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.05

0.07

0.08

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

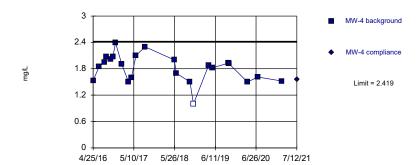
0.09

0.09

0.09

0.09

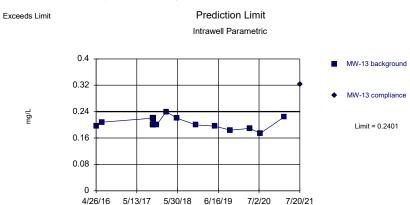
0.09


0

Background Data Summary: Mean=0.1172, Std. Dev.=0.03644, n=24. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9658, critical = 0.884. Kappa = 1.937 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

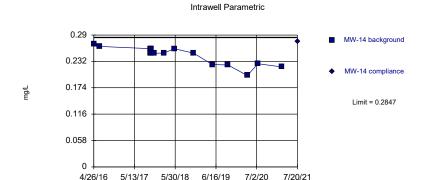

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=1.811, Std. Dev.=0.3119, n=23, 4.348% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9552, critical = 0.881. Kappa = 1.95 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

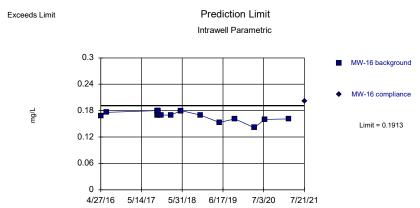



Background Data Summary: Mean=0.206, Std. Dev.=0.01659, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9666, critical = 0.851. Kappa = 2.054 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Within Limit

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG




Prediction Limit

Background Data Summary: Mean=0.2455, Std. Dev.=0.01912, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8801, critical = 0.851. Kappa = 2.054 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.01188

Constituent: Fluoride Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=0.1688, Std. Dev.=0.01092, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8745, critical = 0.851. Kappa = 2.054 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Within Limit Prediction Limit Intrawell Parametric

0.5

0.4

MW-15 background

MW-15 compliance

Limit = 0.4037

Background Data Summary: Mean=0.3459, Std. Dev.=0.02812, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8713, critical = 0.851. Kappa = 2.054 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.01188

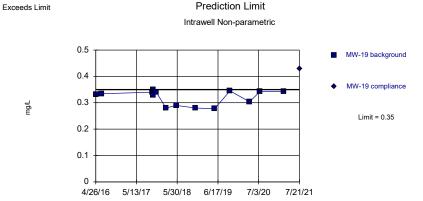
Constituent: Fluoride Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit
Intrawell Parametric

MW-18 background

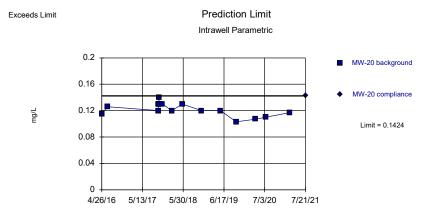
0.4


0.32

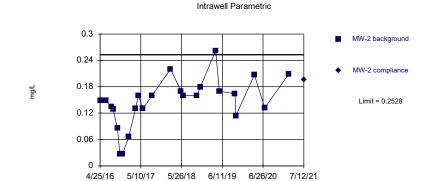
MW-18 compliance

Limit = 0.3364

Background Data Summary: Mean=0.3042, Std. Dev.=0.01568, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9405, critical = 0.851. Kappa = 2.054 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188


Within Limit



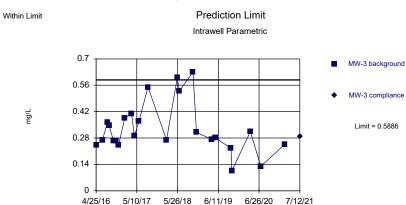

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.00179. Individual comparison alpha = 0.005914 (1 of 2).

Constituent: Fluoride Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=0.1222, Std. Dev.=0.00982, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9359, critical = 0.851. Kappa = 2.054 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

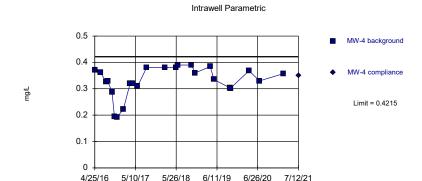



Prediction Limit

Background Data Summary: Mean=0.1456, Std. Dev.=0.05538, n=24. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9466, critical = 0.884. Kappa = 1.937 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188

Constituent: Fluoride Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

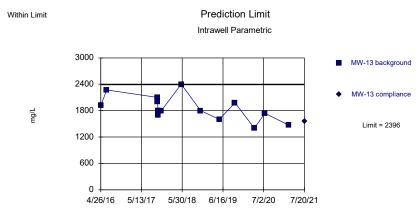



Background Data Summary: Mean=0.3299, Std. Dev.=0.1336, n=24. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9032, critical = 0.884. Kappa = 1.937 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Within Limit

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

Within Limit




Prediction Limit

Background Data Summary (based on square transformation): Mean=0.1114, Std. Dev.=0.03425, n=24. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.897, critical = 0.884. Kappa = 1.937 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=1849, Std. Dev.=263.6, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9592, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

1200 MW-1 background

1200 MW-1 compliance

Limit = 1665

Prediction Limit

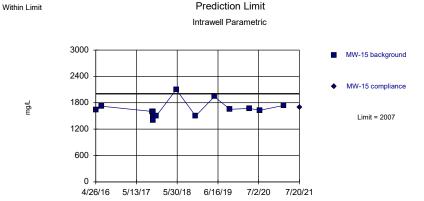
Background Data Summary: Mean=1461, Std. Dev.=104.1, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9462, critical = 0.878. Kappa = 1.962 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0198

4/26/16 5/11/17 5/27/18 6/11/19 6/26/20 7/12/21

Constituent: Sulfate Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

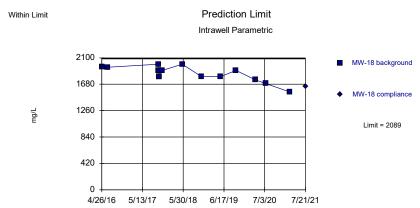
Within Limit Prediction Limit Intrawell Parametric


MW-14 background

MW-14 compliance

Limit = 2339

Background Data Summary: Mean=1919, Std. Dev.=201.9, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8509, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

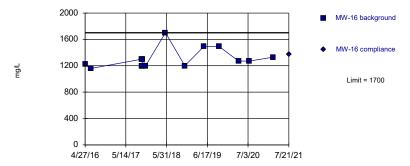

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=1643, Std. Dev.=175.1, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8755, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: Sulfate Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

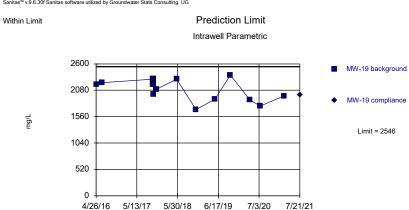
### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG




Background Data Summary: Mean=1844, Std. Dev.=118, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9226, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

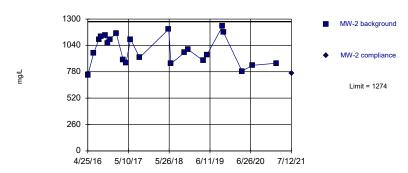
> Constituent: Sulfate Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG





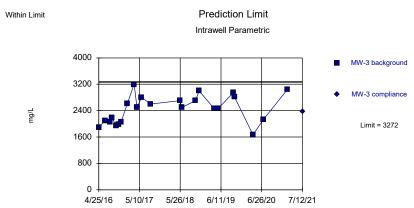

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 16 background values. Well-constituent pair annual alpha = 0.01287. Individual comparison alpha = 0.006456 (1 of 2).


> Constituent: Sulfate Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=2109, Std. Dev.=210.4, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9067, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =





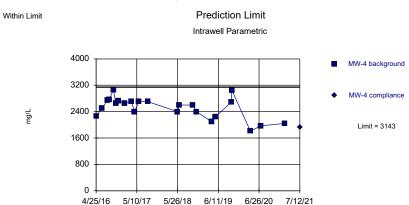

Background Data Summary: Mean=997.8, Std. Dev.=141.7, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9515, critical = 0.881. Kappa = 1.95 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188

Constituent: Sulfate Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

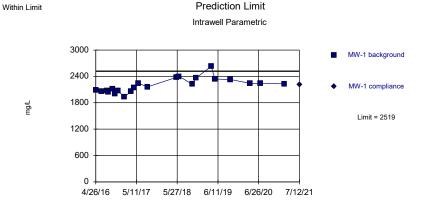
### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=2451, Std. Dev.=421.1, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9657, critical = 0.881. Kappa = 1.95 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Within Limit Prediction Limit Intrawell Parametric

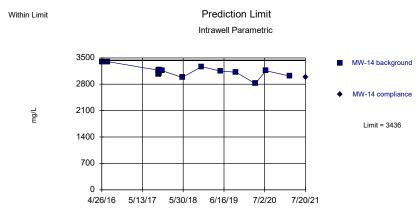



Background Data Summary (based on square root transformation): Mean=39.59, Std. Dev.=1.75, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8442, critical = 0.8444. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG




Background Data Summary: Mean=2511, Std. Dev.=324, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9443, critical = 0.881. Kappa = 1.95 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.



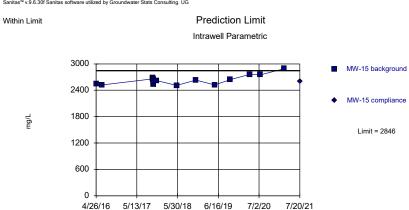
Background Data Summary: Mean=2197, Std. Dev.=164, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9479, critical = 0.878. Kappa = 1.962 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

Constituent: Total Dissolved Solids Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

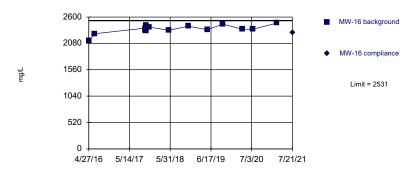


Background Data Summary: Mean=3139, Std. Dev.=143.4, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9382, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =


Prediction Limit Within Limit Intrawell Parametric



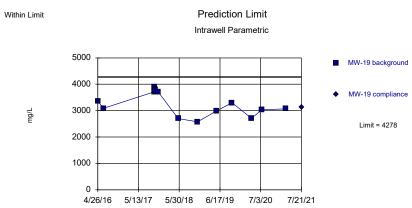
Background Data Summary: Mean=2974, Std. Dev.=367.6, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9526, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Total Dissolved Solids Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

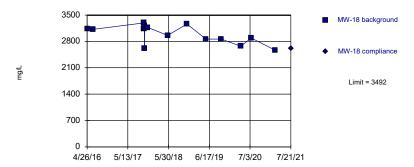


Background Data Summary: Mean=2628, Std. Dev.=105.4, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9001, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =





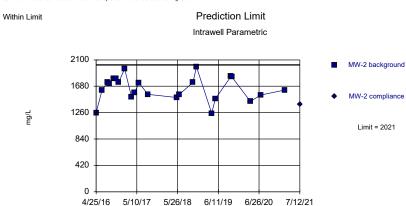

Background Data Summary: Mean=2361, Std. Dev.=81.64, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8835, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188


Constituent: Total Dissolved Solids Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=3331, Std. Dev.=456.4, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8846, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.






Background Data Summary: Mean=3004, Std. Dev.=235.1, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8879, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Total Dissolved Solids Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=1643, Std. Dev.=193.7, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9661, critical = 0.881. Kappa = 1.95 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

Within Limit

2800 MW-20 background

2240 MW-20 compliance

1680 Limit = 2756

Prediction Limit

Background Data Summary: Mean=2574, Std. Dev.=87.48, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.95, critical = 0.844. Kappa = 2.076 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0192

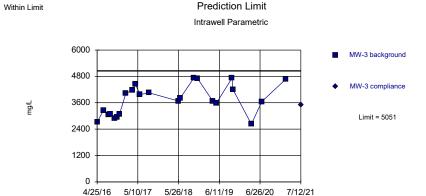
4/26/16 5/13/17 5/30/18 6/17/19 7/3/20 7/21/21

Constituent: Total Dissolved Solids Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

Within Limit Prediction Limit Intrawell Parametric

MW-4 background


MW-4 compliance

Limit = 4600

Background Data Summary (based on square transformation): Mean=1.5e7, Std. Dev.=3201096, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8861, critical = 0.881. Kappa = 1.95 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Total Dissolved Solids Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=3729, Std. Dev.=678.1, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9398, critical = 0.881. Kappa = 1.95 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.01188

Constituent: Total Dissolved Solids Analysis Run 11/12/2021 9:59 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

### **Prediction Limit**

Constituent: Calcium (mg/L) Analysis Run 11/12/2021 10:06 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-1 | MW-1 |
|------------|------|------|
| 4/26/2016  | 147  |      |
| 6/20/2016  | 152  |      |
| 8/8/2016   | 150  |      |
| 8/24/2016  | 142  |      |
| 10/3/2016  | 139  |      |
| 10/26/2016 | 133  |      |
| 11/21/2016 | 144  |      |
| 1/17/2017  | 131  |      |
| 3/22/2017  | 141  |      |
| 4/18/2017  | 149  |      |
| 5/30/2017  | 140  |      |
| 8/23/2017  | 152  |      |
| 5/22/2018  | 166  |      |
| 6/12/2018  | 203  |      |
| 10/17/2018 | 171  |      |
| 11/19/2018 | 154  |      |
| 4/10/2019  | 243  |      |
| 5/14/2019  | 167  |      |
| 10/8/2019  | 157  |      |
| 10/16/2019 | 157  |      |
| 4/6/2020   | 149  |      |
| 7/13/2020  | 149  |      |
|            |      |      |
| 2/22/2021  | 151  | 140  |
| 7/12/2021  |      | 149  |
|            |      |      |

### **Prediction Limit**

Constituent: Calcium (mg/L) Analysis Run 11/12/2021 10:06 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-13 | MW-13 |
|------------|-------|-------|
| 4/26/2016  | 302   |       |
| 6/22/2016  | 354   |       |
| 10/12/2017 | 321   |       |
| 10/13/2017 | 312   |       |
| 10/14/2017 | 300   |       |
| 10/15/2017 | 300   |       |
| 10/16/2017 | 290   |       |
| 10/17/2017 | 296   |       |
| 11/16/2017 | 296   |       |
| 5/21/2018  | 321   |       |
| 11/19/2018 | 288   |       |
| 5/14/2019  | 302   |       |
| 10/8/2019  | 304   |       |
| 4/7/2020   | 222   |       |
| 7/14/2020  | 291   |       |
| 2/23/2021  | 238   |       |
| 7/20/2021  |       | 262   |
|            |       |       |

### **Prediction Limit**

Constituent: Calcium (mg/L) Analysis Run 11/12/2021 10:06 AM View: PLs Intrawell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

|            | MW-14 | MW-14 |
|------------|-------|-------|
| 4/26/2016  | 335   |       |
| 6/22/2016  | 360   |       |
| 10/12/2017 | 315   |       |
| 10/13/2017 | 317   |       |
| 10/14/2017 | 315   |       |
| 10/15/2017 | 325   |       |
| 10/16/2017 | 333   |       |
| 10/17/2017 | 309   |       |
| 11/16/2017 | 313   |       |
| 5/21/2018  | 349   |       |
| 11/19/2018 | 323   |       |
| 5/14/2019  | 337   |       |
| 10/8/2019  | 341   |       |
| 4/7/2020   | 290   |       |
| 7/14/2020  | 332   |       |
| 2/23/2021  | 312   |       |
| 7/20/2021  |       | 316   |
|            |       |       |

|            | MW-15 | MW-15 |
|------------|-------|-------|
| 4/26/2016  | 257   |       |
| 6/22/2016  | 282   |       |
| 10/12/2017 | 256   |       |
| 10/13/2017 | 269   |       |
| 10/14/2017 | 262   |       |
| 10/15/2017 | 275   |       |
| 10/16/2017 | 258   |       |
| 10/17/2017 | 263   |       |
| 11/15/2017 | 254   |       |
| 5/21/2018  | 298   |       |
| 11/19/2018 | 272   |       |
| 5/14/2019  | 280   |       |
| 10/8/2019  | 299   |       |
| 4/7/2020   | 276   |       |
| 7/14/2020  | 281   |       |
| 2/23/2021  | 302   |       |
| 7/20/2021  |       | 274   |
|            |       |       |

|            | MW-16 | MW-16 |
|------------|-------|-------|
| 4/27/2016  | 276   |       |
| 6/22/2016  | 301   |       |
| 10/12/2017 | 320   |       |
| 10/13/2017 | 297   |       |
| 10/14/2017 | 299   |       |
| 10/15/2017 | 307   |       |
| 10/16/2017 | 310   |       |
| 10/17/2017 | 297   |       |
| 11/15/2017 | 287   |       |
| 5/21/2018  | 338   |       |
| 11/19/2018 | 301   |       |
| 5/14/2019  | 319   |       |
| 10/8/2019  | 325   |       |
| 4/6/2020   | 302   |       |
| 7/14/2020  | 306   |       |
| 2/23/2021  | 317   |       |
| 7/21/2021  |       | 295   |

|            | MW-18 | MW-18 |
|------------|-------|-------|
| 4/26/2016  | 319   |       |
| 6/22/2016  | 354   |       |
| 10/12/2017 | 340   |       |
| 10/13/2017 | 326   |       |
| 10/14/2017 | 345   |       |
| 10/15/2017 | 327   |       |
| 10/16/2017 | 325   |       |
| 10/17/2017 | 341   |       |
| 11/15/2017 | 318   |       |
| 5/22/2018  | 364   |       |
| 11/19/2018 | 356   |       |
| 5/15/2019  | 337   |       |
| 10/8/2019  | 312   |       |
| 4/8/2020   | 283   |       |
| 7/14/2020  | 316   |       |
| 2/23/2021  | 284   |       |
| 7/21/2021  |       | 289   |
|            |       |       |

|            | MW-19 | MW-19 |
|------------|-------|-------|
| 4/26/2016  | 342   |       |
| 6/22/2016  | 365   |       |
| 10/12/2017 | 373   |       |
| 10/13/2017 | 381   |       |
| 10/14/2017 | 399   |       |
| 10/15/2017 | 375   |       |
| 10/16/2017 | 381   |       |
| 10/17/2017 | 386   |       |
| 11/15/2017 | 371   |       |
| 5/22/2018  | 325   |       |
| 11/20/2018 | 325   |       |
| 5/15/2019  | 372   |       |
| 10/8/2019  | 357   |       |
| 4/8/2020   | 288   |       |
| 7/15/2020  | 315   |       |
| 2/24/2021  | 332   |       |
| 7/21/2021  |       | 332   |
|            |       |       |

|            | MW-2 | MW-2 |
|------------|------|------|
| 4/25/2016  | 123  |      |
| 6/20/2016  | 168  |      |
| 8/8/2016   | 180  |      |
| 8/24/2016  | 180  |      |
| 10/3/2016  | 184  |      |
| 10/26/2016 | 171  |      |
| 11/21/2016 | 179  |      |
| 1/17/2017  | 188  |      |
| 3/22/2017  | 155  |      |
| 4/18/2017  | 156  |      |
| 5/31/2017  | 151  |      |
| 8/23/2017  | 155  |      |
| 5/22/2018  | 172  |      |
| 6/12/2018  | 179  |      |
| 10/17/2018 | 200  |      |
| 11/19/2018 | 221  |      |
| 4/10/2019  | 200  |      |
| 5/14/2019  | 168  |      |
| 10/8/2019  | 190  |      |
| 10/16/2019 | 194  |      |
| 4/6/2020   | 152  |      |
| 7/13/2020  | 163  |      |
| 2/22/2021  | 178  |      |
| 7/12/2021  | 170  | 159  |
| 11 1212021 |      | 155  |

|            | MW-20 | MW-20 |
|------------|-------|-------|
| 4/26/2016  | 368   |       |
| 6/22/2016  | 386   |       |
| 10/12/2017 | 353   |       |
| 10/13/2017 | 354   |       |
| 10/14/2017 | 346   |       |
| 10/15/2017 | 353   |       |
| 10/16/2017 | 347   |       |
| 10/17/2017 | 337   |       |
| 11/15/2017 | 334   |       |
| 5/22/2018  | 398   |       |
| 11/20/2018 | 349   |       |
| 5/15/2019  | 381   |       |
| 10/10/2019 | 407   |       |
| 4/8/2020   | 345   |       |
| 7/15/2020  | 342   |       |
| 2/23/2021  | 343   |       |
| 7/21/2021  |       | 336   |
|            |       |       |

|            | MW-3 | MW-3 |
|------------|------|------|
| 4/25/2016  | 224  |      |
| 6/22/2016  | 266  |      |
| 8/9/2016   | 260  |      |
| 8/24/2016  | 274  |      |
| 10/4/2016  | 243  |      |
| 10/26/2016 | 254  |      |
| 11/21/2016 | 263  |      |
| 1/18/2017  | 431  |      |
| 3/22/2017  | 318  |      |
| 4/18/2017  | 296  |      |
| 5/31/2017  | 306  |      |
| 8/23/2017  | 298  |      |
| 5/24/2018  | 297  |      |
| 6/12/2018  | 318  |      |
| 10/17/2018 | 392  |      |
| 11/19/2018 | 387  |      |
| 4/10/2019  | 348  |      |
| 5/14/2019  | 254  |      |
| 10/8/2019  | 371  |      |
| 10/16/2019 | 346  |      |
| 4/6/2020   | 177  |      |
| 7/13/2020  | 264  |      |
| 2/22/2021  | 312  |      |
| 7/12/2021  |      | 252  |
|            |      |      |

|            | MW-4 | MW-4 |
|------------|------|------|
| 4/25/2016  | 261  |      |
| 6/20/2016  | 295  |      |
| 8/9/2016   | 318  |      |
| 8/24/2016  | 319  |      |
| 10/3/2016  | 293  |      |
| 10/26/2016 | 311  |      |
| 11/21/2016 | 320  |      |
| 1/18/2017  | 417  |      |
| 3/22/2017  | 292  |      |
| 4/18/2017  | 302  |      |
| 5/31/2017  | 284  |      |
| 8/23/2017  | 297  |      |
| 5/23/2018  | 296  |      |
| 6/12/2018  | 355  |      |
| 10/17/2018 | 342  |      |
| 11/19/2018 | 289  |      |
| 4/10/2019  | 356  |      |
| 5/14/2019  | 254  |      |
| 10/10/2019 | 302  |      |
| 10/16/2019 | 356  |      |
| 4/6/2020   | 222  |      |
| 7/14/2020  | 259  |      |
| 2/22/2021  | 271  |      |
| 7/12/2021  |      | 242  |

|            | MW-1    | MW-1 |  |  |
|------------|---------|------|--|--|
| 4/26/2016  | 1.94    |      |  |  |
| 6/20/2016  | 2.09    |      |  |  |
| 8/8/2016   | 2.18    |      |  |  |
| 8/24/2016  | 2.22    |      |  |  |
| 10/3/2016  | 2.34    |      |  |  |
| 10/26/2016 | 2.34    |      |  |  |
| 11/21/2016 | 2.5     |      |  |  |
| 1/17/2017  | 2.68    |      |  |  |
| 3/22/2017  | 3.7     |      |  |  |
| 4/18/2017  | 2.4     |      |  |  |
| 5/30/2017  | 2.6     |      |  |  |
| 8/23/2017  | 2.7     |      |  |  |
| 5/22/2018  | 2.3     |      |  |  |
| 6/12/2018  | 2.3     |      |  |  |
| 10/17/2018 | 1.7 (J) |      |  |  |
| 11/19/2018 | 1.7 (J) |      |  |  |
| 4/10/2019  | 2.36    |      |  |  |
| 5/14/2019  | 2.28    |      |  |  |
| 10/8/2019  | 2.31    |      |  |  |
| 10/16/2019 | 2.42    |      |  |  |
| 4/6/2020   | 2.01    |      |  |  |
| 7/13/2020  | 2.1     |      |  |  |
| 2/22/2021  | 2.16    |      |  |  |
| 7/12/2021  |         | 2.19 |  |  |

|            | MW-13   | MW-13 |
|------------|---------|-------|
| 4/26/2016  | 1.71    |       |
| 6/22/2016  | 2.1     |       |
| 10/12/2017 | 2.3     |       |
| 10/13/2017 | 2.5     |       |
| 10/14/2017 | 1.6 (J) |       |
| 10/15/2017 | 1.6 (J) |       |
| 10/16/2017 | 1.5 (J) |       |
| 10/17/2017 | 2.1     |       |
| 11/16/2017 | 2.4     |       |
| 5/21/2018  | 2.6     |       |
| 11/19/2018 | 1.6 (J) |       |
| 5/14/2019  | 1.96    |       |
| 10/8/2019  | 2.1     |       |
| 4/7/2020   | 1.67    |       |
| 7/14/2020  | 1.9     |       |
| 2/23/2021  | 1.6     |       |
| 7/20/2021  |         | 1.7   |
|            |         |       |

|            | MW-14   | MW-14 |
|------------|---------|-------|
| 4/26/2016  | 1.48    |       |
| 6/22/2016  | 1.83    |       |
| 10/12/2017 | 2.2     |       |
| 10/13/2017 | 2.2     |       |
| 10/14/2017 | 1.3 (J) |       |
| 10/15/2017 | 1.4 (J) |       |
| 10/16/2017 | 1.3 (J) |       |
| 10/17/2017 | 1.8 (J) |       |
| 11/16/2017 | 1.9 (J) |       |
| 5/21/2018  | 2.3     |       |
| 11/19/2018 | <2      |       |
| 5/14/2019  | 1.97    |       |
| 10/8/2019  | 2.01    |       |
| 4/7/2020   | 1.59    |       |
| 7/14/2020  | 1.73    |       |
| 2/23/2021  | 1.53    |       |
| 7/20/2021  |         | 3.65  |
|            |         |       |

|            | MW-15    | MW-15 |
|------------|----------|-------|
| 4/26/2016  | 1.11     |       |
| 6/22/2016  | 1.19     |       |
| 10/12/2017 | 1.8 (J)  |       |
| 10/13/2017 | 1.8 (J)  |       |
| 10/14/2017 | 1.1 (J)  |       |
| 10/15/2017 | 0.93 (J) |       |
| 10/16/2017 | 0.83 (J) |       |
| 10/17/2017 | 1.4 (J)  |       |
| 11/15/2017 | 1.4 (J)  |       |
| 5/21/2018  | 1.6 (J)  |       |
| 11/19/2018 | <2       |       |
| 5/14/2019  | 1.87     |       |
| 10/8/2019  | 1.8      |       |
| 4/7/2020   | 1.4      |       |
| 7/14/2020  | 1.5      |       |
| 2/23/2021  | 1.41     |       |
| 7/20/2021  |          | 3.16  |
|            |          |       |

|            | MW-16   | MW-16 |
|------------|---------|-------|
| 4/27/2016  | 2.76    |       |
| 6/22/2016  | 3.08    |       |
| 10/12/2017 | 4.4     |       |
| 10/13/2017 | 4.3 (B) |       |
| 10/14/2017 | 3.4     |       |
| 10/15/2017 | 3.6     |       |
| 10/16/2017 | 3.9     |       |
| 10/17/2017 | 3.8     |       |
| 11/15/2017 | 4.3     |       |
| 5/21/2018  | 4.1     |       |
| 11/19/2018 | 3.7     |       |
| 5/14/2019  | 4.12    |       |
| 10/8/2019  | 3.88    |       |
| 4/6/2020   | 3.26    |       |
| 7/14/2020  | 3.61    |       |
| 2/23/2021  | 3.08    |       |
| 7/21/2021  |         | 2.97  |
|            |         |       |

|            | MW-18   | MW-18 |
|------------|---------|-------|
| 4/26/2016  | 1.45    |       |
| 6/22/2016  | 1.64    |       |
| 10/12/2017 | 1.8 (J) |       |
| 10/13/2017 | 2.3 (B) |       |
| 10/14/2017 | 1 (J)   |       |
| 10/15/2017 | 1.3 (J) |       |
| 10/16/2017 | 1 (J)   |       |
| 10/17/2017 | 2       |       |
| 11/15/2017 | 3.6     |       |
| 5/22/2018  | 2.1     |       |
| 11/19/2018 | <2      |       |
| 5/15/2019  | 1.61    |       |
| 10/8/2019  | 1.48    |       |
| 4/8/2020   | 1.43    |       |
| 7/14/2020  | 1.48    |       |
| 2/23/2021  | 1.34    |       |
| 7/21/2021  |         | 1.4   |
|            |         |       |

|            | MW-19   | MW-19 |
|------------|---------|-------|
| 4/26/2016  | 1.76    |       |
| 6/22/2016  | 2.19    |       |
| 10/12/2017 | 2.9     |       |
| 10/13/2017 | 2.6 (B) |       |
| 10/14/2017 | 1.8 (J) |       |
| 10/15/2017 | 2       |       |
| 10/16/2017 | 2.4     |       |
| 10/17/2017 | 2.5     |       |
| 11/15/2017 | 2.9     |       |
| 5/22/2018  | 2.9     |       |
| 11/20/2018 | 1.8 (J) |       |
| 5/15/2019  | 2.22    |       |
| 10/8/2019  | 2.13    |       |
| 4/8/2020   | 1.63    |       |
| 7/15/2020  | 1.71    |       |
| 2/24/2021  | 2.02    |       |
| 7/21/2021  |         | 1.74  |
|            |         |       |

|            | MW-2 | MW-2 |
|------------|------|------|
| 4/25/2016  | 1.9  |      |
| 6/20/2016  | 3.43 |      |
| 8/8/2016   | 3.31 |      |
| 8/24/2016  | 3.23 |      |
| 10/3/2016  | 3.21 |      |
| 10/26/2016 | 3.35 |      |
| 11/21/2016 | 3.34 |      |
| 1/17/2017  | 3.58 |      |
| 3/22/2017  | 3.4  |      |
| 4/18/2017  | 2.6  |      |
| 5/31/2017  | 4.4  |      |
| 8/23/2017  | 4.4  |      |
| 5/22/2018  | 3.2  |      |
| 6/12/2018  | 3.7  |      |
| 10/17/2018 | 4.6  |      |
| 11/19/2018 | 3    |      |
| 4/10/2019  | 1.76 |      |
| 5/14/2019  | 2.98 |      |
| 10/8/2019  | 4.26 |      |
| 10/16/2019 | 4.04 |      |
| 4/6/2020   | 2.43 |      |
| 7/13/2020  | 4.05 |      |
| 2/22/2021  | 1.72 |      |
| 7/12/2021  |      | 2.36 |
|            |      |      |

|            | MW-20 | MW-20 |
|------------|-------|-------|
| 4/26/2016  | 2.66  |       |
| 6/22/2016  | 2.68  |       |
| 10/12/2017 | 5.6   |       |
| 10/13/2017 | 5 (B) |       |
| 10/14/2017 | 4.4   |       |
| 10/15/2017 | 4.8   |       |
| 10/16/2017 | 4.9   |       |
| 10/17/2017 | 5.1   |       |
| 11/15/2017 |       | 6.3   |
| 5/22/2018  |       | 24    |
| 11/20/2018 |       | 43    |
| 5/15/2019  |       | 57.7  |
| 10/10/2019 |       | 66.1  |
| 4/8/2020   |       | 62.7  |
| 7/15/2020  |       | 68.4  |
| 2/23/2021  |       | 129   |
| 7/21/2021  |       | 67.9  |
| 7/21/2021  |       | 67.9  |

|            | MW-3    | MW-3 |
|------------|---------|------|
| 4/25/2016  | 1.32    |      |
| 6/22/2016  | 1.46    |      |
| 8/9/2016   | 1.35    |      |
| 8/24/2016  | 1.47    |      |
| 10/4/2016  | 1.59    |      |
| 10/26/2016 | 1.27    |      |
| 11/21/2016 | 1.38    |      |
| 1/18/2017  | 1.34    |      |
| 3/22/2017  | 2       |      |
| 4/18/2017  | 2.2     |      |
| 5/31/2017  | 1.5 (J) |      |
| 8/23/2017  | 1.8 (J) |      |
| 5/24/2018  | 1.6 (J) |      |
| 6/12/2018  | 1.4 (J) |      |
| 10/17/2018 | <2      |      |
| 11/19/2018 | <2      |      |
| 4/10/2019  | 2.25    |      |
| 5/14/2019  | 2.28    |      |
| 10/8/2019  | 1.36    |      |
| 10/16/2019 | 1.4     |      |
| 4/6/2020   | 1.72    |      |
| 7/13/2020  | 1.34    |      |
| 2/22/2021  | 2.22    |      |
| 7/12/2021  |         | 2.13 |
|            |         |      |

| 4/25/2016 1. 6/20/2016 1. 8/9/2016 1. 8/24/2016 2. 10/3/2016 2. 10/26/2016 2. 11/21/2016 2. 11/18/2017 1. 3/22/2017 1. | MW-4 N<br>1.53<br>1.85<br>1.95<br>2.07<br>2.02<br>2.07<br>2.39<br>1.9<br>1.5 (J)<br>1.6 (J) | MW-4 |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------|
| 6/20/2016 1. 8/9/2016 1. 8/24/2016 2. 10/3/2016 2. 10/26/2016 2. 11/21/2016 2. 11/18/2017 1. 3/22/2017 1.              | 1.85<br>1.95<br>2.07<br>2.02<br>2.07<br>2.39<br>1.9<br>1.5 (J)                              |      |
| 8/9/2016 1. 8/24/2016 2 10/3/2016 2 10/26/2016 2 11/21/2016 2 1/18/2017 1. 3/22/2017 1.                                | 1.95<br>2.07<br>2.02<br>2.07<br>2.39<br>1.9<br>1.5 (J)                                      |      |
| 8/24/2016 2<br>10/3/2016 2<br>10/26/2016 2<br>11/21/2016 2<br>1/18/2017 1<br>3/22/2017 1.                              | 2.07<br>2.02<br>2.07<br>2.39<br>1.9<br>1.5 (J)                                              |      |
| 8/24/2016 2 10/3/2016 2 10/26/2016 2 11/21/2016 2 1/18/2017 1 3/22/2017 1.                                             | 2.07<br>2.02<br>2.07<br>2.39<br>1.9<br>1.5 (J)                                              |      |
| 10/3/2016 2<br>10/26/2016 2<br>11/21/2016 2<br>1/18/2017 1<br>3/22/2017 1<br>4/18/2017 1                               | 2.02<br>2.07<br>2.39<br>1.9<br>1.5 (J)                                                      |      |
| 10/26/2016 2<br>11/21/2016 2<br>1/18/2017 1.<br>3/22/2017 1.<br>4/18/2017 1                                            | 2.07<br>2.39<br>1.9<br>1.5 (J)<br>1.6 (J)                                                   |      |
| 11/21/2016 2<br>1/18/2017 1.<br>3/22/2017 1<br>4/18/2017 1.                                                            | 2.39<br>1.9<br>1.5 (J)<br>1.6 (J)                                                           |      |
| 1/18/2017 1.<br>3/22/2017 1.<br>4/18/2017 1.                                                                           | 1.9<br>1.5 (J)<br>1.6 (J)                                                                   |      |
| 3/22/2017 1.<br>4/18/2017 1.                                                                                           | 1.5 (J)<br>1.6 (J)                                                                          |      |
| 4/18/2017 1.                                                                                                           | 1.6 (J)                                                                                     |      |
|                                                                                                                        |                                                                                             |      |
|                                                                                                                        | 7 1                                                                                         |      |
| 5/31/2017 2                                                                                                            | 1                                                                                           |      |
| 8/23/2017 2                                                                                                            | 2.3                                                                                         |      |
| 5/23/2018 2                                                                                                            | 2                                                                                           |      |
|                                                                                                                        | 1.7 (J)                                                                                     |      |
|                                                                                                                        | 1.5 (J)                                                                                     |      |
|                                                                                                                        | <2                                                                                          |      |
|                                                                                                                        |                                                                                             |      |
|                                                                                                                        | 1.88                                                                                        |      |
|                                                                                                                        | 1.82                                                                                        |      |
| 10/10/2019 1.                                                                                                          | 1.93                                                                                        |      |
| 10/16/2019 1.                                                                                                          | 1.92                                                                                        |      |
| 4/6/2020 1.                                                                                                            | 1.5                                                                                         |      |
| 7/14/2020 1.                                                                                                           | 1.61                                                                                        |      |
| 2/22/2021 1.                                                                                                           | 1.52                                                                                        |      |
| 7/12/2021                                                                                                              |                                                                                             | 1.56 |
|                                                                                                                        | •                                                                                           |      |

|            | MW-1       | MW-1  |
|------------|------------|-------|
| 4/26/2016  | 0.146 (J)  |       |
| 6/20/2016  | 0.148 (J)  |       |
| 8/8/2016   | 0.137 (J)  |       |
| 8/24/2016  | 0.133 (J)  |       |
| 10/3/2016  | 0.103 (J)  |       |
| 10/26/2016 | 0.05 (J)   |       |
| 11/21/2016 | 0.047 (J)  |       |
| 1/17/2017  | 0.09 (J)   |       |
| 3/22/2017  | 0.12       |       |
| 4/18/2017  | 0.12       |       |
| 5/30/2017  | 0.13       |       |
| 8/23/2017  | 0.16       |       |
| 2/13/2018  | 0.14 (D)   |       |
| 5/22/2018  | 0.16       |       |
| 6/12/2018  | 0.16       |       |
| 10/17/2018 | 0.18       |       |
| 11/19/2018 | 0.15       |       |
| 4/10/2019  | 0.102      |       |
| 5/14/2019  | 0.119      |       |
| 10/8/2019  | 0.0924 (J) |       |
| 10/16/2019 | 0.0756 (J) |       |
| 4/6/2020   | 0.101      |       |
| 7/13/2020  | 0.0678 (J) |       |
| 2/22/2021  | 0.082 (J)  |       |
| 7/12/2021  |            | 0.125 |
|            |            |       |

|            | MW-13     | MW-13 |
|------------|-----------|-------|
| 4/26/2016  | 0.197 (J) |       |
| 6/22/2016  | 0.208 (J) |       |
| 10/12/2017 | 0.22      |       |
| 10/13/2017 | 0.2       |       |
| 10/14/2017 | 0.21      |       |
| 10/15/2017 | 0.22      |       |
| 10/16/2017 | 0.22      |       |
| 10/17/2017 | 0.2       |       |
| 11/16/2017 | 0.2       |       |
| 2/13/2018  | 0.24 (D)  |       |
| 5/21/2018  | 0.22      |       |
| 11/19/2018 | 0.2       |       |
| 5/14/2019  | 0.196     |       |
| 10/8/2019  | 0.184     |       |
| 4/7/2020   | 0.189     |       |
| 7/14/2020  | 0.174     |       |
| 2/23/2021  | 0.224     |       |
| 7/20/2021  |           | 0.323 |
|            |           |       |

|            | MW-14     | MW-14 |
|------------|-----------|-------|
| 4/26/2016  | 0.271 (J) |       |
| 6/22/2016  | 0.265 (J) |       |
| 10/12/2017 | 0.26      |       |
| 10/13/2017 | 0.25      |       |
| 10/14/2017 | 0.26      |       |
| 10/15/2017 | 0.26      |       |
| 10/16/2017 | 0.25      |       |
| 10/17/2017 | 0.25      |       |
| 11/16/2017 | 0.25      |       |
| 2/13/2018  | 0.25 (D)  |       |
| 5/21/2018  | 0.26      |       |
| 11/19/2018 | 0.25      |       |
| 5/14/2019  | 0.225     |       |
| 10/8/2019  | 0.224     |       |
| 4/7/2020   | 0.201     |       |
| 7/14/2020  | 0.227     |       |
| 2/23/2021  | 0.22      |       |
| 7/20/2021  |           | 0.276 |

|            | MW-15    | MW-15 |
|------------|----------|-------|
| 4/26/2016  | 0.379    |       |
| 6/22/2016  | 0.347    |       |
| 10/12/2017 | 0.37     |       |
| 10/13/2017 | 0.36     |       |
| 10/14/2017 | 0.37     |       |
| 10/15/2017 | 0.35     |       |
| 10/16/2017 | 0.36     |       |
| 10/17/2017 | 0.35     |       |
| 11/15/2017 | 0.35     |       |
| 2/14/2018  | 0.35 (D) |       |
| 5/21/2018  | 0.35     |       |
| 11/19/2018 | 0.34     |       |
| 5/14/2019  | 0.34     |       |
| 10/8/2019  | 0.382    |       |
| 4/7/2020   | 0.303    |       |
| 7/14/2020  | 0.305    |       |
| 2/23/2021  | 0.275    |       |
| 7/20/2021  |          | 0.288 |
|            |          |       |

|            | MW-16     | MW-16 |
|------------|-----------|-------|
| 4/27/2016  | 0.168 (J) |       |
| 6/22/2016  | 0.176 (J) |       |
| 10/12/2017 | 0.18      |       |
| 10/13/2017 | 0.17      |       |
| 10/14/2017 | 0.18      |       |
| 10/15/2017 | 0.18      |       |
| 10/16/2017 | 0.18      |       |
| 10/17/2017 | 0.17      |       |
| 11/15/2017 | 0.17      |       |
| 2/14/2018  | 0.17 (D)  |       |
| 5/21/2018  | 0.18      |       |
| 11/19/2018 | 0.17      |       |
| 5/14/2019  | 0.153     |       |
| 10/8/2019  | 0.161     |       |
| 4/6/2020   | 0.141     |       |
| 7/14/2020  | 0.16      |       |
| 2/23/2021  | 0.161     |       |
| 7/21/2021  |           | 0.201 |
|            |           |       |

|            | MW-18   | MW-18 |
|------------|---------|-------|
| 4/26/2016  | 0.329   |       |
| 6/22/2016  | 0.303   |       |
| 10/12/2017 | 0.31    |       |
| 10/13/2017 | 0.32    |       |
| 10/14/2017 | 0.32    |       |
| 10/15/2017 | 0.32    |       |
| 10/16/2017 | 0.31    |       |
| 10/17/2017 | 0.31    |       |
| 11/15/2017 | 0.31    |       |
| 2/14/2018  | 0.3 (D) |       |
| 5/22/2018  | 0.31    |       |
| 11/19/2018 | 0.3     |       |
| 5/15/2019  | 0.27    |       |
| 10/8/2019  | 0.284   |       |
| 4/8/2020   | 0.305   |       |
| 7/14/2020  | 0.28    |       |
| 2/23/2021  | 0.29    |       |
| 7/21/2021  |         | 0.348 |
|            |         |       |

|            | MW-19    | MW-19 |
|------------|----------|-------|
| 4/26/2016  | 0.332    |       |
| 6/22/2016  | 0.334    |       |
| 10/12/2017 | 0.34     |       |
| 10/13/2017 | 0.34     |       |
| 10/14/2017 | 0.34     |       |
| 10/15/2017 | 0.34     |       |
| 10/16/2017 | 0.35     |       |
| 10/17/2017 | 0.33     |       |
| 11/15/2017 | 0.34     |       |
| 2/14/2018  | 0.28 (D) |       |
| 5/22/2018  | 0.29     |       |
| 11/20/2018 | 0.28     |       |
| 5/15/2019  | 0.277    |       |
| 10/8/2019  | 0.345    |       |
| 4/8/2020   | 0.304    |       |
| 7/15/2020  | 0.342    |       |
| 2/24/2021  | 0.343    |       |
| 7/21/2021  |          | 0.429 |
|            |          |       |

|            | MW-2      | MW-2  |
|------------|-----------|-------|
| 4/25/2016  | 0.149 (J) |       |
| 6/20/2016  | 0.148 (J) |       |
| 8/8/2016   | 0.134 (J) |       |
| 8/24/2016  | 0.129 (J) |       |
| 10/3/2016  | 0.086 (J) |       |
| 10/26/2016 | 0.027 (J) |       |
| 11/21/2016 | 0.027 (J) |       |
| 1/17/2017  | 0.066 (J) |       |
| 3/22/2017  | 0.13      |       |
| 4/18/2017  | 0.16      |       |
| 5/31/2017  | 0.13      |       |
| 8/23/2017  | 0.16      |       |
| 2/13/2018  | 0.22 (D)  |       |
| 5/22/2018  | 0.17      |       |
| 6/12/2018  | 0.16      |       |
| 10/17/2018 | 0.16      |       |
| 11/19/2018 | 0.18      |       |
| 4/10/2019  | 0.262     |       |
| 5/14/2019  | 0.17      |       |
| 10/8/2019  | 0.164     |       |
| 10/16/2019 | 0.114     |       |
| 4/6/2020   | 0.207     |       |
| 7/13/2020  | 0.132     |       |
| 2/22/2021  | 0.209     |       |
| 7/12/2021  |           | 0.196 |
|            |           |       |

|            | MW-20     | MW-20 |
|------------|-----------|-------|
| 4/26/2016  | 0.115 (J) |       |
| 6/22/2016  | 0.126 (J) |       |
| 10/12/2017 | 0.12      |       |
| 10/13/2017 | 0.13      |       |
| 10/14/2017 | 0.13      |       |
| 10/15/2017 | 0.14      |       |
| 10/16/2017 | 0.13      |       |
| 10/17/2017 | 0.13      |       |
| 11/15/2017 | 0.13      |       |
| 2/14/2018  | 0.12 (D)  |       |
| 5/22/2018  | 0.13      |       |
| 11/20/2018 | 0.12      |       |
| 5/15/2019  | 0.12      |       |
| 10/10/2019 | 0.103     |       |
| 4/8/2020   | 0.107     |       |
| 7/15/2020  | 0.11      |       |
| 2/23/2021  | 0.117     |       |
| 7/21/2021  |           | 0.143 |
|            |           |       |

|            | MW-3      | MW-3  |
|------------|-----------|-------|
| 4/25/2016  | 0.243 (J) |       |
| 6/22/2016  | 0.269 (J) |       |
| 8/9/2016   | 0.363     |       |
| 8/24/2016  | 0.346     |       |
| 10/4/2016  | 0.266 (J) |       |
| 10/26/2016 | 0.266 (J) |       |
| 11/21/2016 | 0.244 (J) |       |
| 1/18/2017  | 0.385     |       |
| 3/22/2017  | 0.41      |       |
| 4/18/2017  | 0.29      |       |
| 5/31/2017  | 0.37      |       |
| 8/23/2017  | 0.55      |       |
| 2/13/2018  | 0.27 (D)  |       |
| 5/24/2018  | 0.6       |       |
| 6/12/2018  | 0.53      |       |
| 10/17/2018 | 0.63      |       |
| 11/19/2018 | 0.31      |       |
| 4/10/2019  | 0.273     |       |
| 5/14/2019  | 0.281     |       |
| 10/8/2019  | 0.225     |       |
| 10/16/2019 | 0.106     |       |
| 4/6/2020   | 0.314     |       |
| 7/13/2020  | 0.13      |       |
| 2/22/2021  | 0.246     |       |
| 7/12/2021  |           | 0.287 |

|            | MW-4      | MW-4 |
|------------|-----------|------|
| 4/25/2016  | 0.372     |      |
| 6/20/2016  | 0.361     |      |
| 8/9/2016   | 0.326     |      |
| 8/24/2016  | 0.329     |      |
| 10/3/2016  | 0.287 (J) |      |
| 10/26/2016 | 0.194 (J) |      |
| 11/21/2016 | 0.192 (J) |      |
| 1/18/2017  | 0.223 (J) |      |
| 3/22/2017  | 0.32      |      |
| 4/18/2017  | 0.32      |      |
| 5/31/2017  | 0.31      |      |
| 8/23/2017  | 0.38      |      |
| 2/13/2018  | 0.38 (D)  |      |
| 5/23/2018  | 0.38      |      |
| 6/12/2018  | 0.39      |      |
| 10/17/2018 | 0.39      |      |
| 11/19/2018 | 0.36      |      |
| 4/10/2019  | 0.384     |      |
| 5/14/2019  | 0.335     |      |
| 10/10/2019 | 0.304     |      |
| 10/16/2019 | 0.302     |      |
| 4/6/2020   | 0.368     |      |
| 7/14/2020  | 0.33      |      |
| 2/22/2021  | 0.357     |      |
| 7/12/2021  |           | 0.35 |
|            |           |      |

|            | MW-1     | MW-1 |
|------------|----------|------|
| 4/26/2016  | 1490     |      |
| 6/20/2016  | 1420     |      |
| 8/8/2016   | 1460     |      |
| 8/24/2016  | 1450     |      |
| 10/3/2016  | 1460     |      |
| 10/26/2016 | 1330     |      |
| 11/21/2016 | 1420     |      |
| 1/17/2017  | 1350     |      |
| 3/22/2017  | 1500     |      |
| 4/18/2017  | 1300     |      |
| 5/30/2017  | 1400     |      |
| 8/23/2017  | 1500     |      |
| 5/22/2018  | 2100 (o) |      |
| 6/12/2018  | 1500     |      |
| 10/17/2018 | 1400     |      |
| 11/19/2018 | 1300     |      |
| 4/10/2019  | 1700     |      |
| 5/14/2019  | 1560     |      |
| 10/8/2019  | 1540     |      |
| 10/16/2019 | 1680     |      |
| 4/6/2020   | 1530     |      |
| 7/13/2020  | 1450     |      |
| 2/22/2021  | 1400     |      |
| 7/12/2021  |          | 1560 |
|            |          |      |

|            | MW-13 | MW-13 |
|------------|-------|-------|
| 4/26/2016  | 1920  |       |
| 6/22/2016  | 2270  |       |
| 10/12/2017 | 2100  |       |
| 10/13/2017 | 2000  |       |
| 10/14/2017 | 1800  |       |
| 10/15/2017 | 1800  |       |
| 10/16/2017 | 1800  |       |
| 10/17/2017 | 1700  |       |
| 11/16/2017 | 1800  |       |
| 5/21/2018  | 2400  |       |
| 11/19/2018 | 1800  |       |
| 5/14/2019  | 1600  |       |
| 10/8/2019  | 1980  |       |
| 4/7/2020   | 1400  |       |
| 7/14/2020  | 1740  |       |
| 2/23/2021  | 1470  |       |
| 7/20/2021  |       | 1560  |
|            |       |       |

|            | MW-14 | MW-14 |
|------------|-------|-------|
| 4/26/2016  | 2150  |       |
| 6/22/2016  | 2080  |       |
| 10/12/2017 | 1900  |       |
| 10/13/2017 | 1800  |       |
| 10/14/2017 | 1700  |       |
| 10/15/2017 | 1800  |       |
| 10/16/2017 | 1800  |       |
| 10/17/2017 | 1900  |       |
| 11/16/2017 | 1700  |       |
| 5/21/2018  | 2500  |       |
| 11/19/2018 | 1900  |       |
| 5/14/2019  | 2000  |       |
| 10/8/2019  | 2030  |       |
| 4/7/2020   | 1760  |       |
| 7/14/2020  | 1840  |       |
| 2/23/2021  | 1850  |       |
| 7/20/2021  |       | 1830  |
|            |       |       |

|            | MW-15 | MW-15 |
|------------|-------|-------|
| 4/26/2016  | 1640  |       |
| 6/22/2016  | 1720  |       |
| 10/12/2017 | 1600  |       |
| 10/13/2017 | 1600  |       |
| 10/14/2017 | 1500  |       |
| 10/15/2017 | 1500  |       |
| 10/16/2017 | 1400  |       |
| 10/17/2017 | 1600  |       |
| 11/15/2017 | 1500  |       |
| 5/21/2018  | 2100  |       |
| 11/19/2018 | 1500  |       |
| 5/14/2019  | 1940  |       |
| 10/8/2019  | 1650  |       |
| 4/7/2020   | 1670  |       |
| 7/14/2020  | 1630  |       |
| 2/23/2021  | 1740  |       |
| 7/20/2021  |       | 1700  |
|            |       |       |

|            | MW-16 | MW-16 |
|------------|-------|-------|
| 4/27/2016  | 1220  |       |
| 6/22/2016  | 1160  |       |
| 10/12/2017 | 1300  |       |
| 10/13/2017 | 1300  |       |
| 10/14/2017 | 1200  |       |
| 10/15/2017 | 1200  |       |
| 10/16/2017 | 1200  |       |
| 10/17/2017 | 1300  |       |
| 11/15/2017 | 1200  |       |
| 5/21/2018  | 1700  |       |
| 11/19/2018 | 1200  |       |
| 5/14/2019  | 1490  |       |
| 10/8/2019  | 1490  |       |
| 4/6/2020   | 1270  |       |
| 7/14/2020  | 1270  |       |
| 2/23/2021  | 1330  |       |
| 7/21/2021  |       | 1370  |
|            |       |       |

|            | MW-18 | MW-18 |
|------------|-------|-------|
| 4/26/2016  | 1960  |       |
| 6/22/2016  | 1950  |       |
| 10/12/2017 | 2000  |       |
| 10/13/2017 | 1900  |       |
| 10/14/2017 | 1800  |       |
| 10/15/2017 | 1800  |       |
| 10/16/2017 | 1900  |       |
| 10/17/2017 | 1800  |       |
| 11/15/2017 | 1900  |       |
| 5/22/2018  | 2000  |       |
| 11/19/2018 | 1800  |       |
| 5/15/2019  | 1800  |       |
| 10/8/2019  | 1900  |       |
| 4/8/2020   | 1750  |       |
| 7/14/2020  | 1690  |       |
| 2/23/2021  | 1560  |       |
| 7/21/2021  |       | 1650  |
|            |       |       |

|            | MW-19 | MW-19 |
|------------|-------|-------|
| 4/26/2016  | 2200  |       |
| 6/22/2016  | 2230  |       |
| 10/12/2017 | 2300  |       |
| 10/13/2017 | 2200  |       |
| 10/14/2017 | 2300  |       |
| 10/15/2017 | 2200  |       |
| 10/16/2017 | 2000  |       |
| 10/17/2017 | 2300  |       |
| 11/15/2017 | 2100  |       |
| 5/22/2018  | 2300  |       |
| 11/20/2018 | 1700  |       |
| 5/15/2019  | 1900  |       |
| 10/8/2019  | 2380  |       |
| 4/8/2020   | 1890  |       |
| 7/15/2020  | 1770  |       |
| 2/24/2021  | 1970  |       |
| 7/21/2021  |       | 1990  |
|            |       |       |

|            | MW-2 | MW-2 |
|------------|------|------|
| 4/25/2016  | 745  |      |
| 6/20/2016  | 964  |      |
| 8/8/2016   | 1100 |      |
| 8/24/2016  | 1130 |      |
| 10/3/2016  | 1140 |      |
| 10/26/2016 | 1060 |      |
| 11/21/2016 | 1100 |      |
| 1/17/2017  | 1160 |      |
| 3/22/2017  | 900  |      |
| 4/18/2017  | 870  |      |
| 5/31/2017  | 1100 |      |
| 8/23/2017  | 920  |      |
| 5/22/2018  | 1200 |      |
| 6/12/2018  | 860  |      |
| 10/17/2018 | 970  |      |
| 11/19/2018 | 1000 |      |
| 4/10/2019  | 889  |      |
| 5/14/2019  | 948  |      |
| 10/8/2019  | 1230 |      |
| 10/16/2019 | 1170 |      |
| 4/6/2020   | 786  |      |
| 7/13/2020  | 843  |      |
| 2/22/2021  | 864  |      |
| 7/12/2021  |      | 763  |
|            |      |      |

|            | MW-20 | MW-20 |
|------------|-------|-------|
| 4/26/2016  | 1650  |       |
| 6/22/2016  | 1680  |       |
| 10/12/2017 | 1600  |       |
| 10/13/2017 | 1600  |       |
| 10/14/2017 | 1500  |       |
| 10/15/2017 | 1500  |       |
| 10/16/2017 | 1400  |       |
| 10/17/2017 | 1500  |       |
| 11/15/2017 | 1500  |       |
| 5/22/2018  | 2000  |       |
| 11/20/2018 | 1500  |       |
| 5/15/2019  | 1560  |       |
| 10/10/2019 | 1700  |       |
| 4/8/2020   | 1530  |       |
| 7/15/2020  | 1480  |       |
| 2/23/2021  | 1420  |       |
| 7/21/2021  |       | 1480  |
|            |       |       |

|            | MW-3 | MW-3 |
|------------|------|------|
| 4/25/2016  | 1890 |      |
| 6/22/2016  | 2100 |      |
| 8/9/2016   | 2050 |      |
| 8/24/2016  | 2190 |      |
| 10/4/2016  | 1950 |      |
| 10/26/2016 | 1980 |      |
| 11/21/2016 | 2060 |      |
| 1/18/2017  | 2620 |      |
| 3/22/2017  | 3200 |      |
| 4/18/2017  | 2500 |      |
| 5/31/2017  | 2800 |      |
| 8/23/2017  | 2600 |      |
| 5/24/2018  | 2700 |      |
| 6/12/2018  | 2500 |      |
| 10/17/2018 | 2700 |      |
| 11/19/2018 | 3000 |      |
| 4/10/2019  | 2460 |      |
| 5/14/2019  | 2460 |      |
| 10/8/2019  | 2950 |      |
| 10/16/2019 | 2820 |      |
| 4/6/2020   | 1670 |      |
| 7/13/2020  | 2130 |      |
| 2/22/2021  | 3040 |      |
| 7/12/2021  |      | 2380 |
|            |      |      |

|            | MW-4 | M\   |
|------------|------|------|
| 4/25/2016  | 2260 |      |
| 6/20/2016  | 2500 |      |
| 8/9/2016   | 2750 |      |
| 8/24/2016  | 2770 |      |
| 10/3/2016  | 3060 |      |
| 10/26/2016 | 2650 |      |
| 11/21/2016 | 2720 |      |
| 1/18/2017  | 2650 |      |
| 3/22/2017  | 2700 |      |
| 4/18/2017  | 2400 |      |
| 5/31/2017  | 2700 |      |
| 8/23/2017  | 2700 |      |
| 5/23/2018  | 2400 |      |
| 6/12/2018  | 2600 |      |
| 10/17/2018 | 2600 |      |
| 11/19/2018 | 2400 |      |
| 4/10/2019  | 2090 |      |
| 5/14/2019  | 2240 |      |
| 10/10/2019 | 2690 |      |
| 10/16/2019 | 3050 |      |
| 4/6/2020   | 1810 |      |
| 7/14/2020  | 1970 |      |
| 2/22/2021  | 2040 |      |
| 7/12/2021  |      | 1930 |
|            |      |      |

|            | MW-1     | MW-1 |
|------------|----------|------|
| 4/26/2016  | 2080 (D) |      |
| 6/20/2016  | 2060 (D) |      |
| 8/8/2016   | 2070 (D) |      |
| 8/24/2016  | 2040     |      |
| 10/3/2016  | 2110 (D) |      |
| 10/26/2016 | 2000     |      |
| 11/21/2016 | 2070 (D) |      |
| 1/17/2017  | 1930 (D) |      |
| 3/22/2017  | 2060 (D) |      |
| 4/18/2017  | 2140     |      |
| 5/30/2017  | 2240 (D) |      |
| 8/23/2017  | 2160 (D) |      |
| 5/22/2018  | 2380 (D) |      |
| 6/12/2018  | 2400     |      |
| 10/17/2018 | 2220     |      |
| 11/19/2018 | 2360     |      |
| 4/10/2019  | 2630     |      |
| 5/14/2019  | 2340 (D) |      |
| 10/8/2019  | 2330     |      |
| 10/16/2019 | 3650 (o) |      |
| 4/6/2020   | 2240     |      |
| 7/13/2020  | 2240     |      |
| 2/22/2021  | 2230     |      |
| 7/12/2021  |          | 2210 |
|            |          |      |

|            | MW-13 | MW-13 |
|------------|-------|-------|
| 4/26/2016  | 2940  |       |
| 6/22/2016  | 3580  |       |
| 10/12/2017 | 3350  |       |
| 10/13/2017 | 3340  |       |
| 10/14/2017 | 3120  |       |
| 10/15/2017 | 3210  |       |
| 10/16/2017 | 3150  |       |
| 10/17/2017 | 3030  |       |
| 11/16/2017 | 3150  |       |
| 5/21/2018  | 2760  |       |
| 11/19/2018 | 2960  |       |
| 5/14/2019  | 2530  |       |
| 10/8/2019  | 3050  |       |
| 4/7/2020   | 2190  |       |
| 7/14/2020  | 2860  |       |
| 2/23/2021  | 2370  |       |
| 7/20/2021  |       | 2520  |
|            |       |       |

|            | MW-14 | MW-14 |
|------------|-------|-------|
| 4/26/2016  | 3400  |       |
| 6/22/2016  | 3400  |       |
| 10/12/2017 | 3170  |       |
| 10/13/2017 | 3070  |       |
| 10/14/2017 | 3090  |       |
| 10/15/2017 | 3190  |       |
| 10/16/2017 | 3110  |       |
| 10/17/2017 | 3110  |       |
| 11/16/2017 | 3160  |       |
| 5/21/2018  | 2980  |       |
| 11/19/2018 | 3270  |       |
| 5/14/2019  | 3150  |       |
| 10/8/2019  | 3120  |       |
| 4/7/2020   | 2820  |       |
| 7/14/2020  | 3160  |       |
| 2/23/2021  | 3020  |       |
| 7/20/2021  |       | 2990  |
|            |       |       |

|            | MW-15 | MW-15 |
|------------|-------|-------|
| 4/26/2016  | 2540  |       |
| 6/22/2016  | 2520  |       |
| 10/12/2017 | 2660  |       |
| 10/13/2017 | 2680  |       |
| 10/14/2017 | 2530  |       |
| 10/15/2017 | 2640  |       |
| 10/16/2017 | 2550  |       |
| 10/17/2017 | 2600  |       |
| 11/15/2017 | 2620  |       |
| 5/21/2018  | 2510  |       |
| 11/19/2018 | 2630  |       |
| 5/14/2019  | 2520  |       |
| 10/8/2019  | 2640  |       |
| 4/7/2020   | 2760  |       |
| 7/14/2020  | 2750  |       |
| 2/23/2021  | 2890  |       |
| 7/20/2021  |       | 2600  |
|            |       |       |

|            | MW-16 | MW-16 |
|------------|-------|-------|
| 4/27/2016  | 2130  |       |
| 6/22/2016  | 2270  |       |
| 10/12/2017 | 2380  |       |
| 10/13/2017 | 2340  |       |
| 10/14/2017 | 2340  |       |
| 10/15/2017 | 2440  |       |
| 10/16/2017 | 2330  |       |
| 10/17/2017 | 2380  |       |
| 11/15/2017 | 2400  |       |
| 5/21/2018  | 2340  |       |
| 11/19/2018 | 2420  |       |
| 5/14/2019  | 2350  |       |
| 10/8/2019  | 2460  |       |
| 4/6/2020   | 2360  |       |
| 7/14/2020  | 2360  |       |
| 2/23/2021  | 2480  |       |
| 7/21/2021  |       | 2290  |
|            |       |       |

|            | MW-18 | MW-18 |
|------------|-------|-------|
| 4/26/2016  | 3130  |       |
| 6/22/2016  | 3120  |       |
| 10/12/2017 | 3290  |       |
| 10/13/2017 | 3140  |       |
| 10/14/2017 | 3150  |       |
| 10/15/2017 | 3210  |       |
| 10/16/2017 | 2610  |       |
| 10/17/2017 | 3180  |       |
| 11/15/2017 | 3170  |       |
| 5/22/2018  | 2960  |       |
| 11/19/2018 | 3260  |       |
| 5/15/2019  | 2860  |       |
| 10/8/2019  | 2860  |       |
| 4/8/2020   | 2670  |       |
| 7/14/2020  | 2890  |       |
| 2/23/2021  | 2570  |       |
| 7/21/2021  |       | 2620  |
|            |       |       |

|            | MW-19 | MW-19 |
|------------|-------|-------|
| 4/26/2016  | 3350  |       |
| 6/22/2016  | 3090  |       |
| 10/12/2017 | 3720  |       |
| 10/13/2017 | 3890  |       |
| 10/14/2017 | 3800  |       |
| 10/15/2017 | 3800  |       |
| 10/16/2017 | 3770  |       |
| 10/17/2017 | 3780  |       |
| 11/15/2017 | 3710  |       |
| 5/22/2018  | 2700  |       |
| 11/20/2018 | 2580  |       |
| 5/15/2019  | 2990  |       |
| 10/8/2019  | 3300  |       |
| 4/8/2020   | 2710  |       |
| 7/15/2020  | 3030  |       |
| 2/24/2021  | 3070  |       |
| 7/21/2021  |       | 3130  |

|            | MW-2     | MW-2 |
|------------|----------|------|
| 4/25/2016  | 1260 (D) |      |
| 6/20/2016  | 1620 (D) |      |
| 8/8/2016   | 1740 (D) |      |
| 8/24/2016  | 1720     |      |
| 10/3/2016  | 1800 (D) |      |
| 10/26/2016 | 1800     |      |
| 11/21/2016 | 1740 (D) |      |
| 1/17/2017  | 1960 (D) |      |
| 3/22/2017  | 1510 (D) |      |
| 4/18/2017  | 1580     |      |
| 5/31/2017  | 1730 (D) |      |
| 8/23/2017  | 1550 (D) |      |
| 5/22/2018  | 1500 (D) |      |
| 6/12/2018  | 1550     |      |
| 10/17/2018 | 1740     |      |
| 11/19/2018 | 1990     |      |
| 4/10/2019  | 1250     |      |
| 5/14/2019  | 1480     |      |
| 10/8/2019  | 1840     |      |
| 10/16/2019 | 1830     |      |
| 4/6/2020   | 1440     |      |
| 7/13/2020  | 1540     |      |
| 2/22/2021  | 1620     |      |
| 7/12/2021  |          | 1390 |
|            |          |      |

|            | MW-20 | MW-20 |
|------------|-------|-------|
| 4/26/2016  | 2690  |       |
| 6/22/2016  | 2500  |       |
| 10/12/2017 | 2670  |       |
| 10/13/2017 | 2640  |       |
| 10/14/2017 | 2590  |       |
| 10/15/2017 | 2700  |       |
| 10/16/2017 | 2670  |       |
| 10/17/2017 | 2570  |       |
| 11/15/2017 | 2600  |       |
| 5/22/2018  | 2540  |       |
| 11/20/2018 | 2420  |       |
| 5/15/2019  | 2600  |       |
| 10/10/2019 | 2580  |       |
| 4/8/2020   | 2480  |       |
| 7/15/2020  | 2480  |       |
| 2/23/2021  | 2460  |       |
| 7/21/2021  |       | 2320  |
|            |       |       |

|            | MW-3     | MW-3 |
|------------|----------|------|
| 4/25/2016  | 2720 (D) |      |
| 6/22/2016  | 3250 (D) |      |
| 8/9/2016   | 3050 (D) |      |
| 8/24/2016  | 3080     |      |
| 10/4/2016  | 2900 (D) |      |
| 10/26/2016 | 2940     |      |
| 11/21/2016 | 3090 (D) |      |
| 1/18/2017  | 4020 (D) |      |
| 3/22/2017  | 4180 (D) |      |
| 4/18/2017  | 4440     |      |
| 5/31/2017  | 3970 (D) |      |
| 8/23/2017  | 4050 (D) |      |
| 5/24/2018  | 3680 (D) |      |
| 6/12/2018  | 3820     |      |
| 10/17/2018 | 4730     |      |
| 11/19/2018 | 4710     |      |
| 4/10/2019  | 3680     |      |
| 5/14/2019  | 3580 (D) |      |
| 10/8/2019  | 4720     |      |
| 10/16/2019 | 4210     |      |
| 4/6/2020   | 2630     |      |
| 7/13/2020  | 3650     |      |
| 2/22/2021  | 4670     |      |
| 7/12/2021  |          | 3510 |
|            |          |      |

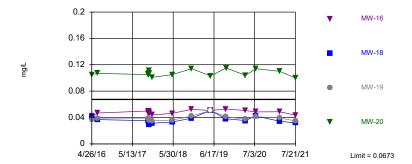
|            | MW-4     | MW-4 |
|------------|----------|------|
| 4/25/2016  | 3300 (D) |      |
| 6/20/2016  | 3870 (D) |      |
| 8/9/2016   | 4140 (D) |      |
| 8/24/2016  | 4190     |      |
| 10/3/2016  | 4190 (D) |      |
| 10/26/2016 | 4400     |      |
| 11/21/2016 | 4230 (D) |      |
| 1/18/2017  | 4120 (D) |      |
| 3/22/2017  | 3980 (D) |      |
| 4/18/2017  | 3880     |      |
| 5/31/2017  | 4210 (D) |      |
| 8/23/2017  | 3990 (D) |      |
| 5/23/2018  | 3740 (D) |      |
| 6/12/2018  | 4080     |      |
| 10/17/2018 | 4250     |      |
| 11/19/2018 | 3920     |      |
| 4/10/2019  | 3280     |      |
| 5/14/2019  | 3130 (D) |      |
| 10/10/2019 | 4000     |      |
| 10/16/2019 | 4060     |      |
| 4/6/2020   | 2820     |      |
| 7/14/2020  | 3310     |      |
| 2/22/2021  | 3190     |      |
| 7/12/2021  |          | 3000 |
|            |          |      |

# FIGURE G.

## Interwell Prediction Limit - Significant Results

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 11/12/2021, 10:15 AM

| Constituent | Well  | Upper Lin | n. Lower Lim | n. Date   | Observ. | Sig. | Bg N Bg Mean | Std. Dev. | <u>%NDs</u> | ND Adj. | Transfo | rm Alpha  | Method                |
|-------------|-------|-----------|--------------|-----------|---------|------|--------------|-----------|-------------|---------|---------|-----------|-----------------------|
| pH (pH)     | MW-20 | 6.59      | 3.77         | 7/21/2021 | 6.6     | Yes  | 152 n/a      | n/a       | 0           | n/a     | n/a     | 0.0001717 | NP (normality) 1 of 2 |

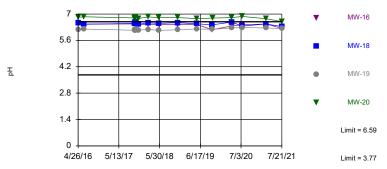

#### Interwell Prediction Limit - All Results

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 11/12/2021, 10:15 AM Well Sig. Bg N Bg Mean Std. Dev. %NDs ND Adj. Constituent Upper Lim. Lower Lim. Date Observ. Transform Alpha Method MW-16 Boron (mg/L) 0.0673 n/a 7/21/2021 0.0437J No 147 n/a n/a 15.65 n/a n/a 0.00009162 NP (normality) 1 of 2 Boron (mg/L) MW-18 0.0673 n/a 7/21/2021 0.0318J No 147 n/a n/a 15.65 n/a 0.00009162 NP (normality) 1 of 2 n/a NP (normality) 1 of 2 Boron (mg/L) MW-19 7/21/2021 0.035J 0.0673 n/a 147 n/a n/a 15.65 n/a 0.00009162 n/a Boron (mg/L) MW-20 0.0673 n/a 7/21/2021 0.0999J No 147 n/a n/a 15.65 n/a n/a 0.00009162 NP (normality) 1 of 2 NP (normality) 1 of 2 pH (pH) MW-16 7/21/2021 6.24 No 152 n/a 0 0.0001717 6.59 3.77 n/a n/a n/a pH (pH) MW-18 6.59 3.77 7/21/2021 6.33 No 152 n/a 0 0.0001717 NP (normality) 1 of 2 n/a n/a n/a MW-19 6.59 3.77 7/21/2021 6.23 0 0.0001717 NP (normality) 1 of 2 pH (pH) No 152 n/a n/a n/a n/a MW-20 NP (normality) 1 of 2 pH (pH) 6.59 3.77 7/21/2021 6.6 Yes 152 n/a 0 n/a n/a 0.0001717 n/a

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

**Prediction Limit** Within Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 147 background values. 15.65% NDs. Annual perconstituent alpha = 0.0007328. Individual comparison alpha = 0.00009162 (1 of 2). Comparing 4 points to limit.

> Constituent: Boron Analysis Run 11/12/2021 10:10 AM View: PLs Interwell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

**Prediction Limit** Exceeds Limits: MW-20 Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 152 background values. Annual perconstituent alpha = 0.001373. Individual comparison alpha = 0.0001717 (1 of 2). Comparing 4 points to limit.

|            | MW-2 (bg)  | MW-3 (bg)  | MW-4 (bg)  | MW-1 (bg)  | MW-15 (bg) | MW-18      | MW-19      | MW-13 (bg) | MW-20     |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|
| 4/25/2016  | 0.0241 (J) | 0.028 (J)  | 0.0414 (J) |            |            |            |            |            |           |
| 4/26/2016  |            |            |            | 0.0231 (J) | 0.0476 (J) | 0.0408 (J) | 0.0367 (J) | 0.0585 (J) | 0.105     |
| 4/27/2016  |            |            |            |            |            |            |            |            |           |
| 6/20/2016  | 0.0284 (J) |            | 0.0434 (J) | 0.0227 (J) |            |            |            |            |           |
| 6/22/2016  |            | 0.0433 (J) |            |            | 0.0472 (J) | 0.0369 (J) | 0.039 (J)  | 0.0581 (J) | 0.107     |
| 8/8/2016   | 0.034 (J)  |            |            | 0.0278 (J) |            |            |            |            |           |
| 8/9/2016   |            | 0.0429 (J) | 0.0453 (J) |            |            |            |            |            |           |
| 8/24/2016  | 0.0316 (J) | 0.0431 (J) | 0.0451 (J) | 0.0247 (J) |            |            |            |            |           |
| 10/3/2016  | 0.0367 (J) |            | 0.0511 (J) | 0.0307 (J) |            |            |            |            |           |
| 10/4/2016  |            | 0.04 (J)   |            |            |            |            |            |            |           |
| 10/26/2016 | 0.0331 (J) | 0.0375 (J) | 0.0507 (J) | 0.0241 (J) |            |            |            |            |           |
| 11/21/2016 | 0.035 (J)  | 0.0406 (J) | 0.0458 (J) | 0.0202 (J) |            |            |            |            |           |
| 1/17/2017  | 0.0259 (J) |            |            | 0.0201 (J) |            |            |            |            |           |
| 1/18/2017  |            | 0.0548 (J) | 0.0445 (J) |            |            |            |            |            |           |
| 3/22/2017  | 0.0243 (J) | 0.0344 (J) | 0.0432 (J) | 0.0224 (J) |            |            |            |            |           |
| 4/18/2017  | 0.0206 (J) | <0.1015    | 0.0409 (J) | <0.1015    |            |            |            |            |           |
| 5/30/2017  |            |            |            | <0.1015    |            |            |            |            |           |
| 5/31/2017  | 0.0234 (J) | 0.0454 (J) | 0.0392 (J) |            |            |            |            |            |           |
| 8/23/2017  | 0.0267 (J) | 0.0425 (J) | 0.042 (J)  | 0.0253 (J) |            |            |            |            |           |
| 10/12/2017 |            |            |            |            | 0.054 (J)  | 0.0351 (J) | 0.039 (J)  | 0.0673 (J) | 0.105     |
| 10/13/2017 |            |            |            |            | 0.0535 (J) | 0.0357 (J) | 0.0384 (J) | 0.06 (J)   | 0.106     |
| 10/14/2017 |            |            |            |            | 0.0533 (J) | 0.0333 (J) | 0.0372 (J) | 0.0555 (J) | 0.106     |
| 10/15/2017 |            |            |            |            | 0.0592 (J) | 0.0325 (J) | 0.0354 (J) | 0.0567 (J) | 0.107     |
| 10/16/2017 |            |            |            |            | 0.0608 (J) | 0.0295 (J) | 0.0373 (J) | 0.0576 (J) | 0.111     |
| 10/17/2017 |            |            |            |            | 0.0641 (J) | 0.033 (J)  | 0.0367 (J) | 0.0561 (J) | 0.107     |
| 11/15/2017 |            |            |            |            | 0.0483 (J) | 0.0313 (J) | 0.0348 (J) |            | 0.101     |
| 11/16/2017 |            |            |            |            |            |            |            | 0.0554 (J) |           |
| 5/21/2018  |            |            |            |            | 0.0478 (J) |            |            | 0.0651 (J) |           |
| 5/22/2018  | 0.0251 (J) |            |            | 0.0224 (J) |            | 0.0331 (J) | 0.0362 (J) |            | 0.105     |
| 5/23/2018  |            |            | 0.0433 (J) |            |            |            |            |            |           |
| 5/24/2018  |            | 0.0339 (J) |            |            |            |            |            |            |           |
| 6/12/2018  | 0.0275 (J) | 0.0371 (J) | 0.0478 (J) | 0.0214 (J) |            |            |            |            |           |
| 10/17/2018 | 0.0321 (J) | 0.0596 (J) | 0.0468 (J) | 0.0216 (J) |            |            |            |            |           |
| 11/19/2018 | 0.0324 (J) | 0.0514 (J) | 0.0526 (J) | 0.0237 (J) | 0.0615 (J) | 0.039 (J)  |            | 0.0624 (J) |           |
| 11/20/2018 |            |            |            |            |            |            | 0.0421 (J) |            | 0.114     |
| 4/10/2019  | <0.1015    | <0.1015    | 0.0438 (J) | 0.0304 (J) |            |            |            |            |           |
| 5/14/2019  | <0.1015    | <0.1015    | <0.1015    | <0.1015    | <0.1015    |            |            | <0.1015    |           |
| 5/15/2019  |            |            |            |            |            | <0.1015    | <0.1015    |            | 0.103 (J) |
| 10/8/2019  | 0.0371 (J) | 0.0537 (J) |            | <0.1015    | 0.0644 (J) | 0.038 (J)  | 0.0413 (J) | 0.0616 (J) |           |
| 10/10/2019 |            |            | 0.0487 (J) |            |            |            |            |            | 0.115     |
| 10/16/2019 | 0.0419 (J) | 0.05 (J)   | 0.0505 (J) | 0.0385 (J) |            |            |            |            |           |
| 4/6/2020   | <0.1015    | <0.1015    | 0.0428 (J) | <0.1015    |            |            |            |            |           |
| 4/7/2020   |            |            |            |            | 0.0542 (J) |            |            | 0.0577 (J) |           |
| 4/8/2020   |            |            |            |            |            | 0.0353 (J) | 0.0373 (J) |            | 0.104     |
| 7/13/2020  | <0.1015    | 0.0366 (J) |            | <0.1015    |            |            |            |            |           |
| 7/14/2020  |            |            | 0.0441 (J) |            | 0.0557 (J) | 0.0421 (J) |            | 0.0573 (J) |           |
| 7/15/2020  |            |            |            |            |            |            | 0.0412 (J) |            | 0.114     |
| 2/22/2021  | <0.1015    | <0.1015    | 0.0397 (J) | 0.0307 (J) |            |            |            |            |           |
| 2/23/2021  |            |            |            |            | 0.0534 (J) | 0.0343 (J) |            | 0.065 (J)  | 0.11      |
| 2/24/2021  |            |            |            |            |            |            | 0.0393 (J) |            |           |
| 7/12/2021  | <0.1015    | <0.1015    | 0.0411 (J) | <0.1015    |            |            |            |            |           |
| 7/20/2021  |            |            |            |            | 0.0514 (J) |            |            | 0.0592 (J) |           |
|            |            |            |            |            |            |            |            |            |           |

Constituent: Boron (mg/L) Analysis Run 11/12/2021 10:15 AM View: PLs Interwell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

MW-2 (bg) MW-3 (bg) MW-4 (bg) MW-1 (bg) MW-15 (bg) MW-18 MW-19 MW-13 (bg) MW-20 7/21/2021 0.0318 (J) 0.035 (J) 0.0999 (J)

|            |              |             | Plant Gorgas | Client: Southern Company | Data: Gorgas Gypsum Landfill |
|------------|--------------|-------------|--------------|--------------------------|------------------------------|
|            | MW-14 (bg)   | MW-16       |              |                          |                              |
| 4/25/2016  |              | -           |              |                          |                              |
| 4/26/2016  |              |             |              |                          |                              |
| 4/27/2016  |              | 0.0425 ( 1) |              |                          |                              |
|            |              | 0.0425 (J)  |              |                          |                              |
| 6/20/2016  |              | 0.0400 ( "  |              |                          |                              |
| 6/22/2016  | 0.0504 (J)   | 0.0469 (J)  |              |                          |                              |
| 8/8/2016   |              |             |              |                          |                              |
| 8/9/2016   |              |             |              |                          |                              |
| 8/24/2016  |              |             |              |                          |                              |
| 10/3/2016  |              |             |              |                          |                              |
| 10/4/2016  |              |             |              |                          |                              |
| 10/26/2010 | 6            |             |              |                          |                              |
| 11/21/2010 | 6            |             |              |                          |                              |
| 1/17/2017  |              |             |              |                          |                              |
| 1/18/2017  |              |             |              |                          |                              |
| 3/22/2017  |              |             |              |                          |                              |
|            |              |             |              |                          |                              |
| 4/18/2017  |              |             |              |                          |                              |
| 5/30/2017  |              |             |              |                          |                              |
| 5/31/2017  |              |             |              |                          |                              |
| 8/23/2017  |              |             |              |                          |                              |
| 10/12/201  |              | 0.05 (J)    |              |                          |                              |
| 10/13/201  | 7 0.0464 (J) | 0.0468 (J)  |              |                          |                              |
| 10/14/201  | 7 0.0458 (J) | 0.0471 (J)  |              |                          |                              |
| 10/15/201  | 7 0.046 (J)  | 0.0456 (J)  |              |                          |                              |
| 10/16/201  | 7 0.0438 (J) | 0.0486 (J)  |              |                          |                              |
| 10/17/201  |              | 0.0452 (J)  |              |                          |                              |
| 11/15/201  |              | 0.044 (J)   |              |                          |                              |
| 11/16/201  |              | (3)         |              |                          |                              |
| 5/21/2018  |              | 0.0463 (J)  |              |                          |                              |
|            |              | 0.0400 (0)  |              |                          |                              |
| 5/22/2018  |              |             |              |                          |                              |
| 5/23/2018  |              |             |              |                          |                              |
| 5/24/2018  |              |             |              |                          |                              |
| 6/12/2018  |              |             |              |                          |                              |
| 10/17/2018 | 8            |             |              |                          |                              |
| 11/19/2018 | 8 0.0518 (J) | 0.0524 (J)  |              |                          |                              |
| 11/20/2018 | 8            |             |              |                          |                              |
| 4/10/2019  |              |             |              |                          |                              |
| 5/14/2019  |              | <0.1015     |              |                          |                              |
| 5/15/2019  |              |             |              |                          |                              |
| 10/8/2019  |              | 0.0528 (J)  |              |                          |                              |
| 10/10/2019 |              | 0.0020 (0)  |              |                          |                              |
|            |              |             |              |                          |                              |
| 10/16/2019 | a            | 0.0507.4%   |              |                          |                              |
| 4/6/2020   |              | 0.0507 (J)  |              |                          |                              |
| 4/7/2020   | 0.0477 (J)   |             |              |                          |                              |
| 4/8/2020   |              |             |              |                          |                              |
| 7/13/2020  |              |             |              |                          |                              |
| 7/14/2020  | 0.0492 (J)   | 0.0484 (J)  |              |                          |                              |
| 7/15/2020  |              |             |              |                          |                              |
| 2/22/2021  |              |             |              |                          |                              |
| 2/23/2021  |              | 0.0487 (J)  |              |                          |                              |
| 2/24/2021  |              | ` '         |              |                          |                              |
| 7/12/2021  |              |             |              |                          |                              |
|            |              |             |              |                          |                              |
| 7/20/2021  | 0.0485 (J)   |             |              |                          |                              |
|            |              |             |              |                          |                              |
|            |              |             |              |                          |                              |

Constituent: Boron (mg/L) Analysis Run 11/12/2021 10:15 AM View: PLs Interwell Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

MW-14 (bg) MW-16

7/21/2021 0.0437 (J)

|                        | MW-3 (bg) | MW-4 (bg) | MW-2 (bg) | MW-1 (bg) | MW-14 (bg) | MW-15 (bg) | MW-18 | MW-19 | MW-13 (bg) |
|------------------------|-----------|-----------|-----------|-----------|------------|------------|-------|-------|------------|
| 4/25/2016              | 5.56      | 6.22      | 5.94      |           |            |            |       |       |            |
| 4/26/2016              |           |           |           | 5.2       | 6.41       | 6.08       | 6.54  | 6.16  | 6.35       |
| 4/27/2016              |           |           |           |           |            |            |       |       |            |
| 6/20/2016              |           | 6.21      | 5.96      | 5.18      |            |            |       |       |            |
| 6/22/2016              | 5.57      |           |           |           | 6.39       | 6.11       | 6.45  | 6.2   | 6.33       |
| 8/8/2016               |           |           | 5.88      | 5.12      |            |            |       |       |            |
| 8/9/2016               | 5.67      | 6.11      |           |           |            |            |       |       |            |
| 8/24/2016              | 5.63      | 6.11      |           |           |            |            |       |       |            |
| 10/3/2016              |           | 6.13 (D)  | 5.91 (D)  | 5.21 (D)  |            |            |       |       |            |
| 10/4/2016              | 5.69 (D)  |           |           |           |            |            |       |       |            |
| 10/26/2016             | 5.56      | 6.12      | 5.84      | 5.2       |            |            |       |       |            |
| 11/21/2016             | 5.42 (D)  | 6.09 (D)  | 5.82 (D)  | 5.19 (D)  |            |            |       |       |            |
| 1/17/2017              |           |           | 5.87 (D)  | 5.17 (D)  |            |            |       |       |            |
| 1/18/2017              | 5.11 (D)  | 6.09 (D)  |           |           |            |            |       |       |            |
| 3/22/2017              | 4.52 (D)  | 6.15 (D)  | 6.01 (D)  | 5.2 (D)   |            |            |       |       |            |
| 4/18/2017              | 5.84      | 6.19      | 6.02      | 5.2       |            |            |       |       |            |
| 5/30/2017              |           |           |           | 5.14 (D)  |            |            |       |       |            |
| 5/31/2017              | 4.56 (D)  | 6.13 (D)  | 5.85 (D)  |           |            |            |       |       |            |
| 8/23/2017              | 4.77 (D)  | 6.12 (D)  | 5.89 (D)  | 5.12 (D)  |            |            |       |       |            |
| 10/12/2017             |           |           |           |           | 6.35       | 6.06       | 6.5   | 6.14  | 6.38       |
| 10/13/2017             |           |           |           |           | 6.34       | 6.06       | 6.49  | 6.18  | 6.37       |
| 10/14/2017             |           |           |           |           | 6.38       | 6.12       | 6.54  | 6.21  | 6.4        |
| 10/15/2017             |           |           |           |           | 6.32       | 6.05       | 6.55  | 6.14  | 6.35       |
| 10/16/2017             |           |           |           |           | 6.33       | 6.05       | 6.55  | 6.16  | 6.37       |
| 10/17/2017             |           |           |           |           | 6.4        | 6.12       | 6.55  | 6.15  | 6.44       |
| 11/15/2017             |           |           |           |           |            | 6.06       | 6.46  | 6.15  |            |
| 11/16/2017             |           |           |           |           | 6.28       |            |       |       | 6.31       |
| 2/13/2018              | 5.67      | 6.22      | 6.21      | 5.18      | 6.36       |            |       |       | 6.5        |
| 2/14/2018              |           |           |           |           |            | 6.1        | 6.53  | 6.18  |            |
| 5/21/2018              |           |           |           |           | 6.38       | 6.06       |       |       | 6.41       |
| 5/22/2018              |           |           | 6.04      | 5.2       |            |            | 6.5   | 6.13  |            |
| 5/23/2018              |           | 6.21      |           |           |            |            |       |       |            |
| 5/24/2018              | 5.19      |           |           |           |            |            |       |       |            |
| 6/12/2018              | 4.79      | 6.16      | 5.95      | 5.15      |            |            |       |       |            |
| 10/17/2018             | 4.75      | 6.12      | 5.9       | 5.12      |            |            |       |       |            |
| 11/19/2018             | 3.77 (E)  | 6.16      | 6.03      | 5.09      | 6.35       | 6.08       | 6.54  |       | 6.38       |
| 11/20/2018             |           |           |           |           |            |            |       | 6.16  |            |
| 4/10/2019              | 5.54      | 6.14      | 6.1       | 5.11      |            |            |       |       |            |
| 5/14/2019              | 5.71      | 6.23      | 6.07      | 5.19      | 6.39       | 6.1        |       |       | 6.41       |
| 5/15/2019              |           |           |           |           |            |            | 6.48  | 6.21  |            |
| 10/8/2019              | 4.98      |           | 5.96      | 5.12      | 6.32       | 5.99       | 6.43  | 6.19  | 6.34       |
| 10/10/2019             |           | 6.15      |           |           |            |            |       |       |            |
| 10/16/2019             | 4.51      | 6.19      | 5.98      | 5.16      |            |            |       |       |            |
| 4/6/2020               | 5.91      | 6.35      | 6.21      | 5.21      |            |            |       |       |            |
| 4/7/2020               |           |           |           |           | 6.42       | 6.1        |       |       | 6.53       |
| 4/8/2020               |           |           |           |           |            |            | 6.57  | 6.26  |            |
| 7/13/2020              | 5.16      |           | 5.84      | 5.14      |            |            |       |       |            |
| 7/14/2020              |           | 6.2       |           |           | 6.37       | 6.05       | 6.36  | 6.28  | 6.33       |
| 7/15/2020              | E E0      | 6.10      | 6.1       | E 00      |            |            |       | 6.28  |            |
| 2/22/2021              | 5.59      | 6.19      | 6.1       | 5.06      | 6.20       | 6.07       | 6.47  |       | CEE        |
| 2/23/2021<br>2/24/2021 |           |           |           |           | 6.38       | 6.07       | 6.47  | 6.26  | 6.55       |
| 2/24/2UZ I             |           |           |           |           |            |            |       | 0.20  |            |

#### Page 2

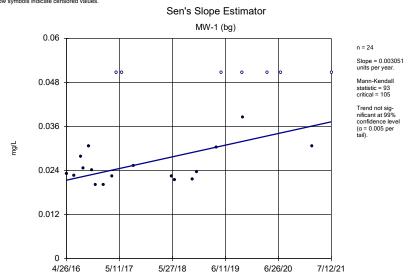
## **Prediction Limit**

|           | MW-3 (bg) | MW-4 (bg) | MW-2 (bg) | MW-1 (bg) | MW-14 (bg) | MW-15 (bg) | MW-18 | MW-19 | MW-13 (bg) |
|-----------|-----------|-----------|-----------|-----------|------------|------------|-------|-------|------------|
| 7/12/2021 | 5.86      | 6.06      | 6.16      | 5.13      |            |            |       |       |            |
| 7/20/2021 |           |           |           |           | 6.38       | 6.03       |       |       | 6.59       |
| 7/21/2021 |           |           |           |           |            |            | 6.33  | 6.23  |            |
|           |           |           |           |           |            |            |       |       |            |

|            |       |       | Plant Gorgas | Client: Southern Company | Data: Gorgas Gypsum Landfill |  |
|------------|-------|-------|--------------|--------------------------|------------------------------|--|
|            | MW-20 | MW-16 |              |                          |                              |  |
| 4/25/2016  |       |       |              |                          |                              |  |
| 4/26/2016  | 6.83  |       |              |                          |                              |  |
| 4/27/2016  |       | 6.5   |              |                          |                              |  |
| 6/20/2016  |       |       |              |                          |                              |  |
| 6/22/2016  | 6.85  | 6.47  |              |                          |                              |  |
| 8/8/2016   |       |       |              |                          |                              |  |
| 8/9/2016   |       |       |              |                          |                              |  |
| 8/24/2016  |       |       |              |                          |                              |  |
| 10/3/2016  |       |       |              |                          |                              |  |
| 10/4/2016  |       |       |              |                          |                              |  |
| 10/26/2016 |       |       |              |                          |                              |  |
| 11/21/2016 |       |       |              |                          |                              |  |
| 1/17/2017  |       |       |              |                          |                              |  |
| 1/18/2017  |       |       |              |                          |                              |  |
| 3/22/2017  |       |       |              |                          |                              |  |
| 4/18/2017  |       |       |              |                          |                              |  |
| 5/30/2017  |       |       |              |                          |                              |  |
| 5/31/2017  |       |       |              |                          |                              |  |
| 8/23/2017  |       |       |              |                          |                              |  |
| 10/12/2017 | 6.79  | 6.47  |              |                          |                              |  |
| 10/13/2017 | 6.75  | 6.45  |              |                          |                              |  |
| 10/14/2017 | 6.82  | 6.48  |              |                          |                              |  |
| 10/15/2017 | 6.8   | 6.43  |              |                          |                              |  |
| 10/16/2017 | 6.83  | 6.42  |              |                          |                              |  |
| 10/17/2017 | 6.82  | 6.48  |              |                          |                              |  |
| 11/15/2017 | 6.77  | 6.44  |              |                          |                              |  |
| 11/16/2017 |       |       |              |                          |                              |  |
| 2/13/2018  |       |       |              |                          |                              |  |
| 2/14/2018  | 6.84  | 6.45  |              |                          |                              |  |
| 5/21/2018  |       | 6.45  |              |                          |                              |  |
| 5/22/2018  | 6.81  |       |              |                          |                              |  |
| 5/23/2018  |       |       |              |                          |                              |  |
| 5/24/2018  |       |       |              |                          |                              |  |
| 6/12/2018  |       |       |              |                          |                              |  |
| 10/17/2018 |       |       |              |                          |                              |  |
| 11/19/2018 |       | 6.44  |              |                          |                              |  |
| 11/20/2018 | 6.81  |       |              |                          |                              |  |
| 4/10/2019  |       |       |              |                          |                              |  |
| 5/14/2019  |       | 6.44  |              |                          |                              |  |
| 5/15/2019  | 6.76  |       |              |                          |                              |  |
| 10/8/2019  |       | 6.16  |              |                          |                              |  |
| 10/10/2019 | 6.78  |       |              |                          |                              |  |
| 10/16/2019 |       |       |              |                          |                              |  |
| 4/6/2020   |       | 6.37  |              |                          |                              |  |
| 4/7/2020   |       |       |              |                          |                              |  |
| 4/8/2020   | 6.81  |       |              |                          |                              |  |
| 7/13/2020  |       |       |              |                          |                              |  |
| 7/14/2020  |       | 6.43  |              |                          |                              |  |
| 7/15/2020  | 6.87  |       |              |                          |                              |  |
| 2/22/2021  |       |       |              |                          |                              |  |
| 2/23/2021  | 6.75  | 6.47  |              |                          |                              |  |
| 2/24/2021  |       |       |              |                          |                              |  |
|            |       |       |              |                          |                              |  |
|            |       |       |              |                          |                              |  |

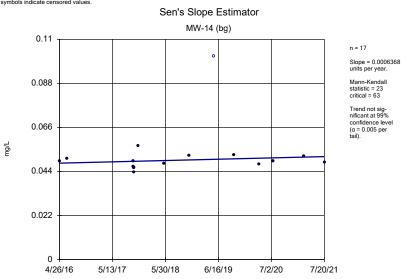
|           | MW-20 | MW-16 |
|-----------|-------|-------|
| 7/12/2021 |       |       |
| 7/20/2021 |       |       |
| 7/21/2021 | 6.6   | 6.24  |
|           |       |       |

# FIGURE H.


# Trend Test Summary - Prediction Limit Exceedances - Significant Results

|                 | Plant Gorgas Client: South | ern Company | Data: Gorgas Gy | ypsum Landi | fill Pr | inted 11 | 17/2021, | 5:16 PM   |              |              |        |
|-----------------|----------------------------|-------------|-----------------|-------------|---------|----------|----------|-----------|--------------|--------------|--------|
| Constituent     | Well                       | Slope       | Calc.           | Critical    | Sig.    | <u>N</u> | %NDs     | Normality | <u>Xform</u> | <u>Alpha</u> | Method |
| Boron (mg/L)    | MW-2 (bg)                  | 0.004722    | 127             | 105         | Yes     | 24       | 25       | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | MW-20                      | 22.22       | 114             | 63          | Yes     | 17       | 0        | n/a       | n/a          | 0.01         | NP     |
| Fluoride (mg/L) | MW-14 (bg)                 | -0.009622   | -76             | -68         | Yes     | 18       | 0        | n/a       | n/a          | 0.01         | NP     |
| Fluoride (mg/L) | MW-15 (bg)                 | -0.01808    | -88             | -68         | Yes     | 18       | 0        | n/a       | n/a          | 0.01         | NP     |
| Fluoride (mg/L) | MW-2 (bg)                  | 0.01443     | 123             | 111         | Yes     | 25       | 0        | n/a       | n/a          | 0.01         | NP     |

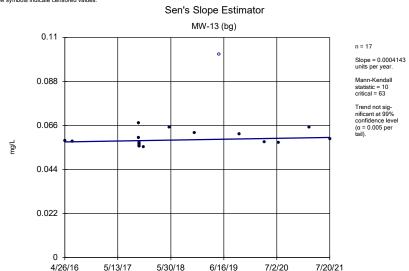
# Trend Test Summary - Prediction Limit Exceedances - All Results


|                 | Plant Gorgas Client: Southern Company |            | Data: Gorgas Gypsum Landfill Printed 11/17/202 |  |       |          |      | 17/2021, | 5:16 PM |           |       |              |        |
|-----------------|---------------------------------------|------------|------------------------------------------------|--|-------|----------|------|----------|---------|-----------|-------|--------------|--------|
| Constituent     | Well                                  | Well       |                                                |  | Calc. | Critical | Sig. | <u>N</u> | %NDs    | Normality | Xform | <u>Alpha</u> | Method |
| Boron (mg/L)    | MW-1 (bo                              | MW-1 (bg)  |                                                |  | 93    | 105      | No   | 24       | 29.17   | n/a       | n/a   | 0.01         | NP     |
| Boron (mg/L)    | MW-13 (t                              | og)        | 0.0004143                                      |  | 10    | 63       | No   | 17       | 5.882   | n/a       | n/a   | 0.01         | NP     |
| Boron (mg/L)    | MW-14 (t                              | og)        | 0.0006368                                      |  | 23    | 63       | No   | 17       | 5.882   | n/a       | n/a   | 0.01         | NP     |
| Boron (mg/L)    | MW-15 (b                              | og)        | 0.0008575                                      |  | 30    | 63       | No   | 17       | 5.882   | n/a       | n/a   | 0.01         | NP     |
| Boron (mg/L)    | MW-2 (bg                              | 3)         | 0.004722                                       |  | 127   | 105      | Yes  | 24       | 25      | n/a       | n/a   | 0.01         | NP     |
| Boron (mg/L)    | MW-20                                 | MW-20      |                                                |  | 8     | 63       | No   | 17       | 0       | n/a       | n/a   | 0.01         | NP     |
| Boron (mg/L)    | MW-3 (bo                              | MW-3 (bg)  |                                                |  | 69    | 105      | No   | 24       | 25      | n/a       | n/a   | 0.01         | NP     |
| Boron (mg/L)    | MW-4 (bo                              | MW-4 (bg)  |                                                |  | -17   | -98      | No   | 23       | 0       | n/a       | n/a   | 0.01         | NP     |
| Chloride (mg/L) | MW-1 (bg                              | MW-1 (bg)  |                                                |  | -17   | -105     | No   | 24       | 0       | n/a       | n/a   | 0.01         | NP     |
| Chloride (mg/L) | MW-13 (b                              | MW-13 (bg) |                                                |  | -17   | -63      | No   | 17       | 0       | n/a       | n/a   | 0.01         | NP     |
| Chloride (mg/L) | MW-14 (b                              | MW-14 (bg) |                                                |  | 14    | 63       | No   | 17       | 5.882   | n/a       | n/a   | 0.01         | NP     |
| Chloride (mg/L) | MW-15 (b                              | MW-15 (bg) |                                                |  | 38    | 63       | No   | 17       | 5.882   | n/a       | n/a   | 0.01         | NP     |
| Chloride (mg/L) | MW-2 (bg                              | 3)         | -0.05131                                       |  | -15   | -105     | No   | 24       | 0       | n/a       | n/a   | 0.01         | NP     |
| Chloride (mg/L) | MW-20                                 |            | 22.22                                          |  | 114   | 63       | Yes  | 17       | 0       | n/a       | n/a   | 0.01         | NP     |
| Chloride (mg/L) | MW-3 (bg                              | 3)         | 0.06882                                        |  | 59    | 105      | No   | 24       | 8.333   | n/a       | n/a   | 0.01         | NP     |
| Chloride (mg/L) | MW-4 (bg                              | 3)         | -0.06862                                       |  | -70   | -105     | No   | 24       | 4.167   | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-1 (bg                              | 3)         | -0.006304                                      |  | -46   | -111     | No   | 25       | 0       | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-13 (b                              | og)        | 0                                              |  | -9    | -68      | No   | 18       | 0       | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-14 (k                              | og)        | -0.009622                                      |  | -76   | -68      | Yes  | 18       | 0       | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-15 (b                              | og)        | -0.01808                                       |  | -88   | -68      | Yes  | 18       | 0       | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-16                                 |            | -0.003207                                      |  | -40   | -68      | No   | 18       | 0       | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-18                                 | MW-18      |                                                |  | -61   | -68      | No   | 18       | 0       | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-19                                 | MW-19      |                                                |  | 16    | 68       | No   | 18       | 0       | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-2 (bo                              | <b>j</b> ) | 0.01443                                        |  | 123   | 111      | Yes  | 25       | 0       | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-20                                 |            | -0.001184                                      |  | -26   | -68      | No   | 18       | 0       | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-3 (bg                              | g)         | -0.007263                                      |  | -15   | -111     | No   | 25       | 0       | n/a       | n/a   | 0.01         | NP     |
| Fluoride (mg/L) | MW-4 (bo                              | g)         | 0.005907                                       |  | 41    | 111      | No   | 25       | 0       | n/a       | n/a   | 0.01         | NP     |
| pH (pH)         | MW-1 (bo                              | g)         | -0.01437                                       |  | -88   | -105     | No   | 24       | 0       | n/a       | n/a   | 0.01         | NP     |
| pH (pH)         | MW-13 (t                              | og)        | 0.03035                                        |  | 54    | 68       | No   | 18       | 0       | n/a       | n/a   | 0.01         | NP     |
| pH (pH)         | MW-14 (t                              | og)        | 0                                              |  | 4     | 68       | No   | 18       | 0       | n/a       | n/a   | 0.01         | NP     |
| pH (pH)         | MW-15 (b                              | og)        | -0.005313                                      |  | -31   | -68      | No   | 18       | 0       | n/a       | n/a   | 0.01         | NP     |
| pH (pH)         | MW-2 (bg                              | g)         | 0.04162                                        |  | 102   | 105      | No   | 24       | 0       | n/a       | n/a   | 0.01         | NP     |
| pH (pH)         | MW-20                                 |            | -0.01053                                       |  | -39   | -68      | No   | 18       | 0       | n/a       | n/a   | 0.01         | NP     |
| pH (pH)         | MW-3 (bo                              | g)         | -0.008517                                      |  | -8    | -105     | No   | 24       | 0       | n/a       | n/a   | 0.01         | NP     |
| pH (pH)         | MW-4 (bo                              | 3)         | 0.01244                                        |  | 57    | 111      | No   | 25       | 0       | n/a       | n/a   | 0.01         | NP     |

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

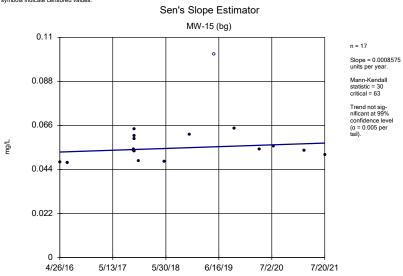


Constituent: Boron Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill


#### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

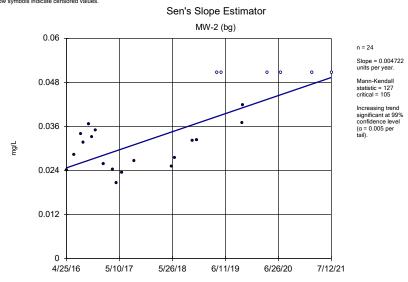


Constituent: Boron Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances

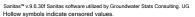

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.




Constituent: Boron Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

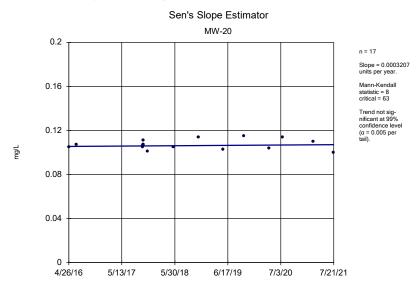
#### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.




Constituent: Boron Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

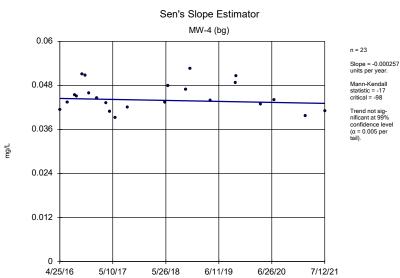
Hollow symbols indicate censored values.



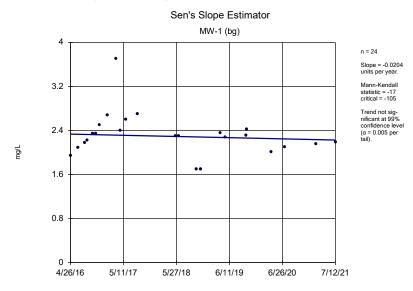

Constituent: Boron Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



Sen's Slope Estimator MW-3 (bg) 0.06 n = 24 Slope = 0.002231 units per year. 0.048 Mann-Kendall statistic = 69 critical = 105 Trend not sig-nificant at 99% confidence level 0.036  $(\alpha = 0.005 \text{ per})$ mg/L 0.024 0.012 4/25/16 5/10/17 5/26/18 6/11/19 6/26/20 7/12/21

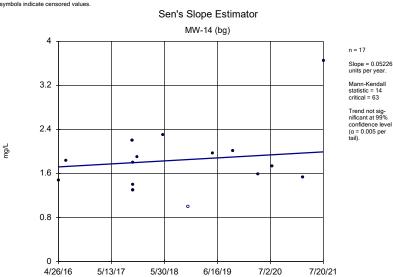

Constituent: Boron Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



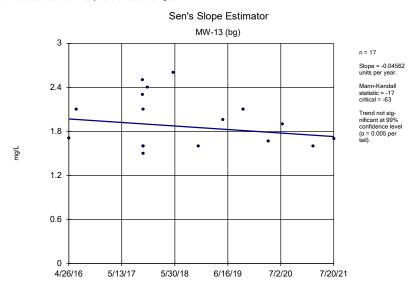

Constituent: Boron Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



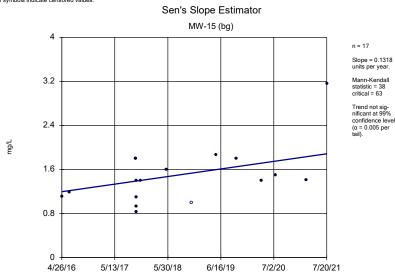

Constituent: Boron Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: Chloride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

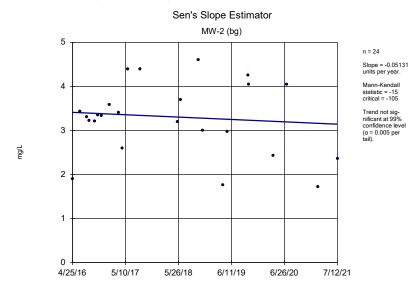




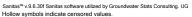

Constituent: Chloride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances

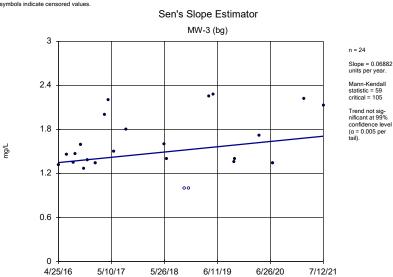
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: Chloride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.





Constituent: Chloride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances

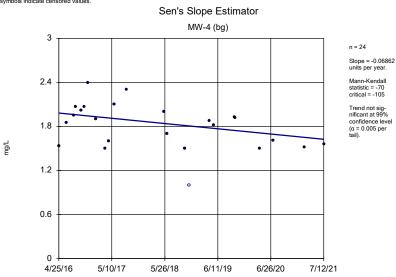
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: Chloride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

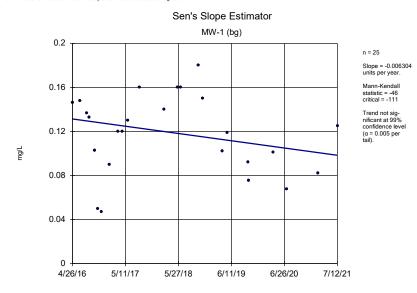





Constituent: Chloride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances

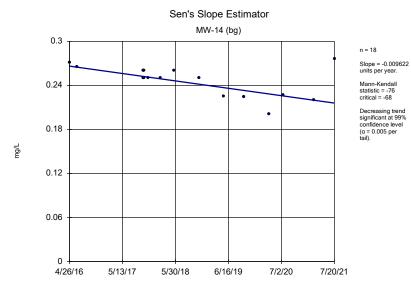
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: Chloride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

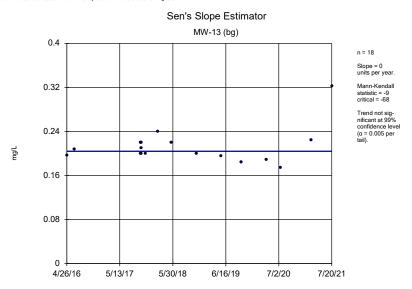
#### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.




Constituent: Chloride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

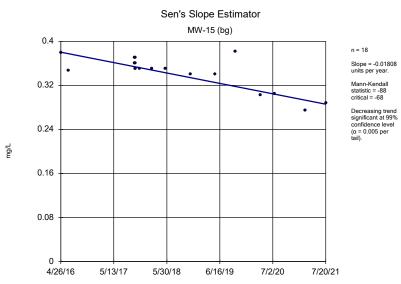



Constituent: Fluoride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



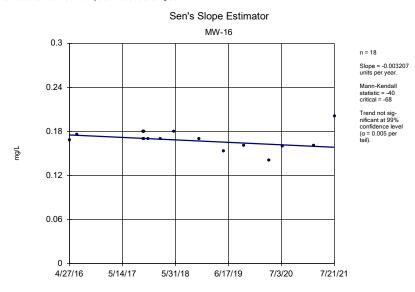


Constituent: Fluoride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances


Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



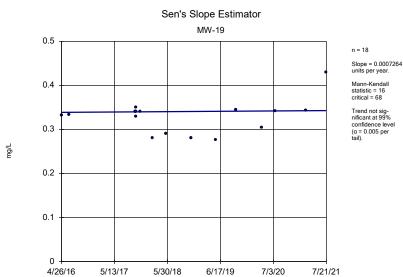
Constituent: Fluoride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances


Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

#### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

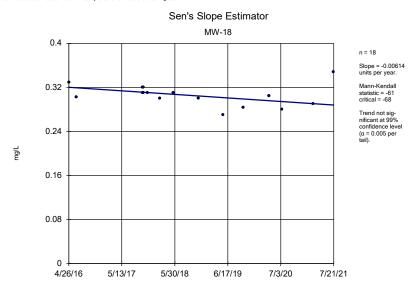


Constituent: Fluoride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances

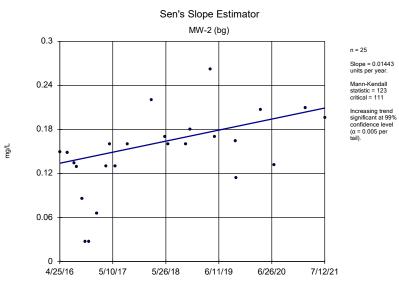

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



Constituent: Fluoride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances

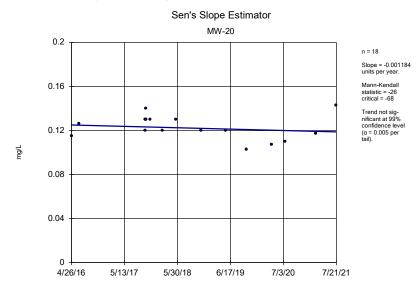

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill






Constituent: Fluoride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances

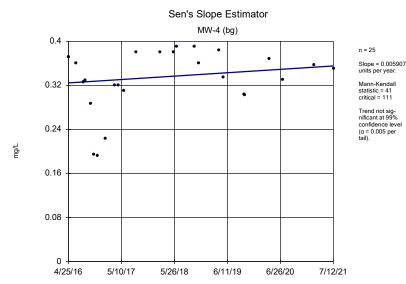
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: Fluoride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

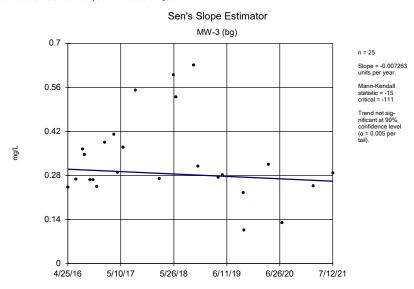


Constituent: Fluoride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances


Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



Constituent: Fluoride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances

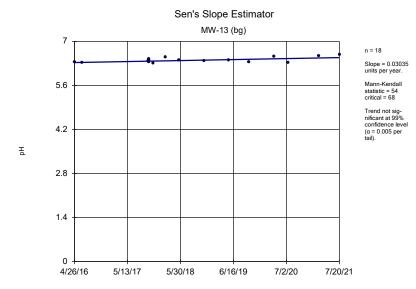

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill





Constituent: Fluoride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances

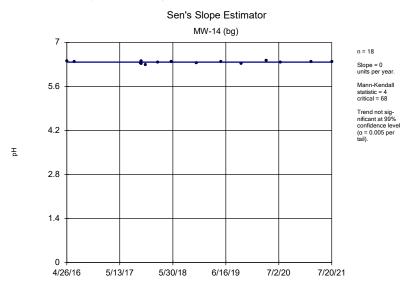
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: Fluoride Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: pH Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



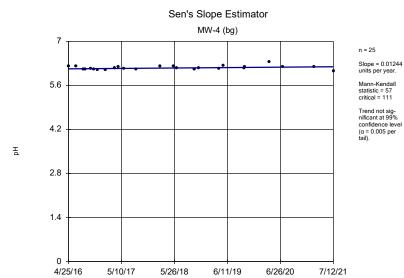
Constituent: pH Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



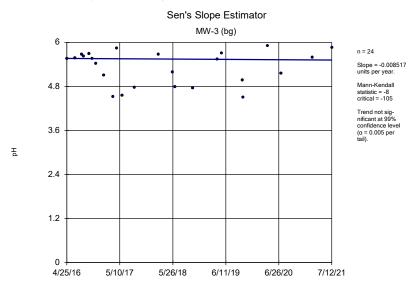

Constituent: pH Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



Constituent: pH Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: pH Analysis Run 11/17/2021 5:14 PM View: Trend Tests - PL Exceedances
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill




Constituent: pH Analysis Run 11/17/2021 5:15 PM View: Trend Tests - PL Exceedances
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: pH Analysis Run 11/17/2021 5:15 PM View: Trend Tests - PL Exceedances
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill



Constituent: pH Analysis Run 11/17/2021 5:15 PM View: Trend Tests - PL Exceedances
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

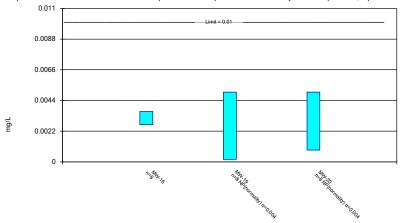
# FIGURE I.

# Upper Tolerance Limits Summary Table

Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 11/18/2021, 9:51 AM Upper Lim. Bg N Bg Mean Std. Dev. %NDs ND Adj. Transform Method Constituent <u>Alpha</u> 0.00143 147 n/a 95.92 n/a 0.0005313 NP Inter Antimony (mg/L) n/a n/a 0.0005313 0.005 147 n/a 74.83 NP Inter Arsenic (mg/L) n/a n/a n/a Barium (mg/L) 0.0165 147 n/a 0 n/a 0.0005313 NP Inter n/a n/a 0.0005887 Beryllium (mg/L) 0.0121 145 n/a 89.66 n/a n/a NP Inter Cadmium (mg/L) 0.00598 0.0005887 NP Inter 145 n/a n/a 64.14 n/a n/a 0.0105 91.84 0.0005313 NP Inter Chromium (mg/L) 147 n/a n/a n/a Cobalt (mg/L) 0.49 17.24 0.0005887 NP Inter 145 n/a n/a n/a n/a Combined Radium 226 + 228 (pCi/L) 1.91 142 0 n/a 0.0006867 NP Inter 0.63 Fluoride (mg/L) n/a 0 n/a 0.0003711 NP Inter 154 n/a n/a Lead (mg/L) 0.00692 147 n/a 95.92 n/a 0.0005313 NP Inter NP Inter Lithium (mg/L) 0.419 0.6803 0.0005313 147 n/a n/a n/a n/a Mercury (mg/L) 0.0005 147 100 n/a 0.0005313 NP Inter 0.000933 94.56 0.0005313 NP Inter Molybdenum (mg/L) 147 n/a n/a n/a n/a Selenium (mg/L) 0.0209 147 n/a 70.07 n/a 0.0005313 NP Inter Thallium (mg/L) 0.000226 147 n/a 97.96 0.0005313 NP Inter n/a n/a n/a

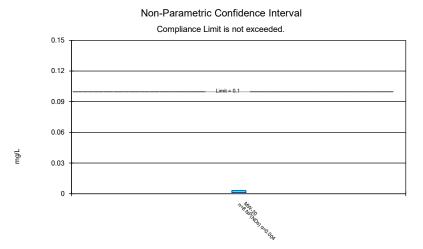
# FIGURE J.

| GORGAS GYPSUM LANDFILL GWPS    |       |           |            |       |
|--------------------------------|-------|-----------|------------|-------|
|                                |       | Federally |            |       |
| Constituent Name               | MCL   | Derived   | Background | GWPS  |
| Antimony, Total (mg/L)         | 0.006 |           | 0.00143    | 0.006 |
| Arsenic, Total (mg/L)          | 0.01  |           | 0.005      | 0.01  |
| Barium, Total (mg/L)           | 2     |           | 0.0165     | 2     |
| Beryllium, Total (mg/L)        | 0.004 |           | 0.0121     | 0.004 |
| Cadmium, Total (mg/L)          | 0.005 |           | 0.00598    | 0.005 |
| Chromium, Total (mg/L)         | 0.1   |           | 0.0105     | 0.1   |
| Cobalt, Total (mg/L)           | n/a   | 0.006     | 0.49       | 0.49  |
| Combined Radium, Total (pCi/L) | 5     |           | 1.91       | 5     |
| Fluoride, Total (mg/L)         | 4     |           | 0.63       | 4     |
| Lead, Total (mg/L)             | 0.015 |           | 0.00692    | 0.015 |
| Lithium, Total (mg/L)          | n/a   | 0.04      | 0.419      | 0.419 |
| Mercury, Total (mg/L)          | 0.002 |           | 0.0005     | 0.002 |
| Molybdenum, Total (mg/L)       | n/a   | 0.1       | 0.000933   | 0.1   |
| Selenium, Total (mg/L)         | 0.05  |           | 0.0209     | 0.05  |
| Thallium, Total (mg/L)         | 0.002 |           | 0.000226   | 0.002 |


# FIGURE K.

# Appendix IV Confidence Intervals - All Results (No Significant)

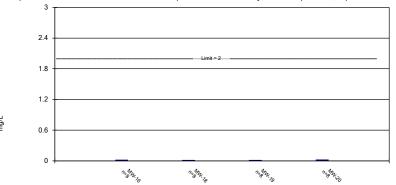
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill Printed 11/12/2021, 11:37 AM Constituent Well Upper Lim. Compliance Sig. N <u>Mean</u> Std. Dev. %NDs ND Adj. Transform Alpha Method MW-16 0.003611 0.002669 0.01 No 8 0.00314 0.0004446 0 No 0.01 Param. Arsenic (mg/L) None 0.002224 Arsenic (mg/L) MW-19 0.005 0.00018 0.01 No 8 0.003799 75 None No 0.004 NP (normality) MW-20 0.005 0.00084 0.01 0.003497 0.002078 0.004 NP (normality) Arsenic (ma/L) No 8 62.5 No None Barium (mg/L) MW-16 0.01384 0.01196 2 No 8 0.0129 0.0008864 0 No 0.01 Param. Barium (mg/L) MW-18 0.0109 0.009331 2 No 8 0.01012 0.0007395 0 No 0.01 Param. None Barium (mg/L) MW-19 0.01097 0.009209 No 8 0.01009 0.0008299 None No 0.01 Param. Barium (mg/L) MW-20 0.01809 0.01474 2 No 8 0.01641 0.001582 0 0.01 Param. None No Chromium (mg/L) MW-20 0.00312 0.00102 0.1 No 8 0.001282 0.0007425 87.5 None 0.004 NP (NDs) 0.008691 8 0.009835 0.001079 Cobalt (mg/L) MW-16 0.01098 0.49 Nο 0 None No 0.01 Param Cobalt (mg/L) MW-18 0.0002 0.0002 0.49 No 0.0002 None 0.004 NP (NDs) Cobalt (mg/L) MW-19 0.06707 0.02568 0.49 Nο 8 0.04638 0.01 Param. 0.01952 0 None No Cobalt (mg/L) MW-20 0.000234 0.0002 0.49 No 8 0.000208 0.00001485 75 0.004 NP (normality) Combined Radium 226 + 228 (pCi/L) MW-16 8 0.7109 0.5886 0.004 NP (normality) 2.13 0.292 No 0 None No Combined Radium 226 + 228 (pCi/L) 0.5886 0.04386 No 0.3163 0.257 Combined Radium 226 + 228 (pCi/L) MW-19 0.6877 0.2898 Nο 8 0.4888 0 1877 0 None Nο 0.01 Param Combined Radium 226 + 228 (pCi/L) 1.283 0.5067 No 0.8949 0.3662 0 0.01 None Fluoride (mg/L) MW-16 0.1852 0.1466 No 8 0.1659 0.01819 0 None No 0.01 Param. Fluoride (mg/L) MW-18 0.3239 0.2728 No 8 0.2984 0.02409 No 0.01 Param. None Fluoride (mg/L) MW-19 0.3797 0.2728 4 No 8 0.3263 0.05044 0 None No 0.01 Param. Fluoride (mg/L) MW-20 0.1325 0.105 No 8 0.1188 0.013 0 None No 0.01 Param. Lead (mg/L) MW-20 0.00686 0.0002 0.015 No 8 0.001032 0.002355 87.5 None No 0.004 NP (NDs) Lithium (mg/L) MW-16 0.01993 0.0174 0.419 8 0.01866 0.001193 Param. No 12.5 None No 0.01 Lithium (mg/L) MW-18 0.06607 0.05795 0.419 No 8 0.06201 0.003831 0 No 0.01 Param. Lithium (mg/L) MW-19 0.07197 0.05513 0.419 No 8 0.06355 0.007946 0 None No 0.01 Param. Lithium (mg/L) MW-20 0.2659 0.2398 0.419 No 8 0.2529 0.01233 None No 0.01 Param. Molybdenum (mg/L) MW-16 0.01 0.00043 0.1 Nο 8 0.007614 0.004417 None No 0.004 NP (normality) 75 Molybdenum (mg/L) MW-18 0.01 0.0001 0.1 No 8 0.007527 0.004578 75 No 0.004 NP (normality) 0.007551 0.004535 0.004 NP (normality) Molybdenum (mg/L) MW-19 0.01 0.000197 No 8 75 0.1 No None Molybdenum (mg/L) MW-20 0.01 0.00101 0.1 No 8 0.007761 0.004145 75 No 0.004 NP (normality) 8 0.004 NP (normality) Selenium (mg/L) MW-18 0.01 0.00243 No 0.003839 0.002524 0.05 12.5 None No


# Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Arsenic Analysis Run 11/12/2021 11:36 AM View: Confidence Intervals
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

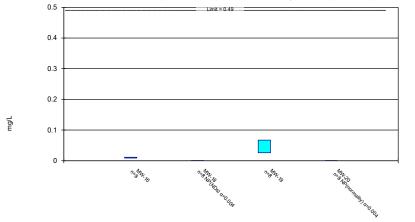

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Chromium Analysis Run 11/12/2021 11:36 AM View: Confidence Intervals
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

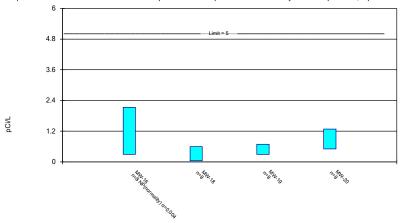
## Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



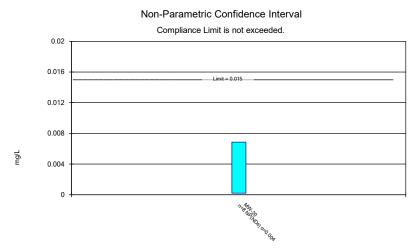

Constituent: Barium Analysis Run 11/12/2021 11:36 AM View: Confidence Intervals
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG


# Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

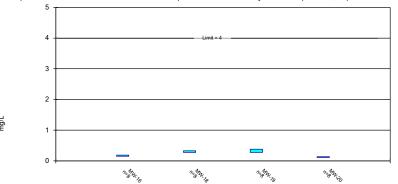



# Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Combined Radium 226 + 228 Analysis Run 11/12/2021 11:36 AM View: Confidence Intervals
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

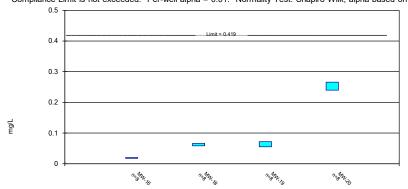

### Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

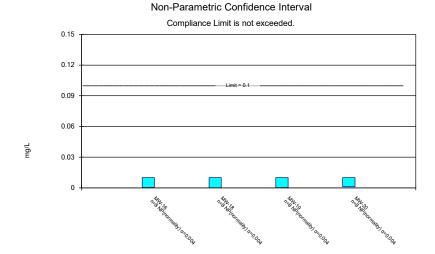


# Constituent: Lead Analysis Run 11/12/2021 11:36 AM View: Confidence Intervals Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

## Parametric Confidence Interval

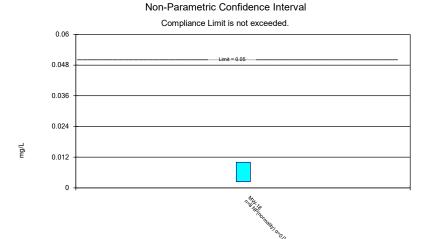
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.





Constituent: Fluoride Analysis Run 11/12/2021 11:36 AM View: Confidence Intervals
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG

# Parametric Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.





Constituent: Molybdenum Analysis Run 11/12/2021 11:36 AM View: Confidence Intervals
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill

Sanitas™ v.9.6.30f Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Selenium Analysis Run 11/12/2021 11:36 AM View: Confidence Intervals
Plant Gorgas Client: Southern Company Data: Gorgas Gypsum Landfill